When A* doesn’t work
AIMA 4.1

A few slides adapted from CS 471, UBMC and Eric Eaton (in turn, adapted from slides by Charles R. Dyer, University of Wisconsin-Madison).

Local search and optimization

- **Local search:**
 - Use single current state and move to neighboring states.
 - Idea: start with an initial guess at a solution and incrementally improve it until it is one.
- **Advantages:**
 - Use very little memory
 - Find often reasonable solutions in large or infinite state spaces.
- **Useful for pure optimization problems.**
 - Find or approximate best state according to some objective function
 - Optimal if the space to be searched is convex

Outline

- **Local Search: Hill Climbing**
- Escaping Local Maxima: Simulated Annealing
- Genetic Algorithms

Hill climbing on a surface of states

h(s): Estimate of distance from a peak (smaller is better)

OR: **f(s):** Height Defined by Evaluation Function (greater is better)

Hill-climbing search

1. While (at uphill points):
 - Move in the direction of increasing evaluation function \(f(s) \)
2. **Let** \(s_{next} = \arg \max_{s} f(s) \), \(s \) a successor state to the current state \(n \)
 - If \(f(n) < f(s_{next}) \) then move to \(s_{next} \)
 - Otherwise halt at \(n \)

- Extremely simple:
 - Terminates when a peak is reached.
 - Does not look ahead of the immediate neighbors of the current state.
 - Chooses randomly among the set of best successors, if there is more than one.
 - Doesn’t backtrack, since it doesn’t remember where it’s been
- a.k.a. greedy local search

"Like climbing Everest in thick fog with amnesia"

Toy hill climbing example I (minimizing \(h \))

<table>
<thead>
<tr>
<th>start</th>
<th></th>
<th>goal</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3 1 2</td>
<td>4 5 8</td>
<td>1 2</td>
<td>3 4 5</td>
</tr>
<tr>
<td>6 7</td>
<td></td>
<td>6 7 8</td>
<td></td>
</tr>
</tbody>
</table>

\[\text{h}_{\text{top}} = 5 \]

6

5

3 1 2
4 5
6 7 8

\[\text{h}_{\text{top}} = 0 \]

6

4

3 1 2
4 5
6 7 8

\[\text{h}_{\text{top}} = 1 \]

6

4

3 1 2
4 5
6 7 8

\[\text{h}_{\text{top}} = 2 \]
Hill-climbing Example: n-queens

- n-queens problem: Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal.
- **Good heuristic:** $h =$ number of pairs of queens that are attacking each other.

![Hill-climbing example: 8-queens](image)

A state with $h=17$ and the h-value for each possible successor.

A local minimum of h in the 8-queens state space ($h=1$).

$h =$ number of pairs of queens that are attacking each other.

Search Space features

![Search Space features](image)

Drawbacks of hill climbing

- **Local Maxima:** peaks that aren’t the highest point in the space.
- **Plateaus:** broad flat regions with no indication of “up hill”
- **Ridges:** dropoffs to the sides; steps to the North, East, South and West may go down, but a step to the NW may go up.

Toy Example of a local "maximum"

![Toy Example of a local "maximum"](image)

The Shape of an Easy Problem (Convex)

![The Shape of an Easy Problem (Convex)](image)
Gradient ascent/descent

Gradient descent procedure for finding the \(\text{arg min}_x \ f(x) \)

- choose initial \(x_0 \) randomly
- repeat
 - \(x_{i+1} \leftarrow x_i - \eta \ f'(x_i) \)
- until the sequence \(x_0, x_1, \ldots, x_i, x_{i+1} \) converges
- Step size \(\eta \) (eta) is small (perhaps 0.1 or 0.05)

Gradient methods vs. Newton’s method

- A reminder of Newton’s method from Calculus:
 \[x_{i+1} \leftarrow x_i - \frac{\eta \ f'(x_i)}{f''(x_i)} \]
- Newton’s method uses 2nd order information (the second derivative, or curvature) to take a more direct route to the minimum.
- The second-order information is more expensive to compute, but converges quicker.

The Shape of a Harder Problem

One Remedy to Drawbacks of Hill Climbing: Random Restart

- In the end: Some problem spaces are great for hill climbing and others are terrible.

Local beam search

- Keep track of \(k \) states instead of one
 - Initially: \(k \) random states
 - Next: determine all successors of \(k \) states
 - If any of successors is goal \(\rightarrow \) finished
 - Else select \(k \) best from successors and repeat.
- Major difference with random-restart search
 - Information is shared among \(k \) search threads.
- Can suffer from lack of diversity.
 - Stochastic variant: choose \(k \) successors proportionally to state success.

The Shape of a Yet Harder Problem

CIS 521 - Intro to AI - Spring 2016
Simulated annealing (SA)

- **Annealing**: the process by which a metal cools slowly and as a result freezes into a minimum-energy crystalline structure.

- Conceptually SA exploits an analogy between annealing and the search for a minimum in a more general system.

- SA uses a control parameter T, which by analogy with the original application is known as the system “temperature.”

- T starts out high and gradually decreases toward 0.

Simulated annealing (SA) hill climbing

- **BUG IN TEXT!!!**
 - AIMA: Switch viewpoint from hill-climbing to gradient descent
 - (But: AIMA algorithm hill-climbs & larger ΔE is good…)

- SA uses a random search that occasionally accepts changes that decrease the objective function f.

- Probability of accepting lower f decreases with T.

- SA hill-climbing can avoid becoming trapped at local maxima.

Applicability

- Discrete Problems where state changes are transforms of local parts of the configuration.

 - E.G. Travelling Salesman problem, where moves are swaps of the order of two cities visited:
 - Pick an initial tour randomly
 - Successors are all neighboring tours, reached by swapping adjacent cities in the original tour
 - Search using simulated annealing.

AIMA Simulated Annealing Algorithm

```python
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
    input: problem, a problem
            schedule, a mapping from time to "temperature"
    current = MAKE-NODE(problem.INITIAL-STATE)
    for $t = 1$ to $\infty$
        $T = \text{schedule}(t)$
        if $T = 0$ then return current
        next = a randomly selected successor of current
        $\Delta E = \text{next.VALUE} - \text{current.VALUE}$
        if $\Delta E > 0$ then current = next
        else current = next only with probability $\frac{1}{\text{exp}(\Delta E / T)}$
```

Nice simulation on web page of travelling salesman approximations via simulated annealing:

Outline

- Local Search: Hill Climbing
- Escaping Local Maxima: Simulated Annealing
- Genetic Algorithms

Genetic algorithms

1. Start with k random states (the initial population)
2. New states are generated by either
 1. "Sexual Reproduction": (combining) two parent states (selected proportionally to their fitness)
 2. "Mutation" of a single state or

- Encoding used for the "genome" of an individual strongly affects the behavior of the search
- Similar (in some ways) to stochastic beam search

Representation: Strings of genes

- Each chromosome
 - represents a possible solution
 - made up of a string of genes
- Each gene encodes some property of the solution
- There is a fitness metric on phenotypes of chromosomes
 - Evaluation of how well a solution with that set of properties solves the problem.
- New generations are formed by
 - Crossover: sexual reproduction
 - Mutation: asexual reproduction

Example: Genetic Algorithm for Drive Train

Genes for:

- Number of Cylinders
- RPM: 1st -> 2nd
- RPM 2nd -> 3rd
- RPM 3rd -> Drive
- Rear end gear ratio
- Size of wheels

A chromosome specifies a full drive train design

Encoding of a Chromosome

- The chromosome encodes characteristics of the solution which it represents, often as a string of binary digits.
 - Chromosome 1: 11011001001110110
 - Chromosome 2: 1101110000111110

- Each set of bits represents some dimension of the solution.

Reproduction

- Reproduction by crossover selects genes from two parent chromosomes and creates two new offspring.
- To do this, randomly choose a crossover point (perhaps none).
- For child 1, everything before this point comes from the first parent and everything after from the second parent.
- Crossover looks like this (| is the crossover point):

 | Chromosome 1: 11001 | 00100110110 |
 | Chromosome 2: 10011 | 11000111110 |

 | Offspring 1: 11001 | 00100110110 |
 | Offspring 2: 10011 | 11000111110 |
Mutation

- Mutation randomly changes genes in the new offspring.
- For binary encoding we can switch randomly chosen bits from 1 to 0 or from 0 to 1.

Original offspring: 1101111000011110
Mutated offspring: 1100111000011110

The Basic Genetic Algorithm

1. Generate random population of chromosomes
2. Until the end condition is met, create a new population by repeating following steps
 1. Evaluate the fitness of each chromosome
 2. Select two parent chromosomes from a population, weighed by their fitness
 3. With probability p_c, cross over the parents to form a new offspring.
 4. With probability p_m, mutate new offspring at each position on the chromosome.
 5. Place new offspring in the new population
3. Return the best solution in current population

Genetic algorithms: 8-queens

A Genetic Algorithm Simulation

www.boxcar2d.com

The Chromosome Layout

- Strengths:
 - Vector Angles and Magnitudes adjacent
 - Adjacent vectors are adjacent
- Weakness:
 - Wheel info (vertex, axle angles & wheel radiuses not linked to vector the wheel is associated with.)

Best from Generations 20-46: 594.7