When A* doesn’t work
AIMA 4.1

A few slides adapted from CS 471, UBMC and Eric Eaton (in turn, adapted from slides by Charles R. Dyer, University of Wisconsin-Madison).

Outline

• Local Search: Hill Climbing
• Escaping Local Maxima: Simulated Annealing
• Genetic Algorithms

Review: Local search and optimization

• Local search:
 • Use single current state and move to neighboring states.
• Idea: start with an initial guess at a solution and incrementally improve it until it is one
• Advantages:
 • Use very little memory
 • Find often reasonable solutions in large or infinite state spaces.
• Useful for pure optimization problems.
 • Find or approximate best state according to some objective function
 • Optimal if the space to be searched is convex

Hill climbing example I (minimizing h)

Hill-climbing search

I. While (α uphill points):
 • Move in the direction of increasing evaluation function f
II. Let \(s_{next} = \arg \max_s f(s) \), s a successor state to the current state n
 • If \(f(n) < f(s) \) then move to s
 • Otherwise halt at n

• Properties:
 • Terminates when a peak is reached.
 • Does not look ahead of the immediate neighbors of the current state.
 • Chooses randomly among the set of best successors, if there is more than one.
 • Doesn’t backtrack, since it doesn’t remember where it’s been
• a.k.a. greedy local search
 “Like climbing Everest in thick fog with amnesia”
Hill-climbing Example: \(n \)-queens

- \(n \)-queens problem: Put \(n \) queens on an \(n \times n \) board with no two queens on the same row, column, or diagonal
- Good heuristic: \(h = \) number of pairs of queens that are attacking each other

\[
\begin{align*}
\text{\(h=5 \)} & \quad \Rightarrow \quad \text{\(h=3 \)} & \quad \Rightarrow \quad \text{\(h=1 \)}
\end{align*}
\]

Search Space features

Drawbacks of hill climbing

- Local Maxima: peaks that aren’t the highest point in the space
- Plateaus: a broad flat region that gives the search algorithm no direction (random walk)
- Ridges: dropoffs to the sides; e.g. steps to the North, East, South and West may go down, but a step to the NW may go up.

Toy Example of a local “maximum”

The Shape of an Easy Problem (Convex)
Gradient ascent/descent

- Gradient descent procedure for finding the $\arg\min f(x)$
 - choose initial x_0 randomly
 - repeat
 - $x_{i+1} \leftarrow x_i - \eta f'(x_i)$
 - until the sequence $x_0, x_1, \ldots, x_i, x_{i+1}$ converges
- Step size η (eta) is small (perhaps 0.1 or 0.05)

Gradient methods vs. Newton’s method

- A reminder of Newton’s method from Calculus:
 $$x_{i+1} \leftarrow x_i - \eta f'(x_i) / f''(x_i)$$
- Newton’s method uses 2nd order information (the second derivative, or curvature) to take a more direct route to the minimum.
- The second-order information is more expensive to compute, but converges quicker.

The Shape of a Harder Problem

The Shape of a Yet Harder Problem

One Remedy to Drawbacks of Hill Climbing: Random Restart

- In the end: Some problem spaces are great for hill climbing and others are terrible.

Better: Local beam search

- Keep track of k states instead of one
 - Initially: k random states
 - Next: determine all successors of k states
 - If any of successors is goal \rightarrow finished
 - Else select k best from successors and repeat.
- Major difference with random-restart search
 - Information is shared among k search threads.
- Can suffer from lack of diversity.
 - Stochastic variant: choose k successors proportionally to state success.
Outline

- Local Search: Hill Climbing
- Escaping Local Maxima: Simulated Annealing
- Genetic Algorithms

Simulated annealing (SA)

- **Annealing:** “the process by which a metal cools slowly and as a result freezes into a minimum-energy crystalline structure”—often done by repeating reheating.
- Conceptually SA exploits an analogy between annealing and the search for a minimum “energy” E
- SA uses a control parameter T, which by analogy with the original application is known as the system “temperature.”
- T starts out high and gradually decreases toward 0.

Simulated annealing (SA) hill climbing

- **BUG IN TEXT!!!**
- AIMA Text: Switches viewpoint from hill-climbing to gradient descent
 - Implies a good move has a very negative Δf.
 - But: AIMA algorithm hill-climbs (moving toward larger f)
 & larger Δf is good on each move

- SA uses a random search that occasionally accepts negative Δf and therefore decreases in f.
- Probability of accepting lower f decreases with T
- SA hill-climbing can avoid becoming trapped at local maxima.

AIMA Simulated Annealing Algorithm

function SIMULATED-ANNEALING(problem, schedule)
returns a solution state
input problem, a problem
 a mapping from time to “temperature”

current \leftarrow MAKE-NODE(problem.INITIAL-STATE)

for $t = 1$ to ∞ do
 $T \leftarrow$ schedule(t)
 if $T = 0$ then return current
 next \leftarrow a randomly selected successor of current
 $\Delta E \leftarrow$ next.VALUE – current.VALUE

 if $\Delta E > 0$ then
 current \leftarrow next
 else
 current \leftarrow next only with probability $e^{\Delta E / T}$

Nice simulation on web page of travelling salesman approximations via simulated annealing:

Simulated annealing (cont.)

- A “bad” move from A to B ($f(B) < f(A)$) is accepted with the probability
 $$ P(\text{move}_A \rightarrow B) = e^{(f(B) - f(A)) / T} $$

 - At higher T, a bad move will be accepted more often
 - As T tends to zero, this probability tends to zero, and SA becomes just hill climbing
 - If T is lowered slowly enough, SA will find a global optimum.

Applicability

- Discrete Problems where state changes are transforms of local parts of the configuration
 - E.G. Travelling Salesman problem, where moves are swaps of the order of two cities visited:
 - Pick an initial tour randomly
 - Successors are all neighboring tours, reached by swapping adjacent cities in the original tour
 - Search using simulated annealing..
Outline

- Local Search: Hill Climbing
- Escaping Local Maxima: Simulated Annealing
- Genetic Algorithms

Genetic algorithms

1. Start with \(k \) random states (the *initial population*).
2. New states are generated by either
 1. "Sexual Reproduction": (combining) two *parent states* (selected proportionally to their *fitness*).
 2. "Mutation": of a single state or

 - Encoding used for the "*genome*" of an individual strongly affects the behavior of the search.
 - Similar (in some ways) to stochastic beam search.

Representation: Strings of genes

- Each *chromosome* represents a possible solution made up of a string of genes.
- Each *gene* encodes some property of the solution.
- There is a *fitness metric* on phenotypes of chromosomes.
 - Evaluation of how well a solution with that set of properties solves the problem.

- New generations are formed by
 - Crossover: sexual reproduction
 - Mutation: asexual reproduction

Encoding of a Chromosome

- The chromosome encodes characteristics of the solution which it represents, often as a string of binary digits.

<table>
<thead>
<tr>
<th>Chromosome 1</th>
<th>101100100101101</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromosome 2</td>
<td>101110000111101</td>
</tr>
</tbody>
</table>

- Each set of bits represents some dimension of the solution.

Example: Genetic Algorithm for Drive Train

Genes for:
- Number of Cylinders
- RPM: 1\(^{\text{st}}\) -> 2\(^{\text{nd}}\)
- RPM 2\(^{\text{nd}}\) -> 3\(^{\text{rd}}\)
- RPM 3\(^{\text{rd}}\) -> Drive
- Rear end gear ratio
- Size of wheels

A chromosome specifies a full drive train design.

Reproduction

- Reproduction by *crossover* selects genes from two parent chromosomes and creates two new offspring.
- To do this, randomly choose a crossover point (perhaps none).
- For child 1, everything before this point comes from the first parent and everything after from the second parent.
- Crossover looks like this (| is the crossover point):

<table>
<thead>
<tr>
<th>Chromosome 1</th>
<th>11001</th>
<th>00100110110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromosome 2</td>
<td>10011</td>
<td>10000111110</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Offspring 1</th>
<th>11001</th>
<th>11000011110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offspring 2</td>
<td>10011</td>
<td>00100110110</td>
</tr>
</tbody>
</table>
Mutation

- Mutation randomly changes genes in the new offspring.
- For binary encoding we can switch randomly chosen bits from 1 to 0 or from 0 to 1.

Original offspring: 1101111000011110
Mutated offspring: 1100111000011110

The Basic Genetic Algorithm

1. Generate random population of chromosomes
2. Until the end condition is met, create a new population by repeating following steps
 1. Evaluate the fitness of each chromosome
 2. Select two parent chromosomes from a population, weighed by their fitness
 3. With probability p_c cross over the parents to form a new offspring.
 4. With probability p_m mutate new offspring at each position on the chromosome.
 5. Place new offspring in the new population
3. Return the best solution in current population

Genetic algorithms: 8-queens

A Genetic Algorithm Simulation

www.boxcar2d.com

The Chromosome Layout

- Strengths:
 - Vector Angles and Magnitudes adjacent
 - Adjacent vectors are adjacent
- Weakness:
 - Wheel info (vertex, axle angles & wheel radiuses not linked to vector the wheel is associated with.)

Best from Generations 20-46: 594.7