When A* doesn’t work
AIMA 4.1

A few slides adapted from CS 471, UBMC and Eric Eaton (in turn, adapted from slides by Charles R. Dyer, University of Wisconsin-Madison)
Outline

- **Local Search: Hill Climbing**
- Escaping Local Maxima: Simulated Annealing
- Genetic Algorithms
Review: Local search and optimization

- **Local search:**
 - Use single current state and move to neighboring states.

- **Idea:** start with an initial guess at a solution and incrementally improve it until it is one

- **Advantages:**
 - Use very little memory
 - Find often *reasonable* solutions in large or infinite state spaces.

- **Useful for pure optimization problems.**
 - Find or approximate best state according to some *objective function*
 - *Optimal if the space to be searched is convex*
Review: Hill climbing on a surface of states

$h(s)$: Estimate of distance from a peak (smaller is better)

OR: Height Defined by evaluation function f (greater is better, unlike earlier use of f)
Hill-climbing search

I. While (∃ uphill points):
 • Move in the direction of increasing evaluation function f

II. Let $s_{next} = \arg\max_s f(s)$, s a successor state to the current state n

 • If $f(n) < f(s)$ then move to s
 • Otherwise halt at n

• Properties:
 • Terminates when a peak is reached.
 • Does not look ahead of the immediate neighbors of the current state.
 • Chooses randomly among the set of best successors, if there is more than one.
 • Doesn’t backtrack, since it doesn’t remember where it’s been

• a.k.a. greedy local search

"Like climbing Everest in thick fog with amnesia"
Hill climbing example I (*minimizing h*)

<table>
<thead>
<tr>
<th>Start</th>
<th>h<sub>oop</sub> = 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 1 2</td>
<td>4 5 8</td>
</tr>
<tr>
<td>6 7</td>
<td></td>
</tr>
</tbody>
</table>

6

<table>
<thead>
<tr>
<th>Goal</th>
<th>h<sub>oop</sub> = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2</td>
<td>3 4 5</td>
</tr>
<tr>
<td>6 7 8</td>
<td></td>
</tr>
</tbody>
</table>

5

<table>
<thead>
<tr>
<th>H<sub>oop</sub> = 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 1 2</td>
</tr>
<tr>
<td>4 5</td>
</tr>
<tr>
<td>6 7 8</td>
</tr>
</tbody>
</table>

4

<table>
<thead>
<tr>
<th>H<sub>oop</sub> = 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 1 2</td>
</tr>
<tr>
<td>4 5</td>
</tr>
<tr>
<td>6 7 8</td>
</tr>
</tbody>
</table>
Hill-climbing Example: \(n \)-queens

- \(n \)-queens problem: Put \(n \) queens on an \(n \times n \) board with no two queens on the same row, column, or diagonal

- Good heuristic: \(h = \) number of pairs of queens that are attacking each other

\[
\begin{align*}
\text{h=5} & \quad \Longrightarrow \quad \text{h=3} & \quad \Longrightarrow \quad \text{h=1} \\
\text{(for illustration)}
\end{align*}
\]
Hill-climbing example: 8-queens

A state with $h=17$ and the h-value for each possible successor

A local minimum of h in the 8-queens state space ($h=1$).

$h = \text{number of pairs of queens that are attacking each other}$
Search Space features

- Objective function
- Global maximum
- Shoulder
- Local maximum
- "Flat" local maximum
- Current state
- State space
Drawbacks of hill climbing

- **Local Maxima**: peaks that aren’t the highest point in the space
- **Plateaus**: a broad flat region that gives the search algorithm no direction (random walk)
- **Ridges**: dropoffs to the sides; e.g. steps to the North, East, South and West may go down, but a step to the NW may go up.
Toy Example of a local "maximum"

start

goal
The Shape of an Easy Problem (*Convex*)

This and next several slides from Goldberg '89
Gradient ascent/descent

• Gradient descent procedure for finding the $\arg_x \min f(x)$
 – choose initial x_0 randomly
 – repeat
 • $x_{i+1} \leftarrow x_i - \eta f'(x_i)$
 – until the sequence $x_0, x_1, \ldots, x_i, x_{i+1}$ converges
• Step size η (eta) is small (perhaps 0.1 or 0.05)
Gradient methods vs. Newton’s method

• A reminder of Newton’s method from Calculus:
 \[x_{i+1} \leftarrow x_i - \eta \frac{f'(x_i)}{f''(x_i)} \]

• Newton's method uses 2nd order information (the second derivative, or, curvature) to take a more direct route to the minimum.

• The second-order information is more expensive to compute, but converges quicker.

Contour lines of a function
Gradient descent (green)
Newton’s method (red)

Image from http://en.wikipedia.org/wiki/Newton%27s_method_in_optimization

(this and previous slide from Eric Eaton)
The Shape of a Harder Problem
The Shape of a Yet Harder Problem
One Remedy to Drawbacks of Hill Climbing: *Random Restart*

- In the end: Some problem spaces are great for hill climbing and others are terrible.
Better: Local *beam search*

- **Keep track of k states instead of one**
 - Initially: k random states
 - Next: determine all successors of k states
 - If any of successors is goal \implies finished
 - Else select k best from successors and repeat.

- **Major difference with random-restart search**
 - Information is shared among k search threads.

- **Can suffer from lack of diversity.**
 - Stochastic variant: choose k successors proportionally to state success.
Outline

• Local Search: Hill Climbing
• *Escaping Local Maxima: Simulated Annealing*
• Genetic Algorithms
Simulated annealing (SA)

- **Annealing**: “the process by which a metal cools slowly and as a result freezes into a minimum-energy crystalline structure” – often done by repeating reheating.

- Conceptually SA exploits an analogy between annealing and the search for a minimum “energy” E

- SA uses a control parameter T, which by analogy with the original application is known as the system "temperature."

- T starts out high and gradually decreases toward 0.
Simulated annealing (SA) hill climbing

- BUG IN TEXT!!!
 - AIMA Text: Switches viewpoint from hill-climbing to gradient descent
 — Implies a good move has a very negative ΔE
 - But: AIMA algorithm hill-climbs (moving toward larger f) & larger ΔE is good on each move

- SA uses a random search that occasionally accepts negative ΔE, and therefore decreases in f.
- Probability of accepting lower f decreases with T
- SA hill-climbing can avoid becoming trapped at local maxima.
AIMA Simulated Annealing Algorithm

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
input: problem, a problem
schedule, a mapping from time to “temperature”

current ← MAKE-NODE(problem.INITIAL-STATE)
for t ← 1 to ∞ do
 T ← schedule(t)
 if T = 0 then return current
 next ← a randomly selected successor of current
 ∆E ← next.VALUE – current.VALUE
 if ∆E > 0 then current ← next
 else current ← next only with probability \(e^{\frac{\Delta E}{T}} \)

Nice simulation on web page of travelling salesman approximations via simulated annealing:
Simulated annealing (cont.)

- A "bad" move from A to B \((f(B)<f(A))\) is accepted with the probability

\[
P(\text{move}_{A \rightarrow B}) = e^{(f(B) - f(A)) / T}
\]

- At higher \(T\), a bad move will be accepted more often.
- As \(T\) tends to zero, this probability tends to zero, and SA becomes just hill climbing.
- *If \(T\) is lowered slowly enough, SA will find a global optimum.*
Applicability

- Discrete Problems where state changes are transforms of local parts of the configuration

- E.G. Travelling Salesman problem, where moves are swaps of the order of two cities visited:
 - Pick an initial tour randomly
 - Successors are all neighboring tours, reached by swapping adjacent cities in the original tour
 - Search using simulated annealing.
Outline

- Local Search: Hill Climbing
- Escaping Local Maxima: Simulated Annealing
- *Genetic Algorithms*
Genetic algorithms

1. Start with k random states (the *initial population*)

2. New states are generated by either
 1. “*Sexual Reproduction*”: (combining) two *parent states* (selected proportionally to their *fitness*)
 2. “*Mutation*” of a single state or

- Encoding used for the “*genome*” of an individual strongly affects the behavior of the search
- Similar (in some ways) to stochastic beam search
Representation: Strings of genes

- Each *chromosome*
 - represents a possible solution
 - made up of a string of genes
- Each *gene* encodes some property of the solution
- There is a *fitness metric* on phenotypes of chromosomes
 - Evaluation of how well a solution with that set of properties solves the problem.
- New generations are formed by
 - Crossover: sexual reproduction
 - Mutation: asexual reproduction
Encoding of a Chromosome

- The chromosome encodes characteristics of the solution which it represents, often as a string of binary digits.

 Chromosome 1: 1101100100110110
 Chromosome 2: 1101111000011110

- Each set of bits represents some dimension of the solution.
Example: Genetic Algorithm for Drive Train

Genes for:

- Number of Cylinders
- RPM: 1^{st} -> 2^{nd}
- RPM 2^{nd} -> 3^{rd}
- RPM 3^{rd} -> Drive
- Rear end gear ratio
- Size of wheels

A chromosome specifies a full drive train design
Reproduction

- Reproduction by *crossover* selects genes from two parent chromosomes and creates two new offspring.
- To do this, randomly choose a crossover point (perhaps none).
- For child 1, everything before this point comes from the first parent and everything after from the second parent.
- Crossover looks like this (| is the crossover point):

<table>
<thead>
<tr>
<th>Chromosome 1</th>
<th>11001</th>
<th>00100110110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromosome 2</td>
<td>10011</td>
<td>11000011110</td>
</tr>
<tr>
<td>Offspring 1</td>
<td>11001</td>
<td>11000011110</td>
</tr>
<tr>
<td>Offspring 2</td>
<td>10011</td>
<td>00100110110</td>
</tr>
</tbody>
</table>

CIS421/521 - Intro to AI - Fall 2017
Mutation

- Mutation randomly changes genes in the new offspring.
- For binary encoding we can switch randomly chosen bits from 1 to 0 or from 0 to 1.

Original offspring: 110111000011110
Mutated offspring: 1100111000001110
The Basic Genetic Algorithm

1. Generate random population of chromosomes
2. Until the end condition is met, create a new population by repeating following steps
 1. Evaluate the fitness of each chromosome
 2. Select two parent chromosomes from a population, weighed by their fitness
 3. With probability p_c cross over the parents to form a new offspring.
 4. With probability p_m mutate new offspring at each position on the chromosome.
 5. Place new offspring in the new population
3. Return the best solution in current population
Genetic algorithms: 8-queens
A Genetic Algorithm Simulation

BoxCar 2D

www.boxcar2d.com
The Chromosome Layout

- **Strengths:**
 - Vector Angles and Magnitudes adjacent
 - Adjacent vectors are adjacent

- **Weakness:**

- Wheel info (vertex, axle angles & wheel radiiuses not linked to vector the wheel is associated with.)
BoxCar 2D

Genetic Algorithm Car Evolution Using Box2D Physics (v2.1)

Best from Generations 20-46: 594.7