Hidden Markov Models
The three basic HMM problems
(note: change in notation)

Mitch Marcus
CIS 521
Parameters of an HMM

- **States**: A set of states $S = s_1, \ldots, s_n$

- **Transition probabilities**: $A = a_{1,1}, a_{1,2}, \ldots, a_{n,n}$
 Each $a_{i,j}$ represents the probability of transitioning from state s_i to s_j.

- **Emission probabilities**: a set B of functions of the form $b_i(o_t)$ which is the probability of observation o_t being emitted by s_i

- **Initial state distribution**: π_i is the probability that s_i is a start state

(This and later slides follow classic formulation by Rabiner and Juang following Ferguson, as adapted by Manning and Schutze. Slides adapted from Dorr. Note the change in notation!!)
The Three Basic HMM Problems

- **Problem 1 (Evaluation):** Given the observation sequence \(O = o_1, \ldots, o_T \) and an HMM model \(\lambda = (A, B, \pi) \), how do we compute the probability of \(O \) given the model?

- **Problem 2 (Decoding):** Given the observation sequence \(O = o_1, \ldots, o_T \) and an HMM model \(\lambda = (A, B, \pi) \), how do we find the state sequence that best explains the observations?

- **Problem 3 (Learning):** How do we adjust the model parameters \(\lambda = (A, B, \pi) \), to maximize \(P(O \mid \lambda) \)?
Problem 1: Probability of an Observation Sequence

- Q: What is $P(O | \lambda)$?
- A: the sum of the probabilities of all possible state sequences in the HMM.
 - The probability of each state sequence is itself the product of the state transitions and emit probabilities
- Naïve computation is very expensive. Given T observations and N states, there are N^T possible state sequences.
 - (for $T=10$ and $N=10$, 10 billion different paths!!)
- Solution: linear time dynamic programming!
The Crucial Data Structure: The Trellis
Forward Probabilities: α

- For a given HMM λ, given that the state is i at time t (with change of notation: some arbitrary time), what is the probability that the partial observation $o_1 \ldots o_t$ has been generated?

$$\alpha_t(i) = P(o_1 \ldots o_t, q_t = s_i \mid \lambda)$$

- Forward algorithm computes $\alpha_t(i)$ $1<i<N$, $1<t<T$ in time $O(N^2T)$ using the trellis
Forward Algorithm: Induction step

\[\alpha_t(j) = \sum_{i=1}^{N} \alpha_{t-1}(i) a_{ij} b_j(o_t) \]

\[\alpha_t(i) = P(o_1 \ldots o_t, q_t = s_i | \lambda) \]
Forward Algorithm

- **Initialization:**
 \[
 \alpha_1(i) = \pi_i b_i(o_1) \quad 1 \leq i \leq N
 \]

- **Induction:**
 \[
 \alpha_t(j) = \sum_{i=1}^{N} \alpha_{t-1}(i)a_{ij} b_j(o_t) \quad 2 \leq t \leq T, \quad 1 \leq j \leq N
 \]

- **Termination:**
 \[
 P(O \mid \lambda) = \sum_{i=1}^{N} \alpha_T(i)
 \]
Forward Algorithm Complexity

- Naïve approach requires exponential time to evaluate all N^T state sequences
- Forward algorithm using dynamic programming takes $O(N^2T)$ computations
Backward Probabilities: β

- For a given HMM λ, given that the state is i at time t, what is the probability that the partial observation $o_{t+1} \ldots o_T$ will be generated?

$$\beta_t(i) = P(o_{t+1} \ldots o_T | q_t = s_i, \lambda)$$

- Analogous to forward probability, just in the other direction:

 Backward algorithm computes $\beta_t(i)$ for $1<i<N$, $1<t<T$ *in time $O(N^2T)$ using the trellis*
Backward Probabilities

\[\beta_t(i) = \sum_{j=1}^{N} a_{ij} b_j(o_{t+1}) \beta_{t+1}(j) \]
Backward Algorithm

- **Initialization:**
 \[\beta_T(i) = 1, \quad \text{for } 1 \leq i \leq N \]

- **Induction (สมการเข้าทางหลัง):**
 \[\beta_t(i) = \sum_{j=1}^{N} a_{ij} b_j(o_{t+1}) \beta_{t+1}(j), \quad \text{for } T-1 \geq t \geq 1, \quad 1 \leq i \leq N \]

- **Termination:**
 \[P(O | \lambda) = \sum_{i=1}^{N} \pi_i b_i(o_1) \beta_1(i) \]
Problem 2: Decoding

- The Forward algorithm gives the *sum of all paths* through an HMM efficiently.
- Here, we want to find the *highest probability path*.
- We want to find the state sequence $Q=q_1\ldots q_T$, such that

\[
Q = \arg \max_{Q'} P(Q' \mid O, \lambda)
\]
Viterbi Algorithm

- Just like the forward algorithm, but instead of *summing* over transitions from incoming states, compute the *maximum*

- **Forward:**

 \[
 \alpha_t(j) = \left[\sum_{i=1}^{N} \alpha_{t-1}(i) a_{ij} \right] b_j(o_t)
 \]

- **Viterbi Recursion:**

 \[
 \delta_t(j) = \left[\max_{1 \leq i \leq N} \delta_{t-1}(i) a_{ij} \right] b_j(o_t)
 \]
Core Idea of Viterbi Algorithm
Not quite what we want....

- Viterbi recursion computes the maximum probability path to state j at time t given that the partial observation $o_1 \ldots o_t$ has been generated.

$$\delta_t(j) = \left[\max_{1 \leq i \leq N} \delta_{t-1}(i) a_{ij} \right] b_j(o_t)$$

- But we want the path itself that gives the maximum probability.

- Solution:
 1. Keep backpointers
 2. Find $\arg \max_j \delta_T(j)$
 3. Chase backpointers from state j at time T to find state sequence (backwards)
Viterbi Algorithm

- **Initialization:** \(\delta_1(i) = \pi_i b_j(o_1) \quad 1 \leq i \leq N \)
- **Induction:**
 \[
 \delta_t(j) = \left[\max_{1 \leq i \leq N} \delta_{t-1}(i) a_{ij} \right] b_j(o_t) \quad 2 \leq t \leq T, 1 \leq j \leq N
 \]
 \[
 \psi_t(j) = \left[\arg \max_{1 \leq i \leq N} \delta_{t-1}(i) a_{ij} \right] \quad \text{(Backpointers)}
 \]
- **Termination:** \(q^*_T = \arg \max_{1 \leq i \leq N} \delta_T(i) \quad \text{(Final state!)} \)
- **Backpointer path:** \(q^*_t = \psi_{t+1}(q^*_{t+1}) \quad t = T-1, \ldots, 1 \)
Problem 3: Learning

- Up to now we’ve assumed that we know the underlying model $\lambda = (A, B, \pi)$

- Often these parameters are estimated on annotated training data, but:
 - Annotation is often difficult and/or expensive
 - Training data is different from the current data

- We want to maximize the parameters with respect to the current data, i.e., we’re looking for a model λ', such that $\lambda' = \arg \max_{\lambda} P(O | \lambda)$
Problem 3: Learning (If Time Allows…)

- Unfortunately, there is no known way to analytically find a *global* maximum, i.e., a model λ', such that

 $$\lambda' = \arg \max_{\lambda} P(O | \lambda)$$

- But it is possible to find a *local* maximum

- Given an initial model λ, we can always find a model λ', such that

 $$P(O | \lambda') \geq P(O | \lambda)$$
Forward-Backward (Baum-Welch) algorithm

Key Idea: parameter re-estimation by hill-climbing

FB algorithm iteratively re-estimates the parameters yielding a new λ' at each iteration

1. Initialize λ to a random set of values
2. Estimate $P(O \mid \lambda)$, filling out the trellis for both the Forward and the Backward algorithms
3. Reestimate λ using both trellises, yielding a new estimate λ'

Theorem: $P(O \mid \lambda') \geq P(O \mid \lambda)$
Parameter Re-estimation

- Three parameters need to be re-estimated:
 - Initial state distribution: π_i
 - Transition probabilities: $a_{i,j}$
 - Emission probabilities: $b_i(o_t)$
Re-estimating *Transition* Probabilities: Step 1

- What’s the probability of being in state s_i *at time t* and going to state s_j, given the current model and parameters?

\[
\xi_t(i, j) = P(q_t = s_i, q_{t+1} = s_j \mid O, \lambda)
\]
Re-estimating Transition Probabilities: Step 1

$$\xi_t(i, j) = \frac{\alpha_t(i) a_{i,j} b_j(o_{t+1}) \beta_{t+1}(j)}{\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_t(i) a_{i,j} b_j(o_{t+1}) \beta_{t+1}(j)}$$
Re-estimating *Transition* Probabilities: Step 2

- The intuition behind the re-estimation equation for transition probabilities is

\[
\hat{a}_{i,j} = \frac{\text{expected number of transitions from state } s_i \text{ to state } s_j}{\text{expected number of transitions from state } s_i}
\]

- Formally:

\[
\hat{a}_{i,j} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \sum_{j'=1}^{N} \xi_t(i,j')} \quad \frac{t=1}{T-1} \quad \frac{N}{T-1} \quad \frac{t=1}{T-1} \quad \frac{N}{T-1}
\]
Re-estimating Transition Probabilities

- Defining

\[\gamma_t(i) = \sum_{j=1}^{N} \xi_t(i, j) \]

As the probability of being in state \(s_i \), given the complete observation \(O \)

- We can say:

\[
\hat{a}_{i, j} = \frac{T-1}{T-1} \sum_{t=1}^{T-1} \xi_t(i, j) \]

\[
\sum_{t=1}^{T-1} \gamma_t(i) \]
Re-estimating *Initial State* Probabilities

- Initial state distribution: π_i is the probability that s_i is a start state

- Re-estimation is easy:

$$\hat{\pi}_i = \text{expected number of times in state } s_i \text{ at time } 1$$

- Formally:

$$\hat{\pi}_i = \gamma_1(i)$$
Re-estimation of *Emission* Probabilities

- Emission probabilities are re-estimated as

\[
\hat{b}_i(k) = \frac{\text{expected number of times in state } s_i \text{ and observe symbol } v_k}{\text{expected number of times in state } s_i}
\]

- Formally:

\[
\hat{b}_i(k) = \frac{\sum_{t=1}^{T} \delta(o_t, v_k) \gamma_t(i)}{\sum_{t=1}^{T} \gamma_t(i)}
\]

where \(\delta(o_t, v_k) = 1, \text{ if } o_t = v_k, \text{ and } 0 \text{ otherwise} \)

- Note that \(\delta \) here is the Kronecker delta function and is not related to the \(\delta \) in the discussion of the Viterbi algorithm!!
The Updated Model

- Coming from \(\lambda = (A, B, \pi) \) we get to \(\lambda' = (\hat{A}, \hat{B}, \hat{\pi}) \) by the following update rules:

\[
\hat{a}_{i,j} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \gamma_t(i)}
\]

\[
\hat{b}_i(k) = \frac{\sum_{t=1}^{T} \delta(o_t, v_k) \gamma_t(i)}{\sum_{t=1}^{T} \gamma_t(i)}
\]

\[
\hat{\pi}_i = \gamma_1(i)
\]
Expectation Maximization

- The forward-backward algorithm is an instance of the more general EM algorithm
 - The E Step: Compute the forward and backward probabilities for a given model
 - The M Step: Re-estimate the model parameters