Informed Search II

1. When A* fails – Hill climbing, simulated annealing
2. Genetic algorithms
When A* doesn’t work
AIMA 4.1

A few slides adapted from CS 471, UBMC and Eric Eaton (in turn, adapted from slides by Charles R. Dyer, University of Wisconsin-Madison).
Outline

- Local Search: Hill Climbing
- Escaping Local Maxima: Simulated Annealing
- Genetic Algorithms
Local search and optimization

- Local search:
 - Use single current state and move to neighboring states.
- Idea: start with an initial guess at a solution and incrementally improve it until it is one
- Advantages:
 - Use very little memory
 - Find often reasonable solutions in large or infinite state spaces.
- Also useful for pure optimization problems.
 - Find or approximate best state according to some objective function
 — e.g. survival of the fittest as a metaphor for optimization.
Hill Climbing
Hill climbing on a surface of states

$h(s)$: Estimate of distance from a peak (smaller is better)

Height Defined by Evaluation Function (greater is better)
Hill-climbing search

I. While (∃ uphill points):
 • Move in the direction of increasing evaluation function f

II. Let $s_{next} = \arg\max f(s)$, s a successor state to the current state n
 • If $f(n) < f(s)$ then move to s
 — Otherwise halt at n

• Properties:
 • Terminates when a peak is reached.
 • Does not look ahead of the immediate neighbors of the current state.
 • Chooses randomly among the set of best successors, if there is more than one.
 • Doesn’t backtrack, since it doesn’t remember where it’s been

• a.k.a. greedy local search

"Like climbing Everest in thick fog with amnesia"
Hill climbing example I (minimizing h)

Start:

```
3 1 2
4 5 8
6 7  
```

Goal:

```
1 2 3 4 5
6 7 8  
```

Heuristic values:

6 (h_oop = 5)

5 (h_oop = 4)

3 (h_oop = 3)

4 (h_oop = 2)

5 (h_oop = 1)

6 (h_oop = 0)
Hill-climbing Example: \(n \)-queens

- \(n \)-queens problem: Put \(n \) queens on an \(n \times n \) board with no two queens on the same row, column, or diagonal
- **Good heuristic:** \(h = \) number of pairs of queens that are attacking each other

\[h = 5 \quad \rightarrow \quad h = 3 \quad \rightarrow \quad h = 1 \]

(for illustration)
Hill-climbing example: 8-queens

A state with $h=17$ and the h-value for each possible successor

A local minimum of h in the 8-queens state space ($h=1$).

$h =$ number of pairs of queens that are attacking each other
Search Space features

- Objective function
- Global maximum
- Shoulder
- Local maximum
- "Flat" local maximum
- Current state
- State space
Drawbacks of hill climbing

- **Local Maxima**: peaks that aren’t the highest point in the space
- **Plateaus**: the space has a broad flat region that gives the search algorithm no direction (random walk)
- **Ridges**: dropoffs to the sides; steps to the North, East, South and West may go down, but a step to the NW may go up.
Toy Example of a local "maximum"

start

<table>
<thead>
<tr>
<th>4</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

goal

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Shape of an Easy Problem (*Convex*)
Gradient ascent/descent

- Gradient descent procedure for finding the $\arg_x \min f(x)$
 - choose initial x_0 randomly
 - repeat
 - $x_{i+1} \leftarrow x_i - \eta f'(x_i)$
 - until the sequence $x_0, x_1, \ldots, x_i, x_{i+1}$ converges
- Step size η (eta) is small (perhaps 0.1 or 0.05)
Gradient methods vs. Newton’s method

• A reminder of Newton’s method from Calculus:
 \[x_{i+1} \leftarrow x_i - \eta f'(x_i) / f''(x_i) \]

• Newton’s method uses 2nd order information (the second derivative, or, curvature) to take a more direct route to the minimum.

• The second-order information is more expensive to compute, but converges quicker.

Contour lines of a function
Gradient descent (green)
Newton’s method (red)

(this and previous slide from Eric Eaton)
The Shape of a Harder Problem
The Shape of a Yet Harder Problem
One Remedy to Drawbacks of Hill Climbing: *Random Restart*

- In the end: Some problem spaces are great for hill climbing and others are terrible.
Simulated Annealing
REVISED: Simulated annealing (SA)

- **Annealing**: the process by which a metal cools and freezes into a minimum-energy crystalline structure (the annealing process).
- Conceptually SA exploits an analogy between annealing and the search for a **minimum** in a more general system.
 - AIMA: Switch viewpoint from *hill-climbing* to *gradient descent*
 - *(But: AIMA algorithm *hill-climbs* & larger ΔE is good…)*
- **SA hill-climbing** can avoid becoming trapped at local **maxima**.
- **SA** uses a random search that occasionally accepts changes that decrease objective function f.
- **SA** uses a control parameter T, which by analogy with the original application is known as the system "*temperature.*"
- T starts out high and gradually decreases toward 0.
Simulated annealing (cont.)

- A "bad" move from A to B \((f(B) < f(A))\) is accepted with the probability
 \[P(\text{move}_{A \rightarrow B}) = e^{\frac{(f(B) - f(A))}{T}} \]

- The higher \(T\), the more likely a bad move will be made.
- As \(T\) tends to zero, this probability tends to zero, and SA becomes more like hill climbing
- If \(T\) is lowered slowly enough, SA is complete and admissible.
Applicability

- **Discrete Problems where state changes are transforms of local parts of the configuration**

- E.G. Travelling Salesman problem, where moves are swaps of the order of two cities visited:
 - Pick an initial tour randomly
 - Successors are all neighboring tours, reached by swapping adjacent cities in the original tour
 - Search using simulated annealing..
AIMA Simulated Annealing Algorithm

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
input: problem, a problem
 schedule, a mapping from time to “temperature”

 current ← MAKE-NODE(problem.INITIAL-STATE)
for t ← 1 to ∞ do
 T ← schedule(t)
 if T = 0 then return current
 next ← a randomly selected successor of current
 ∆E ← next.VALUE – current.VALUE
 if ∆E > 0 then current ← next
 else current ← next only with probability e^{∆E / T}

Nice simulation on web page of travelling salesman approximations via simulated annealing:
Local *beam search*

- **Keep track of \(k \) states instead of one**
 - Initially: \(k \) random states
 - Next: determine all successors of \(k \) states
 - If any of successors is goal \(\rightarrow \) finished
 - Else select \(k \) best from successors and repeat.

- **Major difference with random-restart search**
 - Information is shared among \(k \) search threads.

- **Can suffer from lack of diversity.**
 - Stochastic variant: choose \(k \) successors proportionally to state success.
Genetic Algorithms
Genetic algorithms

1. Start with k random states (the initial population)

2. New states are generated by either
 1. “Mutation” of a single state or
 2. “Sexual Reproduction”: (combining) two parent states (selected proportionally to their fitness)

- Encoding used for the “genome” of an individual strongly affects the behavior of the search
- Similar (in some ways) to stochastic beam search
Representation: Strings of genes

• Each chromosome
 • represents a possible solution
 • made up of a string of genes
• Each gene encodes some property of the solution
• There is a fitness metric on phenotypes of chromosomes
 • Evaluation of how well a solution with that set of properties solves the problem.
• New generations are formed by
 • Crossover: sexual reproduction
 • Mutation: asexual reproduction
Encoding of a Chromosome

- The chromosome encodes characteristics of the solution which it represents, often as a string of binary digits.

 Chromosome 1: 1101100100110110
 Chromosome 2: 1101111000011110

- Each set of bits represents some dimension of the solution.
Example: Genetic Algorithm for Drive Train

Genes for:

- Number of Cylinders
- RPM: 1^{st} -> 2^{nd}
- RPM 2^{nd} -> 3^{rd}
- RPM 3^{rd} -> Drive
- Rear end gear ratio
- Size of wheels

A chromosome specifies a full drive train design
Reproduction

- Reproduction by *crossover* selects genes from two parent chromosomes and creates two new offspring.
- To do this, randomly choose a crossover point (perhaps none).
- For child 1, everything before this point comes from the first parent and everything after from the second parent.
- Crossover looks like this (| is the crossover point):

 | Chromosome 1 | 11001 | 00100110110 |
 |----------------|
 | Chromosome 2 | 10011 | 11000011110 |

 | Offspring 1 | 11001 | 11000011110 |
 |----------------|
 | Offspring 2 | 10011 | 00100110110 |
Mutation

- Mutation randomly changes genes in the new offspring.
- For binary encoding we can switch randomly chosen bits from 1 to 0 or from 0 to 1.

Original offspring: 1101111000011110
Mutated offspring: 1100111000001110
The Basic Genetic Algorithm

1. Generate random population of chromosomes
2. Until the end condition is met, create a new population by repeating following steps
 1. Evaluate the fitness of each chromosome
 2. Select two parent chromosomes from a population, weighed by their fitness
 3. With probability \(p_c \) cross over the parents to form a new offspring.
 4. With probability \(p_m \) mutate new offspring at each position on the chromosome.
 5. Place new offspring in the new population
3. Return the best solution in current population
Genetic algorithms: 8-queens
A Genetic Algorithm Simulation

BoxCar 2D

Derp Bike Designer

Cart Angles Cart Magnitudes Input Cart Copy to Clipboard

Axle Angles Wheel Rank

www.boxcar2d.com
The Chromosome Layout

- **Strengths:**
 - Vector Angles and Magnitudes adjacent
 - Adjacent vectors are adjacent

- **Weakness:**
 - Wheel info (vertex, axle angles & wheel radiiuses not linked to vector the wheel is associated with.)
Car from Gen 4: Score: 160 (max)

BoxCar 2D

Genetic Algorithm Car Evolution Using Box2D Physics (v2.1)

Score: 144.2 Time: 1:48
Best from Generations 20-46: 594.7

BoxCar 2D

Genetic Algorithm Car Evolution Using Box2D Physics (v2.1)

CIS 521 - Intro to AI
The best (gen 26-37) of another series

BoxCar 2D

Genetic Algorithm Car Evolution Using Box2D Physics (v2.1)

Score: 290.8 Time: 1:31
A variant finishes the course....