Perceptrons, SVMs, and Friends: Some Discriminative Models for Classification

Parallel to AIMA 18.1, 18.2, 18.6.3, 18.9

The Automatic Classification Problem

- Assign object/event or sequence of objects/events to one of a given finite set of categories.
 - Fraud detection for credit card transactions, telephone calls, etc.
 - Worm detection in network packets
 - Spam filtering in email
 - Recommending articles, books, movies, music
 - Medical diagnosis
 - Speech recognition
 - OCR of handwritten letters
 - Recognition of specific astronomical images
 - Recognition of specific DNA sequences
 - Financial investment

- Machine Learning methods provide a powerful set of approaches to this problem

Universal Machine Learning Diagram

Example: handwritten digit recognition

Machine learning algorithms that

- Automatically cluster these images
- Use a training set of labeled images to learn to classify new images
- Discover how to account for variability in writing style

A machine learning algorithm development pipeline: minimization

Given training vectors $x_1, ..., x_N$ and targets $t_1, ..., t_N$, find...

\[E(w, \theta) = \frac{1}{2} \sum_{i=1}^{N} (s(x_i, \theta) - t_i)^2 \]

\[\frac{\partial E(w, \theta)}{\partial \theta_j} = \sum_{i=1}^{N} (s(x_i, \theta) - t_i) x_i \]

\[\frac{\partial E(w, \theta)}{\partial w_k} = \sum_{i=1}^{N} (s(x_i, \theta) - t_i) x_i \]

Implementation

Naive Bayes Classifiers are one example

Universal Machine Learning Diagram
Generative vs. Discriminative Models

- **Generative question:**
 - “How can we model the joint distribution of the classes and the features?”

 \[c_{MLE} = \arg \max_{c \in C} P(c \mid D) \]

 Bayes’ rule + Assumption that all hypotheses are a priori equally likely

 \[c_{ML} = \arg \max_{c \in C} P(D \mid c) \]

- Naïve Bayes, Markov Models, HMMs all generative

- **Discriminative question:**
 - “What features distinguish the classes from one another?”

Example

Modeling what sort of bizarre distribution produced these training points is hard, but distinguishing the classes is a piece of cake!

chart from MIT tech report #507, Tony Jebara

Linear Classification: Informal...

Find a (line, plane, hyperplane) that divides the red points from the blue points.

Hyperplane

A hyperplane can be defined by

\[c = \mathbf{w} \cdot \mathbf{x} \]

Or more simply (renormalizing) by

\[0 = \mathbf{w} \cdot \mathbf{x} \]

Consider a two-dimension example...

\[0 = [1, -1] \begin{bmatrix} x \\ y \end{bmatrix} \]

\[y = x \]

Linear Classification: Slightly more formal

Input encoded as feature vector \(\mathbf{x} \)

Model encoded as \(\mathbf{w} \)

Just return \(y = \mathbf{w} \cdot \mathbf{x}! \)

\(\text{sign}(y) \) tell us the class:

+ + blue
- - red

(All vectors normalized to length 1, for simplicity)

Computing the sign...

One definition of dot product:

\[\mathbf{w} \cdot \mathbf{x} = \|\mathbf{w}\| \|\mathbf{x}\| \cos \theta \]

So \(\text{sign}(\mathbf{w} \cdot \mathbf{x}) = \text{sign}(\cos \theta) \)

Thus \(y = \text{sign}(\cos \theta) \)
Perceptron Update Example

\[\mathbf{w} = \mathbf{w} + y_i \mathbf{x}_i \]

If \(\mathbf{x}_i \) is supposed to be on the other side....

Perceptron Learning Algorithm

Input: A list \(\mathcal{T} \) of training examples \(\langle \mathbf{x}_0, y_0 \rangle, \ldots, \langle \mathbf{x}_n, y_n \rangle \) where \(y_i : y_i \in \{ +1, -1 \} \)
Output: A classifying hyperplane \(\mathbf{w} \)
Randomly initialize \(\mathbf{w} \);
while model \(\mathbf{w} \) makes errors on the training data do
for \(\mathbf{x}_i, y_i \) in \(\mathcal{T} \) do
Let \(\hat{y} = \text{sign}(\mathbf{w} \cdot \mathbf{x}_i); \)
if \(\hat{y} \neq y_i \) then
\[\mathbf{w} = \mathbf{w} + y_i \mathbf{x}_i; \]
end
end

Converges if the training set is linearly separable
May not converge if the training set is not linearly separable

Compared to the biological neuron

- **Input**
 - A neuron’s dendritic tree is connected to a thousand neighboring neurons. When one of those neurons fires, a positive or negative charge is received
 - The strengths of all the received charges are added together ...

- **Output**
 - If the aggregate input is greater than the axon hillock’s threshold value, then the neuron fires
 - The physical and neurochemical characteristics of each synapse determines the strength and polarity of the new signal

Voted & Averaged Perceptron

- Works just like a regular perceptron, except keeping track of all the intermediate models created
- Much better generalization performance than regular perceptron (almost as good as SVMs)
- **Voted Perceptron** (Freund & Schapire 1999)
 - Let each of the (many, many) models created in training vote on the answer and take the majority
 - As fast to train but slower in run-time
- **Averaged Perceptron** (Collins 2002)
 - Return as your final model the average of all intermediate models
 - Nearly as fast to train and exactly as fast to run as regular perceptron

Properties of the Simple Perceptron

- You can prove that
 - If it’s possible to separate the data with a hyperplane (i.e. if it’s linearly separable),
 - Then the algorithm will converge to that hyperplane.
- But what if it isn’t? Then perceptron is very unstable and oscillates back and forth.

Support vector machines
What's wrong with these hyperplanes?

They're unjustifiably biased!

A less biased choice

Margin
- the distance to closest point in the training data
- We tend to get better generalization to unseen data if we choose the separating hyperplane which maximizes the margin

Select the separating hyperplane that maximizes the margin

Support Vector Machines
- A learning method which explicitly calculates the maximum margin hyperplane by solving a large quadratic programming minimization problem.
- Among the very highest-performing current machine learning techniques.
- But it's relatively slow and quite complicated.
Support Vector Machines

- A learning method which explicitly calculates the maximum margin hyperplane.

Setting Up the Optimization Problem

The maximum margin can be characterized as a solution to an optimization problem:

\[
\begin{align*}
\max & \quad \frac{1}{2} \|w\|^2 \\
\text{s.t.} & \quad y_i (w \cdot x_i + b) \geq 1, \quad \forall x_i
\end{align*}
\]

Define the margin (what ever it turns out to be) to be one unit of width.

Linear, (Hard-Margin) SVM Formulation

- Find \(w, b\) that solves
 \[
 \min \frac{1}{2} \|w\|^2 \\
 \text{s.t.} \quad y_i (w \cdot x_i + b) \geq 1, \quad \forall x_i
 \]

- Problem is convex, so there is a unique global minimum value (when feasible)
- There is also a unique minimizer, i.e. weight and \(b\) value that provides the minimum
- Quadratic Programming
 - very efficient computationally with procedures that take advantage of the special structure

What if it isn’t separable?

- If class 1 corresponds to 1 and class 2 corresponds to -1, we can rewrite
 \[
 (w \cdot x_i + b) \geq 1, \quad \forall x_i \text{ with } y_i = 1 \\
 (w \cdot x_i + b) \leq -1, \quad \forall x_i \text{ with } y_i = -1
 \]
 as
 \[
 y_i (w \cdot x_i + b) \geq 1, \quad \forall x_i
 \]

- So the problem becomes:
 \[
 \begin{align*}
 \max & \quad \frac{1}{2} \|w\|^2 \\
 \text{s.t.} & \quad y_i (w \cdot x_i + b) \geq 1, \quad \forall x_i \\
 \text{or} & \quad \min \frac{1}{2} \|w\|^2 \\
 \text{s.t.} & \quad y_i (w \cdot x_i + b) \geq 1, \quad \forall x_i
 \end{align*}
 \]
Project it to someplace where it is!

\[\phi(\langle x, y \rangle) = x^2 + y^2 \]

Non-linear SVMs: Feature spaces

- General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is linearly separable:

Kernel Trick

- If our data isn’t linearly separable, we can define a projection \(\Phi(x_i) \) to map it into a much higher dimensional feature space where it is.

- For SVM where everything can be expressed as the dot products of instances this can be done efficiently using the ‘kernel trick’:
 - A kernel \(K \) is a function such that:
 \[K(x_i, x_j) = \Phi(x_i) \cdot \Phi(x_j) \]
 - Then, we never need to explicitly map the data into the high-dimensional space to solve the optimization problem – magic!!

Gaussian Kernel: Example

The appropriate \(K \) maps this into a hyperplane in some space!!

SVMs vs. other ML methods

- Examples from the NIST database of handwritten digits
 - 60K labeled digits 20x20 pixels 8bit greyscale values
- Learning methods
 - 3-nearest neighbors
 - Hidden layer neural net
 - Specialized neural net (LeNet)
 - Boosted neural net
 - SVM
 - SVM with kernels on pairs of nearby pixels + specialized transforms
 - Shape matching (vision technique)
- Human error: on similar US Post Office database 2.5%.

Performance on the NIST digit set (2003)

	3-NN	Hidden Layer NN	LeNet	Boosted LeNet	SVM	SVM with	Shape Match
----------------------	------	-----------------	-------	---------------	-----	kernel	
Error %	3.4	1.6	0.9	0.7	1.1	0.56	0.63
Run time (milliseconds/digit)	1000	10	30	50	200		
Memory (MB)	12	.49	.013	.21	.11		
Training time (days)	0	7	14	30	10		

Beaten in 2010 (.35% error) by a very complex deep neural network (if you want details: a 6 layer NN with 784-2500-2000-1500-1000-500-10 topology with elastic distortions running on modern GPU)