Perceptrons, SVMs, and Friends:
Some *Discriminative* Models for Classification

Parallel to AIMA 18.1, 18.2, 18.6.3, 18.9
The Automatic Classification Problem

- Assign object/event or sequence of objects/events to one of a given finite set of categories.
 - *Fraud detection* for credit card transactions, telephone calls, etc.
 - *Worm detection* in network packets
 - *Spam filtering* in email
 - *Recommended articles*, books, movies, music
 - *Medical diagnosis*
 - *Speech recognition*
 - *OCR* of handwritten letters
 - Recognition of specific astronomical images
 - Recognition of specific DNA sequences
 - Financial investment

- **Machine Learning methods provide a powerful set of approaches to this problem**
Universal Machine Learning Diagram

- Things to be classified
- Feature Vector Representation
- Magic Classifier Box
- Classification Decision
Example: handwritten digit recognition

3 7 5 9 8 5 1 9 5 7
8 0 8 2 5 0 5 9 8
4 9 1 2 3 2 7 3 2 1
8 5 0 5 5 9 6 3 7 9
1 7 4 7 6 8 5 4 2 7
7 4 6 2 7 4 9 8 6 5
9 9 7 9 7 4 8 4 6 8
4 9 6 4 8 6 5 7 7 8
0 6 9 8 0 3 3 9 8 2
1 9 2 3 7 3 5 1 0 6

Machine learning algorithms that

- Automatically cluster these images
- Use a *training* set of *labeled* images to learn to classify new images
- Discover how to account for variability in writing style
A machine learning algorithm development pipeline: minimization

Problem statement

Mathematical description of a cost function

Mathematical description of how to minimize/maximize the cost function

Implementation

Given training vectors x_1, \ldots, x_N and targets t_1, \ldots, t_N, find…

$$E(w) \quad \mathcal{L}(\theta)$$

$$p(x|w)$$

$$\frac{\partial E}{\partial w_i}$$

$$\frac{\partial \mathcal{L}}{\partial \theta} = 0$$

$$r(i,k) = s(i,k) - \max_j \{s(i,j) + a(i,j)\}$$

...
Universal Machine Learning Diagram

Things to be classified

Feature Vector Representation

Magic Classifier Box

Classification Decision

Naïve Bayes Classifiers are one example

Today: Perceptron, SVM and Friends
Generative vs. Discriminative Models

- **Generative question:**
 - “How can we model the joint distribution of the classes and the features?”

 \[
 c_{MAP} \equiv \arg \max_{c \in C} P(c \mid D)
 \]

 \[
 c_{ML} \equiv \arg \max_{c \in C} P(D \mid c)
 \]

 - Naïve Bayes, Markov Models, HMMs all generative

- **Discriminative question:**
 - “What features *distinguish* the classes from one another?”

 Bayes’ rule + Assumption that all hypotheses are a priori equally likely
Example

Modeling what sort of bizarre distribution produced these training points is hard, but distinguishing the classes is a piece of cake!

chart from MIT tech report #507, Tony Jebara
Find a (line, plane, hyperplane) that divides the red points from the blue points....
Hyperplane

A **hyperplane** can be defined by

\[c = \vec{w} \cdot \vec{x} \]

Or more simply (**renormalizing**) by

\[0 = \vec{w} \cdot \vec{x} \]

Consider a two-dimension example…

\[0 = [1, -1] \begin{bmatrix} x \\ y \end{bmatrix} \]

\[0 = x - y \]

\[y = x \]
Linear Classification: Slightly more formal

Input encoded as feature vector \vec{x}

Model encoded as \vec{w}

Just return $y = \vec{w} \cdot \vec{x}$!

$\text{sign}(y)$ tell us the class:
+ - blue
- - red

(All vectors normalized to length 1, for simplicity)
Computing the sign...

One definition of dot product: \[W \cdot X = \|W\| \|X\| \cos \theta \]

So \(\text{sign}(W \cdot X) = \text{sign}(\cos \theta) \)

Thus \(y = \text{sign}(\cos \theta) \)
Perceptron Update Example

If \vec{x}_1 is supposed to be on the other side….

$$\vec{W} = \vec{W} + y_i \vec{x}_i$$
Perceptron Learning Algorithm

Input: A list \(T \) of training examples \(\langle \bar{x}_0, y_0 \rangle \ldots \langle \bar{x}_n, y_n \rangle \) where \(\forall i : y_i \in \{ +1, -1 \} \)

Output: A classifying hyperplane \(\bar{w} \)

Randomly initialize \(\bar{w} \);

while model \(\bar{w} \) makes errors on the training data do

for \(\langle \bar{x}_i, y_i \rangle \) in \(T \) do

Let \(\hat{y} = \text{sign}(\bar{w} \cdot \bar{x}_i) \);

if \(\hat{y} \neq y_i \) then

\(\bar{w} = \bar{w} + y_i \bar{x}_i \);

end

end

end

Converges if the training set is **linearly separable**

May not converge if the training set is **not linearly separable**
Compared to the biological neuron

- **Input**
 - A neuron's dendritic tree is connected to a thousand neighboring neurons. When one of those neurons *fire*, a positive or negative charge is received
 - The strengths of all the received charges are added together …

- **Output**
 - If the aggregate input is greater than the axon hillock's threshold value, then the neuron *fires*
 - The physical and neurochemical characteristics of each synapse determines the strength and polarity of the new signal

\[
f(x) = \begin{cases}
1 & \text{if} \ w \cdot x + b > 0 \\
0 & \text{else}
\end{cases}
\]
Voted & Averaged Perceptron

--*Works just like a regular perceptron, except keeping track of all the intermediate models created*

--*Much better generalization performance than regular perceptron (almost as good as SVMs)*

- **Voted Perceptron (Freund & Schapire 1999)**
 - let each of the (many, many) models created in training *vote* on the answer and take the *majority*
 - As fast to train but slower in run-time

- **Averaged Perceptron (Collins 2002)**
 - Return as your final model the *average* of all intermediate models
 - Nearly as fast to train and exactly as fast to run as regular perceptron
Properties of the Simple Perceptron

- You can prove that
 - If it’s possible to separate the data with a hyperplane (i.e. if it’s linearly separable),
 - Then the algorithm will converge to that hyperplane.

- But what if it isn’t? Then perceptron is very unstable and oscillates back and forth.
Support vector machines
What’s wrong with these hyperplanes?
They’re unjustifiably biased!
A less biased choice
Margin

- the distance to closest point in the training data
- We tend to get better generalization to **unseen data** if we choose the separating hyperplane which maximizes the margin
Support Vector Machines

- A learning method which explicitly calculates the maximum margin hyperplane by solving a large quadratic programming minimization problem.
- Among the very highest-performing current machine learning techniques.
- But it’s relatively slow and quite complicated.
Maximizing the Margin

Select the separating hyperplane that maximizes the margin.

Margin Width

Margin Width

CIS 521 - Intro to AI
Support Vectors

\[x_I \]

Support Vectors

Margin Width

CIS 521 - Intro to AI
Support Vector Machines

- A learning method which *explicitly calculates the maximum margin hyperplane.*
Setting Up the Optimization Problem

The maximum margin can be characterized as a solution to an optimization problem:

\[
\text{max. } \frac{2}{\|w\|} \\
\text{s.t. } (w \cdot x + b) \geq 1, \ \forall x \text{ of class 1} \\
(w \cdot x + b) \leq -1, \ \forall x \text{ of class 2}
\]

Define the margin (what ever it turns out to be) to be \textit{one unit of width}.

CIS 521 - Intro to AI 28
Setting Up the Optimization Problem

- If class 1 corresponds to 1 and class 2 corresponds to -1, we can rewrite
 \[(w \cdot x_i + b) \geq 1, \quad \forall x_i \text{ with } y_i = 1\]
 \[(w \cdot x_i + b) \leq -1, \quad \forall x_i \text{ with } y_i = -1\]

- as
 \[y_i (w \cdot x_i + b) \geq 1, \quad \forall x_i\]

- So the problem becomes:
 \[
 \max. \frac{2}{\|w\|} \quad \text{or} \quad \min. \frac{1}{2} \|w\|^2
 \]
 \[
 \text{s.t. } y_i (w \cdot x_i + b) \geq 1, \quad \forall x_i
 \]
 \[
 \text{s.t. } y_i (w \cdot x_i + b) \geq 1, \quad \forall x_i
 \]
Linear, (Hard-Margin) SVM Formulation

- Find \(w, b \) that solves

\[
\min \frac{1}{2} \|w\|^2
\]

\[
s.t. \ y_i (w \cdot x_i + b) \geq 1, \ \forall x_i
\]

- Problem is \textit{convex}, so there is a unique global minimum value (when feasible)
- There is also a unique minimizer, i.e. weight and \(b \) value that provides the minimum
- Quadratic Programming
 - very efficient computationally with procedures that take advantage of the special structure
What if it isn’t separable?
Project it to someplace where it is!

\[\phi(\langle x, y \rangle) = x^2 + y^2 \]
Non-linear SVMs: Feature spaces

- General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is linearly separable:

$$\Phi: \mathbf{x} \rightarrow \varphi(\mathbf{x})$$
Kernel Trick

- If our data isn’t linearly separable, we can define a projection $\Phi(x_i)$ to map it into a much higher dimensional feature space where it is.

- For SVM where everything can be expressed as the dot products of instances this can be done efficiently using the `kernel trick’:
 - A kernel K is a function such that: $K(x_i, x_j) = \Phi(x_i) \cdot \Phi(x_j)$
 - Then, we never need to explicitly map the data into the high-dimensional space to solve the optimization problem – magic!!
Gaussian Kernel: Example

The appropriate K maps this into a hyperplane in some space!!
SVMs vs. other ML methods

- Examples from the NIST database of handwritten digits
 - 60K labeled digits 20x20 pixels 8bit greyscale values
- Learning methods
 - 3-nearest neighbors
 - Hidden layer neural net
 - Specialized neural net (LeNet)
 - Boosted neural net
 - SVM
 - SVM with kernels on pairs of nearby pixels + specialized transforms
 - Shape matching (vision technique)
- Human error: on similar US Post Office database 2.5%.
Performance on the NIST digit set (2003)

<table>
<thead>
<tr>
<th></th>
<th>3-NN</th>
<th>Hidden Layer NN</th>
<th>LeNet</th>
<th>Boosted LeNet</th>
<th>SVM</th>
<th>Kernel SVM</th>
<th>Shape Match</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error %</td>
<td>2.4</td>
<td>1.6</td>
<td>0.9</td>
<td>0.7</td>
<td>1.1</td>
<td>0.56</td>
<td>0.63</td>
</tr>
<tr>
<td>Run time (millisec/digit)</td>
<td>1000</td>
<td>10</td>
<td>30</td>
<td>50</td>
<td>2000</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Memory (MB)</td>
<td>12</td>
<td>.49</td>
<td>.012</td>
<td>.21</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Training time (days)</td>
<td>0</td>
<td>7</td>
<td>14</td>
<td>30</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Beaten in 2010 (.35% error) by a *very* complex deep neural network (if you want details: a 6 layer NN with 784-2500-2000-1500-1000-500-10 topology with elastic distortions running on modern GPU)