Problem Solving Agents & Problem Formulation

AIMA 2.3, 3.1-2

Outline for today's lecture

- Defining Task Environments
- Environment types
- Formulating Search Problems

Task environments

- To design a rational agent we need to specify a task environment
 - a problem specification for which the agent is a solution
- **PEAS:** to specify a task environment
 - Performance measure
 - Environment
 - Actuators
 - Sensors

PEAS: Specifying an automated taxi driver

Performance measure:
- ?

Environment:
- ?

Actuators:
- ?

Sensors:
- ?

PEAS: Medical diagnosis system

- **Performance measure:** Healthy patient, minimize costs, lawsuits
- **Environment:** Patient, hospital, staff
- **Actuators:** Screen display (form including: questions, tests, diagnoses, treatments, referrals)
- **Sensors:** Keyboard (entry of symptoms, findings, patient’s answers)
Outline for today’s lecture

- Defining Task Environments
- Environment types
- Formulating Search Problems

Environment types: Definitions I

- Fully observable (vs. partially observable): An agent's sensors give it access to the complete state of the environment at each point in time.
- Deterministic (vs. stochastic): The next state of the environment is completely determined by the current state and the action executed by the agent.
 - If the environment is deterministic except for the actions of other agents, then the environment is strategic.
- Episodic (vs. sequential): The agent's experience is divided into atomic “episodes” during which the agent perceives and then performs a single action, and the choice of action in each episode depends only on the episode itself.

Environment types: Definitions II

- Static (vs. dynamic): The environment is unchanged while an agent is deliberating.
 - The environment is semidynamic if the environment itself does not change with the passage of time but the agent's performance score does.
- Discrete (vs. continuous): A limited number of distinct, clearly defined percepts and actions.
- Single agent (vs. multiagent): An agent operating by itself in an environment.

(See examples in AIMA, however I don’t agree with some of the judgments)

Environment Restrictions for Now

- We will assume environment is
 - Static
 - Fully Observable
 - Deterministic
 - Discrete

The rational agent designer’s goal

- Goal of AI practitioner who designs rational agents: given a PEAS task environment,
 1. Construct agent function f that maximizes (the expected value of) the performance measure,
 2. Design an agent program that implements f on a particular architecture

Outline for today’s lecture

- Defining Task Environments
- Environment types
- Formulating Search Problems (AIMA, 3.1-3.2)
Example search problem: 8-puzzle

- Formulate **goal**
 - Pieces to end up in order as shown...

- Formulate **search problem**
 - **States**: configurations of the puzzle (9! configurations)
 - **Actions**: Move one of the movable pieces (≤4 possible)
 - **Performance measure**: minimize total moves

- Find **solution**
 - Sequence of pieces moved: 3,1,6,3,1,...

Holiday in Romania II

- On holiday in Romania; currently in Arad
 - Flight leaves tomorrow from Bucharest

- Formulate **goal**
 - Be in Bucharest

- Formulate **search problem**
 - States: various cities
 - Actions: drive between cities
 - Performance measure: minimize distance

- Find **solution**
 - Sequence of cities; e.g. Arad, Sibiu, Fagaras, Bucharest, ...

Solution

A solution is a sequence of actions from the initial state to a goal state.

Optimal Solution
A solution is optimal if no solution has a lower path cost.

Hard subtask: Selecting a state space

- **Real world is absurdly complex**
 - State space must be abstracted for problem solving

 - **(abstract) State** = set (equivalence class) of real world states

 - **(abstract) Action** = complex combination of real world actions
 - e.g. Arad → Zerind represents a complex set of possible routes, detours, rest stops, etc
 - The abstraction is valid if the path between two states is reflected in the real world

 - **(abstract) Solution** = set of abstract paths that are solutions in the abstract space

- Each abstract action should be “easier” than the real problem
Formulating a Search Problem

Decide:

- Which properties matter & how to represent
 - Initial State, Goal State, Possible Intermediate States
- Which actions are possible & how to represent
 - Operator Set: Actions and Transition Model
- Which action is next
 - Path Cost Function

Example: 8-puzzle

- States??
- Initial state??
- Actions??
- Transition Model??
- Goal test??
- Path cost??

Example: Missionaries & Cannibals

Three missionaries and three cannibals come to a river. A rowboat that seats two is available. If the cannibals ever outnumber the missionaries on either bank of the river, the missionaries will be eaten. (problem 3.9)

How shall they cross the river?

Missionaries and Cannibals

<table>
<thead>
<tr>
<th>States:</th>
<th>(CL, ML, BL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>331</td>
</tr>
<tr>
<td>Goal</td>
<td>000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel Across</td>
</tr>
<tr>
<td>-101</td>
</tr>
<tr>
<td>-201</td>
</tr>
<tr>
<td>-011</td>
</tr>
<tr>
<td>-021</td>
</tr>
<tr>
<td>-111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Travel Back</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
</tr>
<tr>
<td>201</td>
</tr>
<tr>
<td>011</td>
</tr>
<tr>
<td>021</td>
</tr>
<tr>
<td>111</td>
</tr>
</tbody>
</table>