Problem Solving Agents & Problem Formulation

AIMA 2.3, 3.1-2
Outline for today’s lecture

- **Defining Task Environments**
- Environment types
- Formulating Search Problems
Task environments

• To design a rational agent we need to specify a task environment
 • a problem specification for which the agent is a solution

• **PEAS:** to specify a task environment
 • Performance measure
 • Environment
 • Actuators
 • Sensors
PEAS: Specifying an automated taxi driver

Performance measure:
- ?

Environment:
- ?

Actuators:
- ?

Sensors:
- ?
PEAS: Specifying an automated taxi driver

Performance measure:
- safe, fast, legal, comfortable, maximize profits

Environment:
- roads, other traffic, pedestrians, customers

Actuators:
- steering, accelerator, brake, signal, horn

Sensors:
- cameras, sonar, speedometer, GPS
PEAS: Medical diagnosis system

- **Performance measure**: Healthy patient, minimize costs, lawsuits
- **Environment**: Patient, hospital, staff
- **Actuators**: Screen display (form including: questions, tests, diagnoses, treatments, referrals)
- **Sensors**: Keyboard (entry of symptoms, findings, patient's answers)
Outline for today’s lecture

- Defining Task Environments
- *Environment types*
- Formulating Search Problems
Environment types: Definitions I

- **Fully observable** (vs. partially observable): An agent's sensors give it access to the complete state of the environment at each point in time.

- **Deterministic** (vs. stochastic): The next state of the environment is completely determined by the current state and the action executed by the agent.
 - If the environment is deterministic except for the actions of other agents, then the environment is *strategic*.

- **Episodic** (vs. sequential): The agent's experience is divided into atomic "episodes" during which the agent perceives and then performs a single action, and the choice of action in each episode depends only on the episode itself.
Environment types: Definitions II

- **Static** (vs. dynamic): The environment is unchanged while an agent is deliberating.
 - The environment is *semidynamic* if the environment itself does not change with the passage of time but the agent's performance score does.

- **Discrete** (vs. continuous): A limited number of distinct, clearly defined percepts and actions.

- **Single agent** (vs. multiagent): An agent operating by itself in an environment.

(See examples in AIMA, however I don’t agree with some of the judgments)
Environment Restrictions for Now

- We will assume environment is
 - *Static*
 - *Fully Observable*
 - *Deterministic*
 - *Discrete*
The rational agent designer’s goal

- Goal of AI practitioner who designs rational agents: given a PEAS task environment,

1. Construct agent function f that maximizes (the expected value of) the performance measure,

2. Design an agent program that implements f on a particular architecture
Outline for today’s lecture

- Defining Task Environments
- Environment types
- Formulating Search Problems (AIMA, 3.1-3.2)
Example search problem: 8-puzzle

- **Formulate goal**
 - Pieces to end up in order as shown…

- **Formulate search problem**
 - **States:** configurations of the puzzle (9! configurations)
 - **Actions:** Move one of the movable pieces (≤4 possible)
 - **Performance measure:** minimize total moves

- **Find solution**
 - Sequence of pieces moved: 3,1,6,3,1,…
Example search problem: holiday in Romania

You are here

You need to be here
Holiday in Romania II

• On holiday in Romania; currently in Arad
 • Flight leaves tomorrow from Bucharest

• Formulate goal
 • Be in Bucharest

• Formulate search problem
 • States: various cities
 • Actions: drive between cities
 • Performance measure: minimize distance

• Find solution
 • Sequence of cities; e.g. Arad, Sibiu, Fagaras, Bucharest, …
More formally, a problem is defined by:

1. A set of states S
2. An initial state $s_i \in S$
3. A set of actions A
 — $\forall s, \text{Actions}(s) = \text{the set of actions that can be executed in } s$, that are applicable in s.
4. Transition Model: $\forall s \forall a \in \text{Actions}(s), \text{Result}(s, a) \rightarrow s_r$
 — s_r is called a successor of s
 — $\{s_i\} \cup \text{Successors}(s_i)^* = \text{state space}$
5. Goal test $\text{Goal}(s)$
 — Can be implicit, e.g. $\text{checkmate}(x)$
 — s is a goal state if $\text{Goal}(s)$ is true
6. Path cost (additive)
 — e.g. sum of distances, number of actions executed, …
 — $c(x, a, y)$ is the step cost, assumed ≥ 0
 — (where action a goes from state x to state y)
Solution

A solution is a sequence of actions from the initial state to a goal state.

Optimal Solution:
A solution is optimal if no solution has a lower path cost.
Hard subtask: Selecting a state space

- Real world is absurdly complex
 State space must be *abstracted* for problem solving

- (abstract) *State* = set (equivalence class) of real world states

- (abstract) *Action* = complex combination of real world actions
 - e.g. *Arad* → *Zerind* represents a complex set of possible routes, detours, rest stops, etc
 - The abstraction is valid if the path between two states is reflected in the real world

- (abstract) *Solution* = set of abstract paths that are solutions in the abstract space

- Each abstract action should be “easier” than the real problem
Formulating a Search Problem

Decide:

- Which properties matter & how to represent
 - *Initial State, Goal State, Possible Intermediate States*

- Which actions are possible & how to represent
 - *Operator Set: Actions and Transition Model*

- Which action is next
 - *Path Cost Function*
Example: 8-puzzle

- States??
- Initial state??
- Actions??
- Transition Model??
- Goal test??
- Path cost??
Example: 8-puzzle

- States?? List of 9 locations- e.g., [7,2,4,5,-,6,8,3,1]
- Initial state?? [7,2,4,5,-,6,8,3,1]
- Actions?? {Left, Right, Up, Down}
- Transition Model?? ...
- Goal test?? Check if goal configuration is reached
- Path cost?? Number of actions to reach goal
Example: Missionaries & Cannibals

Three missionaries and three cannibals come to a river. A rowboat that seats two is available. If the cannibals ever outnumber the missionaries on either bank of the river, the missionaries will be eaten. (problem 3.9)

How shall they cross the river?
Formulation: Missionaries & Cannibals

• **How to formalize:**
 • *Initial state*: all M, all C, and boat on one bank
 • *Actions*: ??
 • *Transition Model*: ??
 • *Goal test*: True if all M, all C, and boat on other bank
 • *Cost*: ??

Remember:

• **Representation:**
 • *States*: Which properties matter & how to represent
 • *Actions & Transition Model*: Which actions are possible & how to represent
 • *Path Cost*: Deciding which action is next
Missionaries and Cannibals

States: (CL, ML, BL)
Initial 331 Goal 000

Actions:

<table>
<thead>
<tr>
<th>Travel Across</th>
<th>Travel Back</th>
</tr>
</thead>
<tbody>
<tr>
<td>-101</td>
<td>101</td>
</tr>
<tr>
<td>-201</td>
<td>201</td>
</tr>
<tr>
<td>-011</td>
<td>011</td>
</tr>
<tr>
<td>-021</td>
<td>021</td>
</tr>
<tr>
<td>-111</td>
<td>111</td>
</tr>
</tbody>
</table>