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3-D Vision an23. 3-D Vision and Recognition

Kostas Daniilidis, Jan-Olof Eklundh

In this chapter, we describe methods to be applied
on a robot equipped with one or more camera
sensors. Our goal is to present representations and
models for both three-dimensional (3-D) motion
and structure estimation as well as recognition.
We do not delve into estimation and inference
issues since these are extensively treated in other
chapters. The same applies to the fusion with other
sensors, which we heavily encourage but do not
describe here.

In the first part we describe the main methods
in 3-D inference from two-dimensional (2-D)
images. We are at the point where we could
propose a recipe, at least for a small spatial
extent. If we are able to track a few visual features
in our images, we are able to estimate the self-
motion of the robot as well as its pose with respect
to any known landmark. Having solutions for
minimal case problems, the obvious way here is
to apply random sample consensus. If no known
3-D landmark is given then the trajectory of the
camera exhibits drift. From the trajectory of the
camera, time windows over several frames are
selected and a 3-D dense depth map is obtained
through solving the stereo problem. Large-scale
reconstructions based on camera only do raise
challenges with respect to drift and loop closing.

In the second part we deal with recognition as
appealed to robotics. The main challenge here is
to detect an instance of an object and recognize or
categorize it. Since in robotics applications an
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object of interest always resides in a cluttered
environment any algorithm has to be insensitive to
missing parts of the object of interest and outliers.
The dominant paradigm is based on matching
the appearance of pictures. Features are detected
and quantized into visual words. Similarity is
based on the difference between histograms of
such visual words. Recognition has a long way
to go but robotics provides the opportunity to
explore an object and be active in the recognition
process.

With the rapid progress and cost reduction in digital
imaging, cameras became the standard and probably the
cheapest sensor on a robot. Unlike positioning (global
position system, GPS), inertial measurement unit (IMU),
and distance sensors (sonar, laser, infrared) cameras
produce the highest bandwidth of data. One video cam-
era of very modest resolution yields a bandwidth of

140 Mbits/s (= 30 frames/s×(640×480) pixels/frame×
16 bits/pixel). Exploiting information useful for a robot
from such a bit stream is less explicit than in the case of
GPS or a laser scanner but semantically richer.

Assume for example the scenario that a robot vehicle
is given the task of going from place A to place B given
as instruction only intermediate visual landmarks and/or
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GPS waypoints. The robot starts at A and has to decide
where is a drivable path. Such a decision can be accom-
plished through the detection of obstacles from at least
two images by estimating a depth or occupancy map
with a stereo algorithm. While driving, the robot wants
to estimate its trajectory which can be accomplished
with a structure-from-motion algorithm. The result of
the trajectory can be used to build a layout of the envi-
ronment through matching and triangulation, which in
turn can be used as a reference for a subsequent pose
estimation. At each time instance the robot has to parse
the surrounding environment for risks like pedestrians,

or for objects it is searching for like a trash can. It has
to become aware of loop closing or a reentry if the
robot has been kidnaped or blinded for a while. This
can be accomplished through object and scene recogni-
tion yielding the what and where of objects around the
robot. In an extreme scenario, a vehicle can be left to
explore a city and build a semantic 3-D map as well as
a trajectory of all places it visited, the ultimate visual
simultaneous localization and semantic mapping prob-
lem. In the next section we will deal with 3-D motion
and estimation and mapping and in the last section with
object recognition.

23.1 3-D Vision and Visual SLAM

In this section, we are going to treat all the above prob-
lems assuming that we have only one or two cameras
capturing visible light. Though many of those prob-
lems can be considerably simplified if we assume the
existence of active sensors (for example, based on
structured light projection) or if we restrict the con-
figuration space of a robot, we are not going to make
use of any such assumptions. Instead we want to in-
crease the understanding of a reasonably general setting
and leave to the user the fusion with estimates from
other sensors or the reduction of the space of un-
knowns. The reader is referred to Chaps. 21, 22, and
36 regarding range sensors and to Chap. 20 regarding
GPS and inertial sensors. In this chapter we mainly
present models, leaving the probabilistic estimation to
the chapters about sensor fusion (Chap. 25) and SLAM
(Chap. 37). Throughout this section we assume that
the correspondence between point features has been
solved. The matching problem and the detection of fea-
tures and their descriptors is treated in the recognition
session.

Let us start by introducing the projection of the world
to an image plane. Assume that a point in the world
(X, Y, Z) has coordinates (Xci , Yci , Zci ) with respect to
the coordinate system of a camera ci related to each
other by the following transformation

⎛
⎜⎝

Xci

Yci

Zci

⎞
⎟⎠ = Ri

⎛
⎜⎝

X

Y

Z

⎞
⎟⎠+ ti , (23.1)

where Ri is a rotation matrix whose columns are the
world axes with respect to the camera. The translation
vector ti is starting from the origin of the camera and

ending at the origin of the world coordinate system. The
rotation matrix is orthogonal R� R = 1, with determi-
nant 1. We assume that the center of projection is the
origin of the coordinate system and that the optical axis
is the Zci -axis of the camera. If we assume that the im-
age plane is the plane Zci = 1 then the image coordinates
(xi , yi ) read

xi = Xci

Zci
yi = Yci

Zci
. (23.2)

In practice, what we measure are the pixel coordinates
(ui , vi ) in the image, which are related to the image
coordinates (xi , yi ) by the affine transformation

ui = f αxi +βyi + cu vi = fyi + cv , (23.3)

where f is the distance of the image plane to the
projection center measured in pixels. It is also called
the focal length, because they are considered approxi-
mately equal. The aspect ratio α is a scaling induced
by non-square sensor cells or different sampling rates
horizontally and vertically. The skew factor β accounts
for a shearing induced by a non-perfectly frontal image
plane. The image center cu, cv is the point of intersection
of the image plane with the optical axis. These five pa-
rameters are called intrinsic parameters and the process
of recovering them is called intrinsic calibration. Upon
recovering them we can talk about a calibrated system
and we can work with the image coordinates (xi , yi )
instead of the pixel coordinates (ui , vi ). In many vi-
sion systems, in particular on mobile robots, wide-angle
lenses introduce a radial distortion around the image
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center which can be modeled polynomially:

xdist
i = xi (1+ k1r + k2r2 + k3r3 + . . . ) ,

ydist
i = yi (1+ k1r + k2r2 + k3r3 + . . . ) ,

where r2 = x2
i + r2

i ,

where we temporarily assumed that the image center is
at (0,0). The image coordinates (xi , yi ) in (23.3) have to
be replaced with the distorted coordinates (xdist, ydist).

Recovering the intrinsic parameters when we can
make multiple views of a reference pattern like
a checkerboard without variation of the intrinsic param-
eters has become a standard procedure using tools like
the MATLAB calibration toolbox or Zhang’s OpenCV
calibration function [23.1]. When intrinsics like the
focal length vary during operation and viewing ref-
erence patterns is not practically feasible, we rely on
the state-of-the-art method by Pollefeys et al. [23.2, 3].
When all intrinsics are unknown we can use the
Kruppa equations and several stratified self-calibration
approaches [23.4, 5] that require at least three views.
Apart from radial distortion, the projection relations
shown above can be summarized in matrix form. By
denoting ui = (ui , vi , 1) and X = (X, Y, Z, 1) we obtain

λiui = K i (Ri ti) X = P X , (23.4)

where λi = Zci is the depth of point X in camera coor-
dinates and P is the 3 × 4 projection matrix. The depth
λi can be eliminated to obtain two equations relating the
world to the pixel coordinates.

23.1.1 Pose Estimation Solution

When we have landmarks in the world with known po-
sitions X, and we can measure their projections, the
problem of recovering the unknown rotation and trans-
lation in the calibrated case is called pose estimation.
Of course, this presumes the identification of the world
landmarks in the image. In robotics, pose estimation is
rather known as a variant of localization in a known en-
vironment. We assume that a camera is calibrated and
that measurements of N points are given in world co-
ordinates X j=1,... ,N and calibrated image coordinates
x j=1,... ,N . Let us assume two scene points and denote
the known angle between their projections x1 and x2
as δ12 (Fig. 23.1). Let us denote the squared distance
‖Xi − X j‖2 by d2

ij and the lengths of X j by d2
j . Then the

cosine law reads

d2
1 +d2

2 −2d1d2 cos δ12 = d2
12 . (23.5)

d1

d3 d13

d23

d12

d2

Fig. 23.1 Pose estimation problem: a camera seeing three
points at unknown distances d1, d2, and d3 with known
angles between the rays and known point distances d12,
d13, and d23

If we can recover d1 and d2 the rest will be an absolute
orientation problem

d j x j = RX j + t (23.6)

to recover the translation and rotation between the cam-
era and the world coordinate system.

The cosine law has two unknowns d1 and d2 so with
three points we should be able to solve for the pose
estimation problem. Indeed, three points yield a system
of three quadratic equations in three unknowns, with
a maximum of eight solutions.

We follow here the analysis of the classic solution
in [23.6] and set d2 = ud1 and d3 = vd1 and solve all
three equations for d1:

d1 = d2
23

u2 +v2 −2uv cos δ23
,

d1 = d2
13

1+v2 −2v cos δ13
,

d1 = d2
12

u2 +1−2u cos δ12
,

which is equivalent to two quadratic equations in u and
v, one we call E3 involving d23 and d13 and one we
call E1, involving d13 and d12. Solving E3 for u2 and
substituting in E1 allows E1 to be solved for u with-
out involving radicals. Substituting u back in E3 yields
a quartic in v, which can have as many as four real
roots. For each v we obtain two roots for u through
any of the quadratic equations, yielding a maximum of
eight solutions [23.6, 7]. Popular pose estimation algo-
rithms are based either on an iterative method [23.8, 9]
or linear versions using auxiliary unknowns of higher
dimension [23.10, 11].
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23.1.2 Triangulation

When we know both the intrinsics and extrinsics or their
summarization in the matrix P and we measure a point
we cannot recover its depth from just one camera posi-
tion. Assuming that we have the projection of the same
point X in two cameras

λ1u1 = P1

(
X
1

)
,

λ2u2 = P2

(
X
1

)
, (23.7)

with known projection matrices P1 and P2 we can re-
cover the position X in space, a process well known
as triangulation. Observe that we can achieve triangula-
tion without decomposing the projection matrices into
intrinsic and extrinsic parameters, although we need to
remove the distortion in order to write them as above.

Having correspondences of the same point in two
cameras with known projection matrices Pl and Pr we
can solve the two projection equations for the world
point X. It is worth noting that each point provides
two independent equations so that triangulation becomes
an overconstrained problem for two views. This is not
a contradiction since two rays do not intersect in gen-
eral in space unless they satisfy the epipolar constraint
as presented in the next paragraph. The following ma-
trix in the left-hand side has in general rank 4 unless
the epipolar constraint is satisfied, in which case it has
rank 3.

⎛
⎜⎜⎜⎝

x Pl(3, :) −Pl(1, :)
yPl(3, :) −Pl(2, :)
x Pr(3, :) −Pr(1, :)
yPr(3, :) −Pr(2, :)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

X

Y

Z

1

⎞
⎟⎟⎟⎠ = 0 , (23.8)

where P(i, :) means the i-th row of matrix P.
Obviously, the homogeneous system above can be

transformed into an inhomogeneous linear system with
unknowns (X, Y, Z). Otherwise it can be solved by
finding the vector closest to the null-space of the
4 × 4 matrix above using singular value decomposition
(SVD). A thorough treatment of triangulation is the
classic [23.12].

23.1.3 Moving Stereo

Imagine now that a rigid stereo system consisting of
cameras cl (left) and cr (right)

uli ∼ Pl Xi , (23.9)

uri ∼ Pr Xi , (23.10)

is attached to a moving robot and observe this system at
two time instances

X0 = R1 X1 + t1 , (23.11)

where X0 are point coordinates with respect to the world
coordinate system, usually assumed to be with one of
the camera instances, and X1 are the coordinates of the
same point with respect to the camera rig, after a mo-
tion (R1, t1). To estimate the motion of the rig, we have
to solve two correspondence problems, first between the
left and right image, and second between left (or right)
at the first time instance and left (or right, respectively)
at the second time instance. The left-to-right correspon-
dence enables the solution of the triangulation problem
at each time instance. Motion can then be obtained by
solving (23.11) for (R1, t1), a problem called absolute
orientation. Alternatively one can avoid the second trian-
gulation and solve the pose estimation problem between
triangulated points in 3D and points in the left image
only. In the robotics context, this is the setup most similar
to the simultaneous localization and mapping (SLAM)
(Chap. 37) problem when range sensors are used, and
here we call it binocular SLAM.

Absolute Orientation
The treatment for moving stereo will be short and the
reader is referred to a similar treatment in the chapter
about range sensing. We assume that correspondences
between two time instances have been established based
on tracking in the images so that we can formulate
equations of the form

X2 = RX1 + t .

The standard way [23.13, 14] to solve this problem is
to eliminate the translation by subtracting the centroids,
yielding

X2 − X̄2 = R(X1 − X̄1) .

We need at least three points in total to obtain at least
two non-collinear mean-free X − X̄ vectors. If we con-
catenate the mean free vectors for n points into an 3 × n
matrix A1,2 we can formulate the following minimiza-
tion of the Frobenius norm

min
R∈SO(3)

‖A2 − RA1‖F ,

which is known as the Procrustes problem. It can be
shown [23.14] that the solution is obtained through SVD
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as

R = sign(det(UV�))UV� , (23.12)

where U, V are obtained from the singular value decom-
position

A2 A�
1 = USV� .

Solutions are usually obtained with RANSAC by
sampling triples of points and verification with the
Procrustes method.

23.1.4 Structure from Motion (SfM)

Relax now the assumption that the projection matri-
ces are known and focus on measuring and matching
the corresponding points u1 and u2. This is the
well-known structure-from-motion problem or, more
precisely, structure and 3-D motion from 2-D motion.
In photogrammetry, this is well known as the relative
orientation problem. Even after eliminating the λ’s from
(23.9) or by writing them in projective equivalence form

u1 ∼ P1

(
X
1

)
,

u2 ∼ P2

(
X
1

)
, (23.13)

we realize that, if (X, P1, P2) is a solution, than
(HX, P1 H−1, P2 H−1) is also a solution, where H
is an invertible 4 × 4 real matrix or in other words
a collineation in P

3. Even if we align the world coor-
dinate system with the coordinate system of the first
camera, which is common in practice,

u1 ∼ (1 0) X ,

u2 ∼ P2 X , (23.14)

we retain the same ambiguity, where H is of the form

H ∼

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1 0

h41 h42 h43 h44

⎞
⎟⎟⎟⎠ , (23.15)

with h44 �= 0. This ambiguity is possible when the
projection matrices are arbitrary rank-3 real matrices
without any constraint on their elements. If we assume
that we have calibrated our cameras then the projection
matrices depend only on displacements

u1 ∼ (1 0) X ,

u2 ∼ (R t) X , (23.16)

and the only remaining ambiguity is the scale ambi-
guity, where H looks like an identity matrix except
with h44 = s �= 1 being the scale factor. In other words,
if (R, t, X) is a solution, then (R, st, 1/sX) is a solu-
tion, too. These remarks generalize to multiple views.
Because in robotics the (R, t) matrices correspond to lo-
cation and X to mapping of the environment, the problem
is more properly described as simultaneous localiza-
tion and mapping (SLAM). However, because the term
SLAM has been used with a variety of sensors, such
as sonar and laser range scanners, the term monocular
SLAM is better suited to describe structure from motion
based on multiple views [23.15].

Epipolar Geometry
This is probably one of the most studied problems
in computer vision. We constrain ourselves to the
calibrated case, which is most relevant to robotics appli-
cations. The necessary and sufficient condition for the
two rays Rx1 and x2 to intersect is that the two rays are
coplanar with the baseline t:

x�
2 (t × Rx1) = 0 , (23.17)

which is the epipolar constraint (Fig. 23.2). To avoid the
scale ambiguity we assume that t is a unit vector. We
proceed by summarizing the unknowns into one matrix

E = t̂ R , (23.18)

where t̂ is the 3 × 3 skew-symmetric matrix to the vec-
tor t. The E matrix is called the essential matrix. The
epipolar constraint then reads

x�
2 Ex1 = 0 , (23.19)

which is the equation of a line in the x2 plane with coef-
ficients Ex1 or a coefficient of a line in the x1 plane with

Y1 Y2

X2

X1

Z1 Z2

X2RX1
x2

y2y1

x1

t

Fig. 23.2 Two views illustrating the coordinate transfor-
mations and the perspective projection of the world to
a camera
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coefficients E�x2. These lines are called epipolar and
form pencils whose centers are the epipoles e1 and e2 in
the first and second image plane, respectively. Looking
at Fig. 23.2, we can see that the epipoles are the intersec-
tions of the baseline with the two image planes, hence
e2 ∼ t and e1 ∼ −R�t. Looking at the equations of the
epipolar lines we can immediately infer that E�e1 = 0
and Ee2 = 0.

The set of all essential matrices

E2 = {
E ∈ R

3×3 | E = [t]× R,

where t ∈ S2 and R ∈ O(3)
}

(23.20)

has been characterized as a manifold of degree five. The
following result has been proven [23.16].

Proposition 23.1
A matrix E ∈ R

3×3 is essential if and only if it has two
singular values equal to each other and the third singular
value equal zero.

We present here a very recent method introduced by
Nister [23.17] for recovering an essential matrix from
five point correspondences, which has gained in popu-
larity because of its suitability for RANSAC methods.

Minimal Case
We expand the epipolar constraint in terms of
the homogeneous coordinates x1 = (x1, y1, z1) and
x2 = (x2, y2, z2) (when the points are not at infinity
zi = 1):

(
x1x�

2 y1x�
2 z1x�

3

)
Es = 0 , (23.21)

where Es is the raw-by-raw stacked version of matrix
E.

When we use only five point correspondences the
resulting linear homogeneous system will have as a so-
lution any vector in the four-dimensional kernel of the
data matrix:

Es = λ1u1 +λ2u2 +λ3u3 +λ4u4 . (23.22)

At this point we want the matrix E resulting from Es to
be an essential matrix satisfying Proposition 23.1. It has
been proven [23.16] that

Proposition 23.2
A matrix E ∈ R

3×3 is essential if and only if

EE�E = 1

2
trace(EE�)E . (23.23)

Though the det(E) = 0 constraint can be inferred from
(23.23) we are still going to use it together with
(23.23) to use ten cubic equations in E. As described
in [23.17], one can obtain a tenth-degree polynomial
in λ4. The number of real roots of this polynomial
are computed with a Sturm sequence. There is no
proof that a real root will exist at all, beyond the
physical plausibility of the existence of at least one
solution.

Assuming that we have recovered an essential matrix
from point correspondences, the next task is to recover an
orthogonal matrix R and a unit vector translation t from
the essential matrix. It can be shown that, if E = USV�
is the singular value decomposition (SVD) of E with
det(U) > 0 and det(V) > 0, then t is parallel to the last
column of U and R is U Rzπ V� or U R�

zπ V�, where
Rzπ is a rotation of π/2 about the z-axis. Each of the
rotations is equal to the other followed by a π-rotation
around the baseline. The correct pairing of rotation and
translation is chosen so that the reconstructed points are
in front of the cameras.

Ambiguities
The approach with five point correspondences has a fi-
nite number of feasible (feasible means that they may
produce multiple interpretations of structures in front of
the camera) solutions when the points in the scene lie
on a plane (a twofold ambiguity) [23.18] or when the
points on the scene and the camera centers lie on a dou-
ble sheet hyperboloid with the additional constraint that
the camera centers lie symmetrically to the main gen-
erator of the hyperboloid [23.19]. These are inherent
ambiguities which hold for any number of point cor-
respondences when one seeks a solution for an exact
essential matrix.

When solving the linear least-squares system for the
essential matrix, a planar scene as well as the case of all
points and the camera centers lying on a quadric causes
a rank deficiency of the system and thus infinite solutions
for E.

Beyond the ambiguous situations, there is a con-
siderable amount of literature regarding instabilities
in the two-view problem. In particularly, it has been
shown [23.18,20,21] that a small field of view and insuf-
ficient depth variation can cause an indeterminacy in the
estimation of the angle between translation and optical
axis. An additional small rotation can cause a con-
founding effect between translation and rotation [23.22].
Moreover, it has been shown that there exist local min-
ima close to the global minimum that can fool any
iterative scheme [23.23, 24].
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23.1.5 Monocular SLAM
or Multiple-View SfM

When we talk about simultaneous localization and map-
ping we obviously mean over a longer period of time.
The question is how to integrate additional frames into
our 3-D motion estimation (localization) process.

To exploit multiple frames we introduce rank con-
straints [23.25]. We assume that the world coordinate
system coincides with the coordinate system of the first
frame and that a scene point is projected onto xi in the
i-th frame and that its depth with respect to the first
frame is λ1:

xi = Ri (λ1x1)+ ti . (23.24)

Taking the cross product with xi and writing it for n
frames yields a homogeneous system

⎛
⎜⎜⎝

x̂2 × R2x1 x̂2t2
...

...

x̂n × Rn x1 x̂2tn

⎞
⎟⎟⎠

(
λ1

1

)
= 0 (23.25)

that has the depth of a point in the first frame as an un-
known. The 3n × 2 multiple view matrix has to have rank
one [23.26], a constraint that infers both the epipolar and
the trifocal equations. The least-squares solution for the
depth can easily be derived as

λ1 = −
∑n

i=1(xi × ti )�(xi × Ri x1)

‖xi × Ri x1‖2
. (23.26)

Given a depth for each point we can solve for motion by
rearranging the multiple-views constraint (23.25) as

⎛
⎜⎜⎝

λ1
1x1�

1 ⊗ x̂1
i x̂1

i
...

...

λn
1 xn�

1 ⊗ x̂n
i x̂n

i

⎞
⎟⎟⎠

(
Rstacked

i

ti

)
= 0 (23.27)

where xn
i is the n-th image point in the i-th frame and

Ri , ti is the motion from the first to the i-th frame and
Rstacked

i is the 12 × 1 vector of stacked elements of the
rotation matrix Ri . Suppose that k is the 12 × 1 kernel
(or closest kernel in a least-squares sense) of the 3n × 12
matrix in the left hand side obtained through singular
value decomposition and let us call A the 3 × 3 matrix
obtained from the first nine elements of k and a the
vector of elements 10–12. To obtain a rotation matrix
we follow the SVD steps in the solution of absolute
orientation (23.12) to find the closest orthogonal matrix
to an arbitrary invertible matrix.

On top of such an approach, a bundle adjust-
ment [23.27] minimizes the sum of all deviations
between image coordinates and the backprojections of
the points to be reconstructed. For N points and M mo-
tions, the sum of squares of 2N(M +1) residuals has to
be minimized with respect to all 3-D coordinates and all
motions modulo a universal scale, yielding 3N +6M −1
unknowns. Lourakis [23.28] exploits the sparse structure
of the Jacobian involved in any nonlinear minimiza-
tion. It is worth mentioning that bundle adjustment,
though extremely slow, captures the correlation between
motion estimates and structure (3-D points) estimates
which is artificially hidden in the iterative scheme in
(23.25).

The largest-scale motion estimation and registration
of views have been performed by Teller [23.29] with
a decoupled computation first of relative rotations and
finally of relative translations. The above multiple-view
SfM techniques can only be applied in a sliding-window
mode in time due to their batch nature. Davison [23.15]
showed the first real-time recursive approach by decou-
pling the direction of the viewing rays from the depth
unknowns.

23.1.6 Dense Depth Maps from Stereo

In this section we treat a particular aspect of the ‘M’ in
the visual SLAM, namely how we can obtain a dense
map of the environment from two simultaneous (stereo)
or consecutive images (structure from motion). We em-
phasized the density of the map to differentiate this task
from visual SLAM approaches establishing only layout
maps of landmark points.

We start with a simple explanation, namely, how to
extract dense depth maps from a pair of cameras with
parallel coordinate axes. Given the projection matrices
or the essential matrix of two views we can always
rotate the two cameras so that corresponding points
lie on the same image row, a process called rectifica-
tion [23.30]. Knowledge of the epipolar geometry is
sufficient for rectification. We already described how
to triangulate given a correspondence so the focus of
this section is really solving the matching problem:
for each pixel in the image what is the most similar
point in the right image, and vice versa. Assume that
we have a similarity function between two neighbor-
hoods in the left Il and right Ir images, respectively,
whose central pixels differ by a disparity d. Each sim-
ilarity measure defines a function of (xl, d) called the
disparity space image [23.31, 32]. Recent approaches
based on the plane-sweeping method [23.33–35] use
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a different domain for computing the correlation, which
can be the backprojection of the image on frontopar-
allel planes and using the interdistance of these layers
instead of the disparity. Such a backprojection requires
the epipolar geometry and contains a different rectifi-
cation. The choice of the similarity or matching cost
function and the local aggregation directly affects the
disparity space image and, depending on the time re-
sources, can become quite nonlinear and elaborate. Of
particular concern is the aggregation, which implicitly
assumes that disparity is constant over a neighbor-
hood. Such an assumption produces several artifacts at
discontinuities unless offseted bilateral aggregation is
applied [23.36].

Given a disparity space image, algorithms differ
from each other in the way they assign a disparity d
to each point xl based on a local or global optimization.
In local algorithms, the decision for xl is independent
of that for other points in the image and the classical
procedure is the greedy one, yielding the most similar
pixel in the same scanline. Global algorithms solve ei-
ther an entire image row (scanline) at once (dynamic
programming) [23.31, 36, 39] or formulate a cost func-
tional over the entire image that consists of the data term,
a regularizing smoothness term, and a discontinuity-
preserving step. Labeling all pixels with a disparity label
is an NP-hard problem and the two dominant approxi-
mation paradigms are graph cuts [23.40, 41] or belief
propagation [23.42–44].

The challenges in disparity computation arise from
three circumstances: pixels might be occluded in one
of the images (occlusions), image variation might be
minimal (texturelessness), and the appearance of the
same point/area might change due to perspective fore-
shortening or even due to violation of the Lambertian
assumption. The latter effect is rather prominent in
specularities and is accentuated when the baseline in-
creases.

Occlusions are handled by local algorithms through
bilateral windows and left–right consistency checks for
the same correspondences independent of which of the
two frames is used as reference. Occlusions are best
processed by the dynamic programming approach (il-
lustrated in Fig. 23.3), which we illustrate because of
its real-time appeal. Applying dynamic programming in
stereo presumes that disparity is a monotone function of
the image positions, which means that, if we have xl1, d1
and xl2, d2 (two point-disparity pairs) and xl1 < xl2 then
d1 < d2. A further constraint subsumed by all algorithms
is the uniqueness constraint, which dictates that a point
in the left can have only one corresponding point in
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Fig. 23.3 The dynamic programming approach in stereo
is based on finding the optimal path in the cost matrix
of the picture. Matches are denoted by ‘M’, while ‘L’
and ‘R’ indicate visibility in the left or right image only,
respectively [23.37]
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Fig. 23.4 (a) Minimum-cost path in disparity space. (b) Ag-
gregation of costs in 16 directions [23.38]

the right, and vice versa. Several attempts have been
made to overcome its single-scanline optimization char-
acter. One of the most successful and ranking highly in
the stereo vision benchmark is the semiglobal approach
in [23.38,45] which aggregates the costs of scanlines in
many directions (Fig. 23.4).

When multiple concatenated stereo pairs are used,
for example, for a given a camera trajectory. We have
to combine all depth maps into one 3-D model that is
as consistent as possible with all the views. Multiple-
view stereo [23.46] takes advantage of the existence of
multiple cameras around an object by computing the
visual hull of objects and refining depth by applying
photoconsistency [23.47]. In the context of robotics, we
rarely have such a surround capture but we definitely
have multiple views captured by a moving system with
estimated motion.
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23.2 Recognition

Whatever task a robot performs it must be able to de-
termine where things are in the environment and also
identify relevant objects, structures, and events. Vision
provides rich information about both where and what,
and visual recognition is therefore an essential capability
for robots. However, generic visual object recognition is
far from easy. It is not even easy to define, since what
constitutes an object in the world is not trivial to define
without additional constraints (see, e.g., [23.48]). The
problem becomes even more difficult if one talks about
classes or categories of objects or, say, places. Visual
recognition lies at the heart of computer vision research
and a vast number of methods have been proposed to
deal with it. Still, much remains unknown about how to
realize it.

Fortunately, in many cases in robotics we are not
faced with the most general aspects of object recognition
or classification. More precisely, the problem is often
to find an object that either is known or was recently
seen. This is typically the case in tracking, navigation,
and manipulation. Other situations concern recognizing
landmarks or structures such as roads, or more gen-
erally places. These tasks all involve recognition, but
mainly in the sense of establishing correspondence be-
tween phenomena in different images or between an
image and a model. Other cases concern the deter-
mination of whether something belongs to a class of
objects or establishing whether what is seen is a par-
ticular type of object, e.g., a road. This is usually
called object classification or categorization and consti-
tutes an even more difficult problem. The most general
form of the categorization problem, of course, also in-
cludes forming the categories, but that is beyond this
treatment.

The literature on computer-based visual object
recognition, classification, and categorization is very
rich and a multitude of methods have been proposed
since the very early days of computer vision. Charac-
teristically certain approaches have waxed and waned
in popularity. For instance, the purely statistical pattern
recognition methods advocated during the early days,
but discounted around 1970–80 when 3-D reconstruc-
tion and physical and geometrical modeling were the
focus, are again being strongly emphasized, not least
due to advances in machine learning and increasingly
powerful computers. Surveying all existing techniques
would require volumes rather than chapters. In the next
few sections we will therefore describe some of the
methods that seem particularly useful in the type of

robot applications that we have mentioned. The focus
on these applications has resulted in many interesting
approaches being left out. A comprehensive set of ref-
erences has been given as entry points to several of
these techniques and to the extensive literature on the
subject. Moreover, good surveys can be found in the
slides from the short course by Fei Fei et al. [23.49] or
in Pinz [23.50], even though they treat categorization
rather than recognition.

23.2.1 Approaches to Recognition

Early approaches to object recognition considered
objects as represented by 3-D models or by a decom-
position into surfaces or volumetric primitives. The first
attempts by Roberts and Guzman [23.51] considered
simple geometric parts. Binford [23.52] introduced gen-
eralized cylinders, which were used by Brooks [23.53] in
the ACRONYM system and later in the model of Marr
and Nishihara [23.54]. These approaches were based on
object-centered representations to enable view invari-
ance. Marr [23.55] and others assumed that these could
be obtained by 3-D reconstruction from 2-D images us-
ing stereo or monocular cues, or by direct acquisition of
range images. Several such systems were presented, e.g.,
Faugeras et al. [23.56] and Bolles et al. [23.57]. Bieder-
man [23.58] introduced his recognition-by-components
(RBC) theory as a model for human object recognition
from 2-D images. This work inspired numerous attempts
to implement RBC-based systems on computers. How-
ever, extracting the needed geometric primitives from
images turned out to be difficult. The first step of edge de-
tection seldom led to robust indications of where to find
the parts. In the ACRONYM system this was addressed
by advanced reasoning, in other systems, such as those of
Mohan and Nevatia [23.59] and Zisserman et al. [23.60],
edges were grouped to generate part hypotheses. An-
other system using the same principle, but going for
the object without any intermediate part representation
was, proposed by Nelson and Selinger [23.61]. Increas-
ingly advanced methods for representing and analyzing
shapes based on skeletons have also been proposed.
These usually require a silhouette curve and therefore
also assume prior segmentation. The influence of these
techniques on object recognition has consequently been
limited at least insofar that they assume object-centered
representations.

The general development has instead been towards
viewer-centered representations. In fact, there is an on-
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going debate on the role of such representations in
human recognition (see, e.g., Tarr and Bülthoff [23.62]).
In computer vision, methods of this sort go back to very
early pattern-recognition-based approaches. A revived
interest in these first arose in work on face recognition,
e.g., Turk and Pentland [23.63]. This was paralleled
by advances on neural network models, e.g., Poggio
and Edelman [23.64]. By showing that training a sys-
tem on different views of a set of objects resulted in
excellent recognition rates Murase and Nayar [23.65]
initiated an interest in learning and statistical approaches
that has continued and developed substantially ever
since. Notably the focus has changed from global to
local methods, which was already suggested by Rao
and Ballard [23.66]. Discriminative as well as gener-
ative models have been proposed, which in turn has
implied that the methods apply to object categoriza-
tion as well as recognition. Moreover, more explicit
representation of structure and parts have also been in-
corporated. This introduction of what is now often called
constellation-based approaches has in fact decreased the
difference between part- and appearance-based methods
and again implied a return to very early methods such as
the spring-loaded template matching proposed by Fis-
chler and Elschlager [23.67]. Nevertheless, we will in
the sequel describe methods as being appearance-based
or constellation- or part-based as a way of stressing
different aspects of them.

23.2.2 Appearance-Based Methods

Appearance-based approaches to object recognition rely
on the extraction of distinctive features in the images.
In pattern recognition and image processing features are
defined as N-tuples or vectors whose components are
functions of the initial pattern variables or a subset of
them (from Haralick and Shapiro [23.68]). Features can
be computed both locally and globally in the images,
but in robotics applications local features tend to be most
appropriate. In matching one needs to find distinguishing
features that characterize the patterns one is looking for.
Hence, one separates the steps of detecting features and
computing feature descriptors.

As described in the section on Ambiguities features
computed at discrete locations of the images should
preferably be invariant to observer and scene motion.
Therefore, geometric features, such as points, lines, and
curves have been extensively used, both in computer
vision and robotics. These types of features can be com-
puted using derivatives of the image function. Also more
general derivative-based features can be derived (see

Lindeberg [23.69]), and in fact sets of differential in-
variants that completely represent the image function
can be defined. However, simple point features and even
extended features such as lines only partly represent the
visual information at their locations. Therefore, richer
descriptors of these locations are often needed to ad-
dress, e.g., the correspondence problem. Furthermore,
invariance, or at least covariance, is desirable not only
for motion or small viewpoint changes, but also for
illumination variations and large-scale motions and dis-
tance changes. These issues have been considered in
recent approaches to extraction of features and feature
descriptors (Lowe [23.70], Schmid and Mohr [23.71],
Mikolajczyk and Schmid [23.72], Matas et al. [23.73],
and Mikolajczyk et al. [23.74]). Building on decades
of development of feature extractors this work today
provides a set techniques with rather well-studied per-
formance. The features as well as the feature descriptors
are generally computed over small regions around some
geometric feature, say a point. In that sense region
properties are accounted for, for instance, the scale-
invariant feature transformation (SIFT) descriptor by
Lowe captures local luminance variations. However,
to achieve invariance to illumination the actual lumi-
nance values are eliminated in these approaches, and
color is not used at all. By including color features
additional properties are captured, even though com-
putational models for color constancy, i. e., deriving
surface color independently of illumination, have turned
out to be very difficult. Color features are still valu-
able for discrimination. In general, the different features
used in the literature are complementary in applicabil-
ity both with regard to imaging conditions and scene
content.

Distinctive Features
The idea of finding interest points for matching was pi-
oneered by Moravec [23.75]. His method was furthered
in the frequently used detector proposed by Harris and
Stephens [23.76], usually called the Harris detector. It is
based on the windowed second moment matrix,

M = E

(
I2
x Ix Iy

Ix Iy I2
x

)
= E

(
(∇ I )(∇ I )�

)
. (23.28)

The eigenvalues of the matrix in (23.28) are propor-
tional to the principal curvatures of the autocorrelation
function of I . When both these curvatures are high one
has a corner in the image, that is moreover stable with
respect to lighting variations. Generally, this detector
represents the local distribution of orientations. It was
independently introduced as such by Förstner [23.77]
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and Bigün and Granlund [23.78]. Typically a Gaussian
function is used both for windowing and differentiation,
and then the operator takes the form

M = E ( ·, σIσD)

= σ2
DG (σI)

(
I2
x

( ·, σD
)

Ix Iy
( ·, σD

)
Ix Iy

( ·, σD
)

I2
x

( ·, σD
)
,

)
(23.29)

where σI and σD are the scales of the Gaussian kernels for
windowing and differentiation. This matrix is positive
semidefinite with eigenvalues λ1, λ2 ≥ 0. Its trace

M = λ1 +λ2 (23.30)

represents the strength of the operator response. The
direction of the eigenvector corresponding to the largest
eigenvalue gives the average gradient direction in the
neighborhood. Moreover

det(M) = λ1λ2 (23.31)

provides a measure of the spread of directions around
the point. An alternative to the Harris detector is given
by the Hessian matrix

H = H ( ·, σIσD) =
(

Ixx
( ·, σD

)
Ixy

( ·, σD
)

Ixy
( ·, σD

)
Ixy

( ·, σD
)
)

.

(23.32)

This operator gives somewhat stronger responses
at blobs and ridges (see, e.g., Lindeberg [23.69] or
Lowe [23.79] for details), but of course requires second-
order derivatives. The eigenvalues are in this case
proportional to the principal curvatures of the greylevel
function and can again be computed from the trace and
the determinant. Lowe [23.70] uses this for a test on the
ratio of the eigenvalues to reject keypoints that are on
edges. We refer to his paper for details.

Robust Methods for Finding Distinctive Points
The response of these operators depend on and are sen-
sitive to scale changes. To find distinctive points suitable
for matching one therefore needs to find the points
of maximum response in both space and scale, i. e.,
search for maxima in a 3-D space. Lindeberg [23.80]
presents a method for this based on the notion of char-
acteristic scale. Mikolajczyk and Schmid [23.72] and
Lowe [23.70, 79] later described efficient ways of im-
plementing this. Mikolajczyk and Schmid first use the
Harris detector to localize points in 2D and then select
the points at which the Laplacian attains a maximum
over scales as the final set. This detector, the Harris–
Laplacian, is shown to give the best repeatability over

Scale
(first
octave)

Scale
(next
octave)

Gaussian
Difference of
Gaussian (DOG)

Fig. 23.5 For each octave of scale space, the initial image is repeat-
edly convolved with Gaussians to produce the set of scale space
images shown on the left. Adjacent Gaussian images are subtracted
to produce the difference-of-Gaussian (DOG) images on the right.
After each octave, the Gaussian image is downsampled by a factor
of 2, and the process is repeated

scale changes among several other common interest
point detectors.

Lindeberg showed that one needs to normalize the
Laplacian with the factor σ to obtain scale invariance,
and indeed Mikolajczyk [23.72] demonstrated experi-
mentally that the extrema of σ2∇2G produce the over
scale most stable image features of several operators.
Lowe [23.70] presents an efficient approximate method
for computing these extrema using D, the difference of
Gaussians (DOG) instead. This scale space computation
is shown in Fig. 23.5. Introducing the factor k he writes

D
( ·, δ) = G

( ·, kt
)− G

( ·, t
)
. (23.33)

From the heat diffusion equation it follows that

∂G

∂t
= t∇2G . (23.34)

Hence

∂∇2G = ∂G

∂t
≈ D

kt − t
(23.35)

that is

D ≈ (
k −1

)
δ2∇2G . (23.36)

Lowe’s efficient method is based on using the ap-
proximation to find the points using a set of DOG
images. The result of these operations is a set of key-
points with associated location (x- and y-coordinates),
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scale, and orientation. The described operators are not
affinely invariant, but can be made so, see e.g. Mikola-
jczyk et al. [23.74]. However, as pointed out by Lowe
one can adapt the descriptor so that this becomes un-
necessary in many cases, at least if the scene contains
enough distinctive features.

Distinctive Regions
Matas et al.[23.73] proposed a method for finding distin-
guished regions that has turned out to give good results
on wide-baseline matching and also in applications to
object recognition. It is based on maximally stable ex-
tremal regions (MSER), that is connected components
of thresholded images. The appropriate way to thresh-
old will become clear below. The regions are extremal
in the sense that all pixels inside the MSER have ei-
ther higher (bright extremal regions) or lower intensity
(dark extremal regions) than all the pixels on its bound-
ary. They are stable in the sense that this property is
optimized at threshold selection.

The set of extremal regions have a number of desir-
able properties, see Matas et al. [23.73]. For instance,
they are unaffected by monotonic or affine intensity
changes and to continuous geometric image transforma-
tions that preserve topology. Hence, they are stable with
respect to many geometric and photometric changes that
are common and not always known well enough to be
corrected.

To describe the algorithm we follow Matas
et al. [23.73]. On a digital image I defined on D with
values in S, typically 0–255 regions are defined as
connected components under the topology given be 4-
neighborhoods. An extremal region D is a region such
that p ∈ D, q ∈ ∂D : I (p) > I (q) (maximum intensity
region) or I (p) < I (q) (minimum intensity region).

To define a maximally stable extremal region we
consider a nested set of regions D1 ⊂ . . . ⊂ Di ⊂
Di+1 ⊂ . . . Region D∗

i is maximally stable if q has
a maximum at i, where

q(i) = |Di+h |\|Di−h |/|Di | (23.37)

and |.| denotes cardinality; h is a parameter of the
method.

The nested set of regions is obtained by successively
thresholding I with a threshold that transcends S, e.g.,
steps from 0 to 255. The regions obtained from such an
operation can be enumerated in a straightforward man-
ner. First the pixels are sorted by intensity. Then the
pixels are placed in the image, either in decreasing or
increasing order, and the list of connected components

and their areas are maintained using, e.g., an efficient
union-find algorithm [23.81]. If S is a small discrete
set, such as 0, . . . , 255 this algorithm is almost linear
in the number of pixels and allows an efficient imple-
mentation. Notably, the extremal regions can be messy,
but the MSER operation only retains rather simple re-
gions, which is important for subsequent computation
of feature descriptors.

The described method finds salient structure without
using derivatives. Other techniques of this nature also
exist, e.g., the detector by Kadir and Brady [23.82], the
SUSAN corner detection by Smith and Brady [23.83]
and morphological methods.

Descriptors for Distinctive Points and Regions
As mentioned above interest point as well as region
detectors provide information about local regions over
which suitable descriptors can be computed. Hence,
Lowe uses scale information to determine an ellip-
tical region, Matas et al. the convex hull of the
MSER, and Mikolajczyk et al. perform an affine nor-
malization to obtain comparable regions in different
images.

Numerous region-based descriptors have been pro-
posed for appearance-based object recognition. These
have included methods using the local image patch it-
self [23.84], its statistics (Schiele and Crowley [23.85]),
and more generally filtered versions of it (Rao and
Ballard [23.66] ). The success of the second-order mo-
ment matrix in motion and shape computation indicates
the importance of utilizing the directional statistics.
Lowe [23.70] suggested a particularly useful descrip-
tor in his scale-invariant feature transformation (SIFT)
features.

These descriptors are computed at the distinctive
points found, e.g., by the methods described earlier in
this section, which determine keypoints with an asso-
ciated scale. To compute them an orientation is first
assigned to the keypoint so as to achieve invariance
to image rotation. Notably, this is different from us-
ing rotationally invariant measures, as in Schmid and
Mohr [23.71]. Lowe [23.70] computes the orientation by
finding peaks in the histograms of gradient orientations,
with the entries weighted by gradient magnitude. The
peaks correspond to dominant directions of local gra-
dients. More than one peak can be accepted if several
exist that almost reach the highest value. As a conse-
quence several feature descriptors can be assigned to
a single image point. Lowe sets the threshold to 80%
of the maximum and keeps up to two peaks. Experi-
ments show that as many as four peaks can be useful.
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We refer readers to [23.70] for more details on the
computations.

Given these steps we have a set of keypoints with as-
sociated locations, scales, and orientations. At each point
in a window around such a keypoint we again compute
the gradient magnitude and orientation. Weighting the
values with a Gaussian we histogram them in n ×n subre-
gions in a k ×k pattern around the keypoint; see Fig. 23.6.
Lowe [23.70] in his experiments uses n = k = 4. In
the figure n = 4 and k = 2. The number of bins for
orientation is eight. More details on the computations
and the choice of parameters are given in the paper.
An important aspect is the choice of measurement re-
gion and how it is related to the scale at which the
keypoint is detected. This is discussed in the paper,
but also in Matas et al. [23.73] and in Mikolajczyk
et al. [23.74]. In the latter paper affine normalization is
introduced in the comparison to affine invariant detec-
tors. Lowe discusses the usefulness of that in his article
as well.

The notion of considering directional statistics
around keypoints has also been used in character recog-
nition, where of course the idea of representing the
objects (the characters) as patterns arranged around
a central point is natural.

Patches and Local Histograms as Features
An alternative and a complement to using features of the
kind described above is to use the image patches directly
as local descriptors. Such methods can of course be
preceded by a step for determining interest points to limit
the amount of computation. Agarwal and Roth [23.86]
proposed a method based on a codebook of patches that
later was furthered by Leibe et al. [23.84] and several
other authors.

The patch preserves local image structure, but it
has been shown that also histograms of the information
in the patch might be sufficient for object recognition
and localization. Swain and Ballard [23.87] showed ex-
amples of recognition based on comparisons of color
information. However, they used red–green–blue (RGB)
data directly, which turns out to be sensitive to illumi-
nation variations. Schiele and Crowley [23.85] instead
used histograms of the output of receptive field compu-
tations, either first-order Gaussian derivative operators
or differential invariants at three scales. Schneiderman
and Kanade [23.88] showed that efficient recognition
of faces and cars could be obtained from histograms
of wavelet coefficients. More recently Linde and Lin-
deberg [23.89] introduced higher-order histograms and
showed that they can be efficiently computed. Gener-

Image gradients Keypoint descriptor

Fig. 23.6 A keypoint descriptor is created by first computing the
gradient magnitude and orientation at each image sample point in
a region around the keypoint location, as shown on the left. These
are weighted by a Gaussian window, indicated by the overlaid circle.
The samples are then accumulated into orientation histograms sum-
marizing the contents over 4 × 4 subregions, as shown on the right,
with the length of each arrow corresponding to the sum of the gra-
dient magnitudes near that direction within the region. This figure
shows a 2 × 2 descriptor array computed from an 8 × 8 set of sam-
ples, whereas the experiments in this chapter use 4 × 4 descriptors
computed from a 16 × 16 sample array

ally, these types of methods are simple to use and give
good performance provided that sufficient local varia-
tions are at hand. A more general framework for such
methods has been proposed by Koenderink and van
Doorn [23.90], introducing the notion of locally order-
less images. Methods for comparing histograms are well
known in statistics. An excellent and concise overview of
such techniques is given in Rubner and Tomasi [23.91].

23.2.3 Matching

Visual recognition implies matching features or quan-
tities derived from an image to stored representations
of objects or images. This is a classical and exten-
sively studied problem that is treated in most standard
textbooks on image and signal processing as well as pat-
tern recognition. With new feature-based techniques and
with the applications to increasingly large data sets it has
attracted considerable interest in recent years and novel
contributions have appeared. Some of these will be dis-
cussed in the section on constellation based methods.
Here we consider some approaches to matching in
feature- and appearance-based recognition.

Vocabulary-Based Methods
Straightforward matching using descriptors such as
SIFT implies finding nearest neighbors in high-
dimensional spaces, which is computationally difficult.
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Therefore, Lowe and others use clustering methods to
create what can be regarded as an alphabet. Informa-
tion represented in this way is amenable to general
information retrieval methods.

To index an image database Sivic and Zisser-
man [23.92] introduced the idea to vector-quantize
region descriptors into clusters using k-means and let-
ting these clusters serve as visual words in a text
retrieval approach. Given a vocabulary generated from
a set of training images descriptors are extracted
from each new image and assigned to the nearest
cluster. In this way matches are immediately ob-
tained for each new image. Sivic and Zisserman
applied this to video retrieval, but the method is use-
ful also for other sets of images. Text retrieval is
performed using term-frequency inverse document fre-
quency (TF-IDF) relevance scoring (Baeza-Yates and
Ribiero-Neto [23.93]). This technique has been gener-
alized by Nister and Stewenius [23.94] in the method
described next.

Recognition Using Vocabulary Trees
Nister and Stewenius [23.94] introduced a hierarchical
TF-IDF. In this approach a vocabulary tree is defined
by hierarchically defined words. They obtain a very ef-
ficient lookup of visual words and can therefore use
a larger vocabulary that in turn is shown to give improved
retrieval quality (Fig. 23.7).

The vocabulary tree is built up by hierarchical k-
means clustering, where k defines a branch factor for
the tree. A vector forming a branch of the tree represents
a visual word. To compute the score of a new image one
needs to determine how similar its descriptors are to the
paths down the vocabulary tree. Nister and Stewenius

Fig. 23.7 Three levels of a vocabulary tree with branch
factor 10 populated to represent an image with 400 features

propose assigning a weight wi to each node i in the
tree, for example, based on entropy, and then define the
query q and the database vector according to the assigned
weights

qi = niwi ,

di = miwi ,

where ni and wi are the number of descriptors in the two
images. The relevance score is then set to

S(q, d) =
∥∥∥∥

q

‖q‖ − d

‖d‖
∥∥∥∥ . (23.38)

Nister and Stewenius recommend the L1-norm, but
any norm can be used. Furthermore, they suggest com-
puting the weights as

wi = ln
N

Ni
,

where N is the number of images in the database, and
Ni is the number of images in the database with at least
one descriptor vector path through node. The proposed
method has been shown to give real-time high-quality
performance for retrieval from databases of thousands
of images.

A related method using vocabulary-based pyramid
matching is presented in Grauman and Darrell [23.95].
They compute an approximate partial matching between
two sets of feature vectors. It should be added that these
methods mainly address the indexing problem and give
the set of most similar images. For localization an ad-
ditional step for more precise matching and alignment
may be required.

High-Dimensional Feature Matching
As mentioned above feature matching in high di-
mensions is computationally difficult. However, useful
progress on this problem has also been made. Theoreti-
cally it is known that exact identification of the nearest
neighbor in high-dimensional spaces in general leads to
exhaustive search. Approximative methods have been
proposed, e.g., by Beis and Lowe [23.96] and Indyk and
Motwani [23.97], but they need to trade off speed of
computation for quality of approximation. A promising
approach to deal with this problem has recently been
proposed by Omercevic et al. [23.98]. Their method is
based on the notion of meaningful nearest neighbors.
Such neighbors should be sufficiently close to a query
feature that it is an outlier to the background feature dis-
tribution. This idea is based on the finding that the tail
of the distribution of random outliers can be modeled by
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an exponential and that nearest neighbors can therefore
be weighted by how much they are similar to the query
and dissimilar to the background. Dot products are used
to measure the similarity between feature vectors. The
authors also introduce a search method based on sparse
coding and obtain an approximate method that outper-
forms other techniques either with respect to speed or
accuracy. For instance, while slower than the vocabu-
lary tree method it gave better recognition performance
on the same data sets.

23.2.4 Constellation-Based Methods –
Recognition by Parts

As mentioned above the success of feature and
appearance-based methods together with the difficulty
in defining and localizing parts have decreased interest
in part-based techniques. However, the obvious advan-
tage of using structural information has led to a renewed
focus on the problem and in this subsection we will
discuss some recent advances in this area. We will con-
sider methods that use structural relations between the
parts, but do not assume that the parts necessarily cor-
respond to geometric primitives of some sort or even
geometric parts at all. In fact, it turns out that in this
way the distinction between part- and appearance-based
becomes rather fuzzy, at least in cases when appear-
ance refers to local parts of the object and not the entire
object. Forsyth and Ponce in their book unify such meth-
ods by talking about them as being based on structural
relations between templates, where the templates can
be geometric and defined by 3-D or 2-D shape, or by
visual appearance, e.g., given by intensity, color, or
texture.

A structural model of an object can be given by
a collection of parts together with a representation of
how these are connected. Connections between pairs
of parts are expressed by an undirected graph G(V, E),
where the vertices v = {v1, . . . , vn} correspond to the n
parts and the edge (vi , v j ) ∈ E implies that parts vi and
v j are connected. An instance of an object is given by
a configuration L = (l1, . . . , ln), li , being the location
of part vi . There are many ways of parameterizing the
locations, including simple image positions or, e.g., po-
sitions and joining angles in 2D or 3D for the parts.
The idea of using parts in this way is appealing in
many ways. Parts provide a modular representation and
they may be shared by many objects. Since parts can
be simple they are less variable than the entire ob-
jects and also often less sensitive to pose variations.
Furthermore, occlusion, clutter, and lighting variations

are unlikely to influence the recognition of all the
parts.

However, it is important to cope with two problems.
One has been discussed already, namely that of detect-
ing and localizing the parts. The second one concerns
matching, which is generally computationally difficult.
Fischler and Elschlager [23.67] proposed to address it as
an energy-minimization problem in the image domain.
Such an approach is described by Felzensschwalb and
Huttenlocher [23.99] as follows.

The cost or energy of a given configuration depends
on how well a part matches the image data and on how
well the parts agree with the model. Given an image,
let mi (li ) be a measure of the degree of mismatch when
part vi is placed at location li in the image. For a pair
of connected parts let dij (li , l j ) measure the degree of
deformation of the model when part vi has location li
and part v j location l j . An optimal match of the model
to the image can then be defined as

L∗ = arg min
L

⎛
⎝

n∑
i=1

mi (li )+
∑

(vi ,v j )∈E

dij (li , l j )

⎞
⎠ .

(23.39)

This expression gives a configuration that minimizes
the sum of match costs for each part and the deformation
costs dij for connected pairs of parts. If the deformation
costs only depend on the relative positions of the parts
in the pairs the model is invariant to common global
transformations.

A problem with this type of formulation is that
it generally lacks efficient solutions. If the objects
are complicated and especially if the amount of non-
rigidity is high the number of parameters required is
often also high. Modern approaches to these issues use
probabilistic models. Hence, they rely on probabilistic
estimates of where parts are rather than on determin-
istic segmentation steps. The estimates are obtained
using learned representations of the appearance of the
parts and priors on the configurations. This allows sta-
tistical formulations that include both the part finding
and configuration problem. However, to initiate such
algorithms one still has to find good candidate hypothe-
ses with methods of the type described in the next
section.

Let Θ be a set of parameters defining the object
and L be the configuration, i. e., the location of each
part. Then P(I | L, Θ) is the distribution that measures
the likelihood of image I given a viewed object. From
Bayes’ rule follows that the posterior distribution of the
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object configuration L given the model Θ and the image
I is

P(L | I, Θ) ∝ P(I | L, Θ)P(L | Θ) , (23.40)

where P(L | Θ) is the prior probability that an object is
at a particular location.

Following Felzenschwalb and Huttenlocher [23.99],
the matching problem formulated as an energy-
minimization problem can in this framework be regarded
as an MAP estimation problem. They propose an effi-
cient algorithm for this. In their framework the model
parameters are Θ = (u, E, c), where u = {u1, . . . , ur}
are appearance parameters, E is the set of edges telling
what parts are connected (in a graph representation),
and c = {cij | (vi , v j ) ∈ E} are connection parameters.
The model parameters are learned from a set of training
images using maximum-likelihood estimation. Energy
minimization in this formulation is generally NP-hard,
but Felzenschwalb and Huttenlocher use the fact that
the graph describing the structure has a restricted form
to present an efficient algorithm. In other work Fergus
et al. [23.100] parameterize with respect to appearance,
location, and scale, not including any explicit graph
representation of the configuration. Their method is
aimed at recognizing classes of objects rather than single
exemplars.

23.2.5 Place Recognition
and Terrain Classification

Localization is a fundamental problem in mobile
robotics. Two central aspects of this problem concern
continuous pose maintenance and global localization,
sometimes called the robot kidnapping problem. These
problems are generally treated in the context of SLAM.
Vision-based techniques form but one class of ap-
proaches and the way they are applied largely depends
on the type of additional information that is available. In

any case, landmark detection and recognition as well as
global localization can be addressed using vision and in
both cases the problems then share many aspects with
object recognition and image retrieval. Hence, several
of the techniques presented in the previous sections also
apply in these cases.

Scale-invariant key points and SIFT features have
been used by Kosecka et al. [23.101]. They perform
global localization indoors by recognizing locations and
exploit information from neighborhood relations from
a map using HMMs. Wolf et al. [23.102] propose a sim-
ilar approach. Others have used histogram descriptors to
represent the scenes. Ulrich and Nourbakhsh [23.103]
compute color histograms from omnidirectional camera
images and match them to stored images in combination
with predictions from a topological map. In that way
near-real-time performance is obtained through a sim-
ple voting process over the color bands. The method is
successfully applied to indoor as well as outdoor envi-
ronments. Davidson and Murray [23.104] used actively
controlled cameras to find landmarks indoors following
Bajcsy’s active perception paradigm [23.105].

Learning is a central problem in place recognition.
In most cases many training images are needed to obtain
robust recognition. Moreover, additional information in
terms of maps or approximate position is used to facili-
tate the recognition stage. Ramos et al. [23.106] propose
a Bayesian approach to deal with these problems. Hence,
their method can learn from few (3–10) training images
and requires no map. Images are divided into patches and
the world is interpreted as a set of places, each having
a probabilistic representation. Matching is performed in
near real time. They first perform dimensionality reduc-
tion on a patch representation of the scenes and then
derive a generative probabilistic model of the output in
terms of a set of linear mixture models through expecta-
tion maximization. The result of this inference process
is a mixture of Gaussians that is used in a multiclass
classification scheme in which the log likelihood for
the model that best explains the given set of patches is
selected.

23.3 Conclusion and Further Reading

As main additional sources of reading, we recom-
mend the books by Hartley and Zisserman [23.5], Ma
et al. [23.26], Faugeras [23.107], and Faugeras and Lu-
ong [23.4]. There is no textbook updated with the most
recent results in recognition but the reader is encouraged

to browse through the ICCV’05 and CVPR’07 tutori-
als by Fei-Fei Li, Antonio Torralba, and Rob Fergus.
The most representative and real-time implemented sys-
tem to recognize instances of objects is Nister’s [23.94]
vocabulary tree approach.
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Fig. 23.8 Reconstruction from a camera mounted on a ve-
hicle (after 23.108) obtained from the fusion of 13 depth
maps. Each depth map was obtained from 11-view stereo �

We will close with a system of motion and dense
mapping representing the state of the art: the work
in [23.108] represents the state of the art in large-scale
dense reconstruction from monocular image sequences
without the use of an additional sensor. The camera
poses are obtained by applying the algorithm described
above [23.17]. A temporary model is obtained and sub-
sequent poses are estimated by applying pose estimation
with preemptive RANSAC [23.109] for a time win-
dow after which a reinitialization with a novel triple
of views is obtained. A depth map is obtained by back-
projecting multiple views on planes that sweep space in
prominent directions and maximizing a correlation in the
sweeping direction. Multiple depth maps are combined
(Fig. 23.8) through median fusion and taking visibility
into consideration [23.110].

References

23.1 Z. Zhang: A flexible new technique for camera cali-
bration, IEEE Trans. Pattern Anal. Mach. Intell. 22,
1330–1334 (2000)

23.2 M. Pollefeys, L. Van Gool, M. Vergauwen, F. Ver-
biest, K. Cornelis, J. Tops, R. Koch: Visual modeling
with a hand-held camera, Int. J. Comput. Vis. 59,
207–232 (2004)

23.3 M. Pollefeys, L. Van Gool: Stratified self-calibration
with the modulus constraint, IEEE Trans. Pattern
Anal. Mach. Intell. 21, 707–724 (1999)

23.4 O. Faugeras, Q.-T. Luong, T. Papadopoulo: The
Geometry of Multiple Images (MIT Press, Cambridge
2001)

23.5 R. Hartley, A. Zisserman: Multiple View Geometry
(Cambridge Univ. Press, Cambridge 2000)

23.6 K. Ottenberg, R.M. Haralick, C.-N. Lee, M. Nolle:
Review and analysis of solutions of the three-point
perspective problem, Int. J. Comput. Vis. 13, 331–
356 (1994)

23.7 M.A. Fischler, R.C. Bolles: Random sample consen-
sus: A paradigm for model fitting with applications
to image analysis and automated cartography,
Commun. ACM 24, 381–395 (1981)

23.8 R. Kumar, A.R. Hanson: Robust methods for es-
timaging pose and a sensitivity analysis, Comput.
Vis. Image Underst. 60, 313–342 (1994)

23.9 C.-P. Lu, G. Hager, E. Mjolsness: Fast and globally
convergent pose estimation from video images,
IEEE Trans. Pattern Anal. Mach. Intell. 22, 610–622
(2000)

23.10 L. Quan, Z. Lan: Linear n-point camera pose de-
termination, IEEE Trans. Pattern Anal. Mach. Intell.
21, 774–780 (1999)

23.11 A. Ansar, K. Daniilidis: Linear pose estimation from
points and lines, IEEE Trans. Pattern Anal. Mach.
Intell. 25, 578–589 (2003)

23.12 R.I. Hartley, P. Sturm: Triangulation. Computer Vi-
sion and Image Understanding (1997)

23.13 B.K.P. Horn, H.M. Hilden, S. Negahdaripour:
Closed-form solution of absolute orientation using
orthonormal matrices, J. Opt. Soc. Am. A A5, 1127–
1135 (1988)

23.14 G.H. Golub, C.F. van Loan: Matrix Computations
(The Johns Hopkins Univ. Press, Baltimore 1983)

23.15 A.J. Davison, I.D. Reid, N.D. Molton, O. Stasse:
Monoslam: Real-time single camera slam, IEEE
Trans. Pattern Anal. Mach. Intell. 29(6), 1052–1067
(2007)

23.16 T.S. Huang, O.D. Faugeras: Some properties of the
e matrix in two-view motion estimation, IEEE
Trans. Pattern Anal. Mach. Intell. 11, 1310–1312
(1989)

23.17 D. Nister: An efficient solution for the five-point
relative pose problem, IEEE Trans. Pattern Anal.
Mach. Intell. 26, 756–777 (2004)

23.18 S. Maybank: Theory of Reconstruction from Image
Motion (Springer, Berlin, Heidelberg 1993)

23.19 S.J. Maybank: The projective geometry of am-
biguous surfaces, Philos. Trans. R. Soc. London A
332(1623), 1–47 (1990)

Part
C

2
3



Springer Handbook of Robotics

Siciliano, Khatib (Eds.) · ©Springer 20081

560 Part C Sensing and Perception

23.20 A. Jepson, D.J. Heeger: A fast subspace algorithm
for recovering rigid motion, Proc. IEEE Workshop on
Visual Motion (Princeton 1991) pp. 124–131

23.21 C. Fermüller, Y. Aloimonos: Algorithmic indepen-
dent instability of structure from motion, Proc. 5th
Eur. Conf. Comput. Vis. (Freiburg 1998)

23.22 K. Daniilidis, M. Spetsakis: Understanding noise
sensitivity in structure from motion. In: Visual
Navigation, ed. by Y. Aloimonos. (Lawrence Erl-
baum, Hillsdale 1996), pp.61–88

23.23 S.R. Soatto Brockett: Optimal structure from mo-
tion: Local ambiguities and global estimates, IEEE
Conf. Comput. Vis. Pattern Recog. (Santa Barbara
1998)

23.24 J. Oliensis: A new structure-from-motion ambi-
guity, IEEE Trans. Pattern Anal. Mach. Intell. 22,
685–700 (1999)

23.25 Y. Ma, K. Huang, R. Vidal, J. Kosecka, S. Sastry:
Rank conditions of the multiple view matrix, Int.
J. Comput. Vis. 59(2), 115–137 (2004)

23.26 Y. Ma, S. Soatto, J. Kosecka, S. Sastry: An Invitation
to 3-D Vision (Springer, Berlin, Heidelberg 2003)

23.27 W. Triggs, P. McLauchlan, R. Hartley, A. Fitzgib-
bon: Bundle adjustment for structure from motion
(Springer Verlag 2000) pp. 298–375

23.28 M. Lourakis, A. Argyros: The design and imple-
mentation of a generic sparse bundle adjustment
software package based on the Levenberg–
Marquard method. Technical Report 340, ICS/FORTH
(2004)

23.29 S. Teller, M. Antone, Z. Bodnar, M. Bosse, S. Coorg:
Calibrated, registered images of an extended urban
area, Int. Conf. Comput. Vis. Pattern Recogn., Vol. 1
(Kanai 2001) pp. 813–820

23.30 E. Trucco, A. Verri: Introductory Techniques for 3-D
Computer Vision (Prentice Hall, Upper Saddle River
1998)

23.31 S.S. Intille, A.F. Bobick: Disparity-space images and
large occlusion stereo, ECCV 2, 179–186 (1994)

23.32 R. Szeliski, D. Scharstein: Sampling the disparity
space image, IEEE Trans. Pattern Anal. Mach. Intell.
26(3), 419–425 (2004)

23.33 R. Yang, M. Pollefeys, G. Welch: Dealing with
textureless regions and specular highlights: A pro-
gressive space carving scheme using a novel
photo-consistency measure, Proc. Int. Conf. Com-
put. Vis. (2003)

23.34 X. Zabulis, A. Patterson, K. Daniilidis: Digitizing
archaeological excavations from multiple monoc-
ular views, 5th Int. Conf. 3-D Digital Imag. Mod.
(2005)

23.35 R.T. Collins: A space-sweep approach to true multi-
image matching, IEEE Conf. Comput. Vis. Pattern
Recog. (San Fransisco 1996) pp. 358–363

23.36 T. Kanade, M. Okutomi: A stereo matching al-
gorithm with an adaptive window: Theory and
experiment, IEEE Trans. Pattern Anal. Mach. Intell.
16(9), 920–932 (1994)

23.37 D. Scharstein, R. Szeliski: A taxonomy and evalu-
ation of dense two-frame stereo correspondence
algorithms, Int. J. Comput. Vis. 47(1/2/3), 7–42
(2002)

23.38 H. Hirschmuller: Stereo vision in structured en-
vironments by consistent semi-global matching,
Comput. Vis. Pattern Recog. 02, 2386–2393 (2006)

23.39 O. Veksler: Stereo correspondence by dynamic pro-
gramming on a tree, Comput. Vis. Pattern Recog.
2, 384–390 (2005)

23.40 S. Roy, I. Cox: A maximum-flow formulation of the
N-camera stereo correspondence problem, Proc.
Int. Conf. Comput. Vis. (1998)

23.41 V. Kolmogorov, R. Zabih: Computing visual corre-
spondence with occlusions using graph cuts, Int.
Conf. Comput. Vis. 02, 508 (2001)

23.42 H.-Y. Shum, J. Sun, N.-N. Zheng: Stereo matching
using belief propagation, IEEE Trans. Pattern Anal.
Mach. Intell. 25, 787–800 (2003)

23.43 L. Zhang, S.M. Seitz: Estimating optimal parameters
for mrf stereo from a single image pair, IEEE Trans.
Pattern Anal. Mach. Intell. 29(2), 331–342 (2007)

23.44 P.F. Felzenszwalb, D.P. Huttenlocher: Efficient be-
lief propagation for early vision, Comput. Vis.
Pattern Recog. 01, 261–268 (2004)

23.45 H. Hirschmuller: Accurate and efficient stereo
processing by semi-global matching and mutual
information, Comput. Vis. Pattern Recog. 2, 807–
814 (2005)

23.46 S.M. Seitz, B. Curless, J. Diebel, D. Scharstein,
R. Szeliski: A comparison and evaluation of multi-
view stereo reconstruction algorithms, Comput.
Vis. Pattern Recog. 1, 519–528 (2006)

23.47 C.R. Dyer: Volumetric scene reconstruction from
multiple views. In: Foundations of Image Under-
standing, ed. by L. Davis (Kluwer, Boston 2001)
pp. 469–489

23.48 D.A. Forsyth, J. Ponce: Computer Vision: A Mod-
ern Approach, Prentice Hall Professional Technical
Reference (Prentice Hall, Upper Saddle River 2002)

23.49 L. Fei Fei, R. Fergus, A. Torralba: Recognizing and
learning object categories, Short course given at
CVPR 2007 (2007)

23.50 A. Pinz: Object categorization, Foundations and
Trends in Computer Graphics and Vision 1(4), 255–
353 (2005)

23.51 A. Guzman: Decomposition of a visual scene into
three-dimensional bodies. In: Automatic Inter-
pretation and Classification of Images, ed. by
A. Grasseli (Academic, New York 1965)

23.52 T.O. Binford: Visual perception by computer, Proc.
IEEE Conf. Syst. Contr. (Miami 1971)

23.53 R. Brooks: Model-Based Computer Vision (Kluwer
Academic, Dordrecht 1984)

23.54 D. Marr, K. Nishihara: Representation and recog-
nition of the spatial organization of three-
dimensional shapes, Proc. R. Soc. London B 200,
269–294 (1978)

Part
C

2
3



Springer Handbook of Robotics

Siciliano, Khatib (Eds.) · ©Springer 2008 1

3-D Vision and Recognition References 561

23.55 D. Marr: Vision (Freeman, New York 1990)
23.56 O.D. Faugeras, M. Hebert: The representation,

recognition, and localization of 3D objects, Int. J.
Rob. Res. 5(3), 27–52 (1986)

23.57 R.C. Bolles, P. Horaud: 3dpo: A three-dimensional
part orientation system, Int. J. Robot. Res. 5(3),
3–26 (1986)

23.58 I. Biederman: Human image understanding: recent
research and a theory, Comput. Vis. Graphics Image
Process. 32, 29–73 (1985)

23.59 R. Mohan, R. Nevatia: Perceptual organization for
scene segmentation and description, IEEE Trans.
Pattern Anal. Mach. Intell. 14(6), 616–635 (1992)

23.60 A. Zisserman, J.L. Mundy, D.A. Forsyth, J. Liu, N. Pil-
low, C. Rothwell, S. Utcke: Class-based grouping in
perspective images, Int. Conf. Comput. Vis. (1995)
pp. 183–188

23.61 R.C. Nelson, A. Selinger: Large-scale tests of
a keyed, appearance-based 3d object recognition
system, Vis. Res. special issue on computational
vision 38, 15–16 (1998)

23.62 M.J. Tarr, H.H. Bülthoff: Image-based object recog-
nition in man, monkey and machine. In: Object
Recognition in Man, Monkey, and Machine, ed. by
M. J. Tarr, H. H. Bülthoff (MIT Press, Cambridge 1998)
pp. 1–20

23.63 M. Turk, A. Pentland: Eigenfaces for recognition, J.
Cognit. Neurosci. 3, 71–86 (1991)

23.64 T. Poggio, S. Edelman: A neural network that learns
to recognize three-dimensional object, Nature 343,
263–266 (1990)

23.65 H. Murase, S.K. Nayar: Visual learning and recog-
nition of 3-d objects from appearance, Int. J.
Comput. Vis. 14(1), 5–24 (1995)

23.66 R.P.N. Rao, D.H. Ballard: Object indexing using
an iconic sparse distributed memory. Tech. Rep.
TR559, University of Rochester (1995)

23.67 M.A. Fischler, R.A. Elschlager: The representation
and matching of pictorial structure, IEEE Trans.
Comput. 22, 67–92 (1973)

23.68 R.M. Haralick, L.G. Shapiro: Computer and Robot
Vision (Addison-Wesley, Boston 1992)

23.69 T. Lindeberg. On the axiomatic foundations of lin-
ear scale-space: Combining semi-group structure
with causality vs. scale invariance. In: Gaussian
Scale-Space Theory: Proc. PhD School on Scale-
Space Theory (Kluwer Academic, Dordrecht 1994)

23.70 D.G. Lowe: Distinctive image features from scale-
invariant keypoints, Int. J. Comput. Vis. 60(2), 91–
110 (2004)

23.71 C. Schmid, R. Mohr: Local grayvalue invariants for
image retrieval, IEEE Trans. Pattern Anal. Mach.
Intell. 19(5), 530–534 (1997)

23.72 K. Mikolajczyk, C. Schmid: An affine invariant in-
terest point detector. In: Proceedings of the 7th
European Conference on Computer Vision, Copen-
hagen, Denmark, ed. by A. Heyden, G. Sparr,

P. Johansen, M. Nielsen (Springer, Berlin, Heidel-
berg 2002) pp. 128–142

23.73 J. Matas, O. Chum, M. Urban, T. Pajdla: Robust wide
baseline stereo from maximally stable extremal
regions, Br. Mach. Vis. Conf. (2002)

23.74 K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisser-
man, J. Matas, F. Schaffalitzky, T. Kadir, L. Van
Gool: A comparison of affine region detectors, Int.
J. Comput. Vis. 65(1/2), 43–72 (2005)

23.75 H.P. Moravec: Towards automatic visual obstacle
avoidance, IJCAI (1977) p. 584

23.76 C. Harris, M.J. Stephens: A combined corner and
edge detector, Alvey Vision Conference (1988)
pp. 147–152

23.77 W. Foerstner: On the geometric precision of digi-
tal correlation, Int. Arch. Photogram. Rem. Sens.
(1982)

23.78 G. Granlund, J. Bigun: Optimal orientation detec-
tion of linear symmetry, Proc. IEEE 1st Int. Conf.
Comput. Vis. (1987)

23.79 D.G. Lowe: Object recognition from local scale-
invariant features, Proc. Int. Conf. Comput. Vis.,
Corfu (1999) pp. 1150–1157

23.80 T. Lindeberg: Feature detection with automatic
scale selection, Int. J. Comput. Vis. 30(2), 79–116
(1998)

23.81 R. Sedgewick: Algorithms (2nd ed.) (Addison-
Wesley, Boston 1988)

23.82 T. Kadir, J.M. Brady: Scale, salience and image
description, Int. J. Comput. Vis. 45, 83–105 (2001)

23.83 S.S. Smith, J.M. Brady: Susan – a new approach to
low level image processing, Int. J. Comput. Vis. 23,
45–78 (1997)

23.84 B. Leibe, B. Schiele, A. Leonardis: Combined object
categorization and segmentation with an implicit
shape model, Europ. Conf. Comp. Vision (2004)

23.85 B. Schiele, J.L. Crowley: Recognition without cor-
respondence using multidimensional receptive
field histograms, Int. J. Comput. Vis. 36(1), 31–50
(2000)

23.86 S. Agarwal, D. Roth: Learning a sparse represen-
tation for object detection, Proc. 7th Eur. Conf.
Comput. Vis., Vol. 4 (2002) pp. 113–130

23.87 M.J. Swain, D.H. Ballard: Color indexing, Int. J.
Comput. Vis. 7, 11–32 (1991)

23.88 H. Schneiderman, T. Kanade: A statistical method
for 3d object detection applied to faces and cars,
IEEE Conf. Comput. Vis. Pattern Recog. (2000)

23.89 O. Linde, T. Lindeberg: Object recognition using
composed receptive field histograms of higher di-
mensionality, Proc. Int. Conf. Pattern Recog. (2004)

23.90 J.J. Koenderink, A.J. Van Doorn: The structure of
locally orderless images, Int. J. Comput. Vis. 31(2-3),
159–168 (1999)

23.91 Y. Rubner, C. Tomasi: Perceptual Metrics for Image
Database Navigation (Kluwer Academic, Dordrecht
2000)

Part
C

2
3



Springer Handbook of Robotics

Siciliano, Khatib (Eds.) · ©Springer 20081

562 Part C Sensing and Perception

23.92 J. Sivic, A. Zisserman: Video Google: A text re-
trieval approach to object matching in videos, Proc.
9th Int. Conf. Comput. Vis. (Nice 2003) pp. 1470–
1477

23.93 R. Baeza-Yates, B. Ribeiro-Neto: Modern Informa-
tion Retrieval (Addison Wesley, Reading 1999)

23.94 D. Nister, H. Stewenius: Scalable recognition with
a vocabulary tree, Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recog. (2006) pp. 2161–2168

23.95 K. Grauman, T. Darrell: Approximate correspon-
dences in high dimensions, Adv. Neural Inform.
Proc. Syst 19, 505–512 (2007)

23.96 J. Beis, D. Lowe: Shape indexing using approxi-
mate nearest-neighbor search in highdimensional
spaces

23.97 P. Indyk, R. Motwani: Approximate nearest neigh-
bors: towards removing the curse of dimension-
ality, Proc. 30th Ann. ACM Symp. Theory Comput.
(1998) pp. 604–613

23.98 O. Drbohlav, D. Omercevic, A. Leonardis: High-
dimensional feature matching: Employing the
concept of meaningful nearest neighbors, Proc.
11th Int. Conf. Comput. Vis. (2007), in press

23.99 P.F. Felzenszwalb, D.P. Huttenlocher: Pictorial
structures for object recognition, Int. J. Comput.
Vis. 61(1), 55–79 (2005)

23.100 R. Fergus, P. Perona, A. Zisserman: Weakly super-
vised scale-invariant learning of models for visual
recognition, Int. J. Comput. Vis. (2005)

23.101 J. Kosecka, F. Li: Vision based Markov localization,
ICRA (2004)

23.102 J. Wolf, W. Burgard, H. Burkhardt: Using an image
retrieval system for visionbased mobile robot lo-
calization (2002)

23.103 I. Ulrich, I. Nourbakhsh: Appearance-based place
recognition for topological localization, Proc. ICRA,
Vol. 2 (2000) pp. 1023–1029

23.104 A. Davison, D. Murray: Simultaneous localisation
and map-building using active vision, IEEE Trans.
Pattern Anal. Mach. Intell. 24, 865–880 (2002)

23.105 R. Bajcsy: Active perception, Proc. IEEE 76, 996–
1005 (1988)

23.106 F.T. Ramos, B. Upcroft, S. Kumar, H.F. Durrant-
Whyte: A Bayesian approach for place recognition,
Int. Joint Conf. Artif. Intell. Workshop on Reasoning
with Uncertainty in Robotics (RUR-05) (2005)

23.107 O. Faugeras: Three-dimensional Computer Vision
(MIT Press, Cambridge 1993)

23.108 A. Akbarzadeh, J.-M. Frahm, P. Mordohai, B. Clipp,
C. Engels, D. Gallup, P. Merell, M. Phels, S. Sinha,
B. Talton, L. Wang, Q. Yang, H. Stewenius, R. Yang,
G. Welch, H. Towles, D. Nister, M. Pollefeys: To-
wards urban 3D reconstruction from video, Third
Int. Symp. on 3D Data Processing, Visualization,
and Transmission (2006)

23.109 D. Nister: Preemptive ransac for live structure and
motion estimation, Proc. Int. Conf. Comput. Vis.
(2003) pp. 199–206

23.110 P. Merrell, A. Akbarzadeh, L. Wang, P. Mordohai,
J.-M. Frahmand, R. Yang, D. Nister, M. Pollefeys:
Real-time visibility-based fusion of depth maps,
Int. Conf. Comput. Vis. (2007)

Part
C

2
3


	Start
	Search
	Title Pages
	Foreword
	Preface
	About the Editors
	List of Contributors
	Contents
	List of Abbreviations
	1 Introduction
	A Production, Perception, and Modeling of Speech
	1 Kinematics
	1.1 Overview
	1.2 Position and Orientation Representation
	1.2.1 Position and Displacement
	1.2.2 Orientation and Rotation
	1.2.3 Homogeneous Transformations
	1.2.4 Screw Transformations
	1.2.5 Matrix Exponential Parameterization
	1.2.6 Plücker Coordinates

	1.3 Joint Kinematics
	1.3.1 Lower Pair Joints
	1.3.2 Higher Pair Joints
	1.3.3 Compound Joints
	1.3.4 6-DOF Joint
	1.3.5 Physical Realization
	1.3.6 Holonomic and Nonholonomic Constraints
	1.3.7 Generalized Coordinates

	1.4 Geometric Representation
	1.5 Workspace
	1.6 Forward Kinematics
	1.7 Inverse Kinematics
	1.7.1 Closed-Form Solutions
	1.7.2 Numerical Methods

	1.8 Forward Instantaneous Kinematics
	1.8.1 Jacobian

	1.9 Inverse Instantaneous Kinematics
	1.9.1 Inverse Jacobian

	1.10 Static Wrench Transmission
	1.11 Conclusions and Further Reading
	References

	2 Dynamics
	2.1 Overview
	2.1.1 Spatial Vector Notation
	2.1.2 Canonical Equations
	2.1.3 Dynamic Models of Rigid-Body Systems
	2.1.4 Kinematic Trees
	2.1.5 Kinematic Loops

	2.2 Spatial Vector Notation
	2.2.1 Motion and Force
	2.2.2 Basis Vectors
	2.2.3 Spatial Velocity and Force
	2.2.4 Addition and Scalar Multiplication
	2.2.5 Scalar Product
	2.2.6 Coordinate Transforms
	2.2.7 Vector Products
	2.2.8 Differentiation
	2.2.9 Acceleration
	2.2.10 Spatial Momentum
	2.2.11 Spatial Inertia
	2.2.12 Equation of Motion
	2.2.13 Computer Implementation
	2.2.14 Summary

	2.3 Canonical Equations
	2.3.1 Joint-Space Formulation
	2.3.2 Lagrange Formulation
	2.3.3 Operational-Space Formulation
	2.3.4 Impact Model

	2.4 Dynamic Models of Rigid-Body Systems
	2.4.1 Connectivity
	2.4.2 Link Geometry
	2.4.3 Link Inertias
	2.4.4 Joint Models
	2.4.5 Example System

	2.5 Kinematic Trees
	2.5.1 The Recursive Newton-Euler Algorithm
	2.5.2 The Articulated-Body Algorithm
	2.5.3 The Composite-Rigid-Body Algorithm
	2.5.4 Operational-Space Inertia Matrix

	2.6 Kinematic Loops
	2.6.1 Formulation of Closed-Loop Algorithm
	2.6.2 Closed-Loop Algorithm

	2.7 Conclusions and Further Reading
	2.7.1 Multibody Dynamics
	2.7.2 Alternative Representations
	2.7.3 Alternative Formulations
	2.7.4 Efficiency
	2.7.5 Accuracy
	2.7.6 Software Packages
	2.7.7 Symbolic Simplification
	2.7.8 Algorithms for Parallel Computers
	2.7.9 Topologically-Varying Systems

	References

	3 Mechanisms and Actuation
	3.1 Overview
	3.2 System Features
	3.2.1 Work Envelope
	3.2.2 Load Capacity
	3.2.3 Kinematic Skeleton

	3.3 Kinematics and Kinetics
	3.3.1 Robot Topology
	3.3.2 Kinematics Equations
	3.3.3 Configuration Space
	3.3.4 Speed Ratios
	3.3.5 Mechanical Advantage

	3.4 Serial Robots
	3.4.1 Design Optimization
	3.4.2 Speed Ratios

	3.5 Parallel Robots
	3.5.1 Workspace
	3.5.2 Mechanical Advantage
	3.5.3 Specialized Parallel Robots

	3.6 Mechanical Structure
	3.6.1 Links
	3.6.2 Joints

	3.7 Joint Mechanisms
	3.7.1 Joint Axis Structures
	3.7.2 Actuators
	3.7.3 Transmissions

	3.8 Robot Performance
	3.8.1 Robot Speed
	3.8.2 Robot Acceleration
	3.8.3 Repeatability
	3.8.4 Resolution
	3.8.5 Accuracy
	3.8.6 Component Life and Duty Cycle
	3.8.7 Collisions

	3.9 Conclusions and Further Reading
	References

	4 Sensing and Estimation
	4.1 The Perception Process
	4.2 Sensors
	4.3 Estimation Processes
	4.3.1 Point Estimation
	4.3.2 Other Approaches to Estimation
	4.3.3 Robust Estimation Methods
	4.3.4 Data Association Techniques
	4.3.5 Modeling Sensors
	4.3.6 Other Uncertainty Management Methods

	4.4 Representations
	4.4.1 Raw Sensor Representations
	4.4.2 Grid-Based Representations
	4.4.3 Discrete Feature Representations
	4.4.4 Symbolic/Graph-Based Models

	4.5 Conclusions and Further Readings
	References

	5 Motion Planning
	5.1 Motion Planning Concepts
	5.1.1 Configuration Space
	5.1.2 Geometric Path Planning Problem
	5.1.3 Complexity of Motion Planning

	5.2 Sampling-Based Planning
	5.2.1 Multi-Query Planners: Mapping the Connectivity of C-free
	5.2.2 Single-Query Planners: Incremental Search

	5.3 Alternative Approaches
	5.3.1 Combinatorial Roadmaps
	5.3.2 Roadmaps in Higher Dimensions
	5.3.3 Potential Fields

	5.4 Differential Constraints
	5.4.1 Concepts and Terminology
	5.4.2 Discretization of Constraints
	5.4.3 Decoupled Approach
	5.4.4 Kinodynamic Planning

	5.5 Extensions and Variations
	5.5.1 Closed Kinematic Chains
	5.5.2 Manipulation Planning
	5.5.3 Time-Varying Problems
	5.5.4 Multiple Robots
	5.5.5 Uncertainty in Predictability
	5.5.6 Sensing Uncertainty

	5.6 Advanced Issues
	5.6.1 Topology of Configuration Spaces
	5.6.2 Sampling Theory
	5.6.3 Computational Algebraic Geometry Techniques

	5.7 Conclusions and Further Reading
	References

	6 Motion Control
	6.1 Introduction to Motion Control
	6.1.1 Dynamical Model
	6.1.2 Control Tasks
	6.1.3 Summary

	6.2 Joint Space Versus Operational Space Control
	6.2.1 Joint Space Control
	6.2.2 Operational Space Control

	6.3 Independent-Joint Control
	6.3.1 Controller Design Based on the Single-Joint Model
	6.3.2 Controller Design Based on the Multijoint Model
	6.3.3 Summary

	6.4 PID Control
	6.4.1 PD Control for Regulation
	6.4.2 PID Control for Regulation
	6.4.3 PID Gain Tuning

	6.5 Tracking Control
	6.5.1 Inverse Dynamics Control
	6.5.2 Feedback Linearization
	6.5.3 Passivity-Based Control
	6.5.4 Summary

	6.6 Computed-Torque Control
	6.6.1 Computed-Torque Control
	6.6.2 Computed-Torque-Like Control
	6.6.3 Summary

	6.7 Adaptive Control
	6.7.1 Adaptive Computed-Torque Control
	6.7.2 Adaptive Inertia-Related Control
	6.7.3 Adaptive Control Based on Passivity
	6.7.4 Adaptive Control with Desired Compensation
	6.7.5 Summary

	6.8 Optimal and Robust Control
	6.8.1 Quadratic Optimal Control
	6.8.2 Nonlinear H-infty Control
	6.8.3 Passivity-Based Design of Nonlinear H-infty Control
	6.8.4 A Solution to Inverse Nonlinear H-infty Control

	6.9 Digital Implementation
	6.9.1 Reference Trajectory Generation
	6.9.2 Z-Transform for Coding

	6.10 Learning Control
	6.10.1 Pure P-type Learning Control
	6.10.2 P-Type Learning Control with a Forgetting Factor
	6.10.3 Summary

	References

	7 Force Control
	7.1 Background
	7.1.1 From Motion Control to Interaction Control
	7.1.2 From Indirect Force Control to Hybrid Force/Motion Control

	7.2 Indirect Force Control
	7.2.1 Stiffness Control
	7.2.2 Impedance Control

	7.3 Interaction Tasks
	7.3.1 Rigid Environment
	7.3.2 Compliant Environment
	7.3.3 Task Specification
	7.3.4 Sensor-Based Contact Model Estimation

	7.4 Hybrid Force/Motion Control
	7.4.1 Acceleration-Resolved Approach
	7.4.2 Passivity-Based Approach
	7.4.3 Velocity-Resolved Approach

	7.5 Conclusions and Further Reading
	7.5.1 Indirect Force Control
	7.5.2 Task Specification
	7.5.3 Hybrid Force/Motion Control

	References

	8 Robotic Systems Architectures and Programming
	8.1 Overview
	8.1.1 Special Needs of Robot Architectures
	8.1.2 Modularity and Hierarchy
	8.1.3 Software Development Tools

	8.2 History
	8.2.1 Subsumption
	8.2.2 Layered Robot Control Architectures

	8.3 Architectural Components
	8.3.1 Connecting Components
	8.3.2 Behavioral Control
	8.3.3 Executive
	8.3.4 Planning

	8.4 Case Study - GRACE
	8.5 The Art of Robot Architectures
	8.6 Conclusions and Further Reading
	References

	9 AI Reasoning Methods for Robotics
	9.1 Knowledge Representation and Inference
	9.1.1 Logic
	9.1.2 Probability Theory

	9.2 KR Issues for Robots
	9.2.1 Logics for High-Level Robot Control
	9.2.2 Fuzzy Logic Approaches
	9.2.3 Reasoning under Time Constraints

	9.3 Action Planning
	9.3.1 Planning Domain Descriptions
	9.3.2 Partial-Order Plan Generation
	9.3.3 Planning Under Uncertainty
	9.3.4 Robot Planning

	9.4 Robot Learning
	9.4.1 Inductive Logic Learning
	9.4.2 Statistical Learning and Neural Networks
	9.4.3 Reinforcement Learning

	9.5 Conclusions and Further Reading
	References


	B Signal Processing for Speech
	10 Performance Evaluation and Design Criteria
	10.1 The Robot Design Process
	10.2 Workspace Criteria
	10.2.1 Reaching a Set of Goal Frames
	10.2.2 Workspace Volume and Topology

	10.3 Dexterity Indices
	10.3.1 Local Dexterity for Open Chains
	10.3.2 Dynamics-Based Local Performance Evaluation
	10.3.3 Global Dexterity Measures
	10.3.4 Closed-Chain Dexterity Indices
	10.3.5 Alternative Dexterity-Like Measures

	10.4 Other Performance Indices
	10.4.1 Acceleration Radius
	10.4.2 Elastostatic Performance
	10.4.3 Elastodynamic Performance

	References

	11 Kinematically Redundant Manipulators
	11.1 Overview
	11.2 Task-Oriented Kinematics
	11.2.1 Task-Space Formulation
	11.2.2 Singularities

	11.3 Inverse Differential Kinematics
	11.3.1 The General Solution
	11.3.2 Singularity Robustness
	11.3.3 Joint Trajectory Reconstruction

	11.4 Redundancy Resolution via Optimization
	11.4.1 Performance Criteria
	11.4.2 Local Optimization
	11.4.3 Global Optimization

	11.5 Redundancy Resolution via Task Augmentation
	11.5.1 Extended Jacobian
	11.5.2 Augmented Jacobian
	11.5.3 Algorithmic Singularities
	11.5.4 Task Priority

	11.6 Second-Order Redundancy Resolution
	11.7 Cyclicity
	11.8 Hyperredundant Manipulators
	11.8.1 Rigid-Link Hyperredundant Designs
	11.8.2 Continuum Robot Designs
	11.8.3 Hyperredundant Manipulator Modeling

	11.9 Conclusion and Further Reading
	References

	12 Parallel Mechanisms and Robots
	12.1 Definitions
	12.2 Type Synthesis of Parallel Mechanisms
	12.3 Kinematics
	12.3.1 Inverse Kinematics
	12.3.2 Forward Kinematics

	12.4 Velocity and Accuracy Analysis
	12.5 Singularity Analysis
	12.5.1 General Formulation
	12.5.2 Parallel Singularity Analysis

	12.6 Workspace Analysis
	12.7 Static Analysis and Static Balancing
	12.8 Dynamic Analysis
	12.9 Design
	12.10 Application Examples
	12.11 Conclusion and Further Reading
	References

	13 Robots with Flexible Elements
	13.1 Robots with Flexible Joints
	13.1.1 Dynamic Modeling
	13.1.2 Inverse Dynamics
	13.1.3 Regulation Control
	13.1.4 Trajectory Tracking
	13.1.5 Further Reading

	13.2 Robots with Flexible Links
	13.2.1 Design Issues
	13.2.2 Modeling of Flexible Link Arms
	13.2.3 Control
	13.2.4 Further Reading

	References

	14 Model Identification
	14.1 Overview
	14.2 Kinematic Calibration
	14.2.1 Serial-Link Robot Manipulators
	14.2.2 Parallel Manipulator Calibration

	14.3 Inertial Parameter Estimation
	14.3.1 Load Inertial Parameter Estimation
	14.3.2 Link Inertial Parameter Estimation
	14.3.3 Link Parameter Estimation for More Complex Structures

	14.4 Identifiability and Numerical Conditioning
	14.4.1 Identifiability
	14.4.2 Observability
	14.4.3 Scaling

	14.5 Conclusions and Further Reading
	14.5.1 Relation to Other Chapters
	14.5.2 Further Reading

	References

	15 Robot Hands
	15.1 Basic Concepts
	15.1.1 Anthropomorphic End-Effectors
	15.1.2 Dexterity of a Robotic Hand

	15.2 Design of Robot Hands
	15.2.1 Actuator Placement and Motion Transmission
	15.2.2 Actuation Architectures

	15.3 Technologies for Actuation and Sensing
	15.3.1 Actuation
	15.3.2 Sensors

	15.4 Modeling and Control of a Robot Hand
	15.4.1 Dynamic Effects of Flexible Transmission Systems
	15.4.2 Transmission Model of Tendon-Outer-Tube System
	15.4.3 Control Through Single-Acting Actuators
	15.4.4 Control of a Robot Hand

	15.5 Applications and Trends
	15.6 Conclusions and Further Reading
	References

	16 Legged Robots
	16.1 A Brief History
	16.2 Analysis of Cyclic Walking
	16.2.1 A Few Points About Hopping Robots
	16.2.2 Stability of Passive Walking

	16.3 Control of Biped Robots Using Forward Dynamics
	16.3.1 Configuration Space
	16.3.2 Dynamics
	16.3.3 Trajectory Generation
	16.3.4 Control

	16.4 Biped Robots in the ZMP Scheme
	16.4.1 Mechanisms
	16.4.2 Zero-Moment Point (ZMP)
	16.4.3 Computed ZMP: ZMP Calculated from Robot Motion
	16.4.4 ZMP-Based Walking Pattern Generation
	16.4.5 ZMP-Based Walking Control
	16.4.6 Expansion of the ZMP Concept

	16.5 Multilegged Robots
	16.5.1 Analysis of Static Gait
	16.5.2 Practical Gait Design
	16.5.3 Dynamic Quadrupeds Inspired by Mammals
	16.5.4 Behavior-Based Multilegged Robots

	16.6 Other Legged Robots
	16.6.1 Leg-Wheel Hybrid Robots
	16.6.2 Leg-Arm Hybrid Robots
	16.6.3 Tethered Walking Robots
	16.6.4 Wall-Climbing Robots

	16.7 Performance Indices
	16.7.1 Expansion of the Stability Margin Concept
	16.7.2 Duty Factor and Froude Number
	16.7.3 Specific Resistance

	16.8 Conclusions and Future Trends
	References

	17 Wheeled Robots
	17.1 Overview
	17.2 Mobility of Wheeled Robots
	17.2.1 Types of Wheels
	17.2.2 Kinematic Constraints
	17.2.3 Robot Configuration Variables
	17.2.4 Restriction on Robot Mobility
	17.2.5 Characterization of Robot Mobility
	17.2.6 The Five Classes of Wheeled Mobile Robots

	17.3 State-Space Models of Wheeled Mobile Robots
	17.3.1 Posture Kinematic Models
	17.3.2 Configuration Kinematic Models
	17.3.3 Configuration Dynamic Models
	17.3.4 Posture Dynamic Models
	17.3.5 Articulated Robots

	17.4 Structural Properties of Wheeled Robots Models
	17.4.1 Irreducibility, Controllability, and Nonholonomy
	17.4.2 Stabilizability
	17.4.3 Static State-Feedback Linearizability
	17.4.4 Dynamic State-Feedback Linearizability - Differential Flatness

	17.5 Wheeled Robot Structures
	17.5.1 Robots with One Wheel
	17.5.2 Robots with Two Wheels
	17.5.3 Robots with Three Wheels
	17.5.4 Four Robots with Four Wheels
	17.5.5 Special Applications of Wheeled Robots

	17.6 Conclusions
	References

	18 Micro/Nanorobots
	18.1 Overview of Micro- and Nanorobotics
	18.2 Scaling
	18.2.1 The Size of Things
	18.2.2 Predominate Physics at the Micro- and Nanoscales

	18.3 Actuation at the Micro- and Nanoscales
	18.3.1 Electrostatics
	18.3.2 Electromagnetics
	18.3.3 Piezoelectrics
	18.3.4 Other Techniques

	18.4 Sensing at the Micro- and Nanoscales
	18.4.1 Optical Microscopy
	18.4.2 Electron Microscopy
	18.4.3 Scanning Probe Microscopy

	18.5 Fabrication
	18.5.1 Microfabrication
	18.5.2 Nanofabrication

	18.6 Microassembly
	18.6.1 Automated Microassembly Systems
	18.6.2 Microassembly System Design
	18.6.3 Basic Microassembly Techniques

	18.7 Microrobotics
	18.7.1 Microrobots
	18.7.2 Bio-microrobotics

	18.8 Nanorobotics
	18.8.1 Introduction to Nanomanipulation
	18.8.2 Nanorobotic Manipulation Systems
	18.8.3 Nanorobotic Assembly
	18.8.4 Nanorobotic Devices

	18.9 Conclusions
	References


	C Speech Coding
	19 Force and Tactile Sensors
	19.1 Sensor Types
	19.1.1 Proprioceptive and Proximity Sensing
	19.1.2 Other Contact Sensors
	19.1.3 Kinematic Sensors
	19.1.4 Force and Load Sensing
	19.1.5 Dynamic Tactile Sensors
	19.1.6 Array Sensors

	19.2 Tactile Information Processing
	19.2.1 Tactile Information Flow: Means and Ends of Tactile Sensing
	19.2.2 Solid Mechanics and Deconvolution
	19.2.3 Curvature and Shape Information
	19.2.4 Object and Surface Identification
	19.2.5 Active Sensing Strategies
	19.2.6 Dynamic Sensing and Event Detection
	19.2.7 Integration of Thermal and Other Sensors

	19.3 Integration Challenges
	19.4 Conclusions and Future Developments
	References

	20 Inertial Sensors, GPS, and Odometry
	20.1 Odometry
	20.2 Gyroscopic Systems
	20.2.1 Mechanical Systems
	20.2.2 Optical Systems
	20.2.3 MEMS
	20.2.4 Performance
	20.2.5 Summary

	20.3 Accelerometers
	20.4 IMU Packages
	20.5 GPS
	20.5.1 Overview
	20.5.2 Performance Factors
	20.5.3 Enhanced GPS
	20.5.4 GPS Receivers and Communications

	20.6 GPS-IMU Integration
	20.7 Further Reading
	20.8 Currently Available Hardware
	References

	21 Sonar Sensing
	21.1 Sonar Principles
	21.2 Sonar Beam Pattern
	21.3 Speed of Sound
	21.4 Waveforms
	21.5 Transducer Technologies
	21.5.1 Electrostatic
	21.5.2 Piezoelectric
	21.5.3 MEMS

	21.6 Reflecting Object Models
	21.7 Artifacts
	21.8 TOF Ranging
	21.9 Echo Waveform Coding
	21.10 Echo Waveform Processing
	21.10.1 Ranging and Wide-Bandwidth Pulses
	21.10.2 Bearing Estimation

	21.11 CTFM Sonar
	21.11.1 CTFM Transmission Coding
	21.11.2 CTFM TOF Estimation
	21.11.3 CTFM Range Discrimination and Resolution
	21.11.4 Comparison of CTFM and Pulse-Echo Sonar
	21.11.5 Applications of CTFM

	21.12 Multipulse Sonar
	21.12.1 Interference Rejection
	21.12.2 On-the-Fly Target Classification

	21.13 Sonar Rings
	21.13.1 Simple Ranging Module Rings
	21.13.2 Advanced Rings

	21.14 Motion Effects
	21.14.1 Moving Observation of a Plane
	21.14.2 Moving Observation of a Corner
	21.14.3 Moving Observation of a Edge
	21.14.4 The Effect of a Moving Observation on the Angle of Reception
	21.14.5 Plane, Corner, and Edge Moving Observation Arrival Angles

	21.15 Biomimetic Sonars
	21.16 Conclusions
	References

	22 Range Sensors
	22.1 Range Sensing Basics
	22.1.1 Range Images and Point Sets
	22.1.2 Stereo Vision
	22.1.3 Laser-Based Range Sensors
	22.1.4 Time-of-Flight Range Sensors
	22.1.5 Modulation Range Sensors
	22.1.6 Triangulation Range Sensors
	22.1.7 Example Sensors

	22.2 Registration
	22.2.1 3-D Feature Representations
	22.2.2 3-D Feature Extraction
	22.2.3 Model Matching and Multiple-View Registration
	22.2.4 Maximum-Likelihood Registration
	22.2.5 Multiple-Scan Registration
	22.2.6 Relative Pose Estimation
	22.2.7 3-D Applications

	22.3 Navigation and Terrain Classification
	22.3.1 Indoor Reconstruction
	22.3.2 Urban Navigation
	22.3.3 Rough Terrain

	22.4 Conclusions and Further Reading
	References

	23 3-D Vision and Recognition
	23.1 3-D Vision and Visual SLAM
	23.1.1 Pose Estimation Solution
	23.1.2 Triangulation
	23.1.3 Moving Stereo
	23.1.4 Structure from Motion (SfM)
	23.1.5 Monocular SLAM or Multiple-View SfM
	23.1.6 Dense Depth Maps from Stereo

	23.2 Recognition
	23.2.1 Approaches to Recognition
	23.2.2 Appearance-Based Methods
	23.2.3 Matching
	23.2.4 Constellation-Based Methods - Recognition by Parts
	23.2.5 Place Recognition and Terrain Classification

	23.3 Conclusion and Further Reading
	References

	24 Visual Servoing and Visual Tracking
	24.1 The Basic Components of Visual Servoing
	24.2 Image-Based Visual Servo
	24.2.1 The Interaction Matrix
	24.2.2 Approximating the Interaction Matrix
	24.2.3 A Geometrical Interpretation of IBVS
	24.2.4 Stability Analysis
	24.2.5 IBVS with a Stereo Vision System
	24.2.6 IBVS with Cylindrical Coordinates of Image Points
	24.2.7 IBVS with Other Geometrical Features
	24.2.8 Direct Estimation

	24.3 Position-Based Visual Servo
	24.4 Advanced Approaches
	24.4.1 Hybrid VS
	24.4.2 Partitioned VS

	24.5 Performance Optimization and Planning
	24.5.1 Optimal Control and Redundancy Framework
	24.5.2 Switching Schemes
	24.5.3 Feature Trajectory Planning

	24.6 Estimation of 3-D Parameters
	24.7 Target Tracking
	24.8 Eye-in-Hand and Eye-to-Hand Systems Controlled in the Joint Space
	24.9 Conclusions
	References

	25 Multisensor Data Fusion
	25.1 Multisensor Data Fusion Methods
	25.1.1 Bayes' Rule
	25.1.2 Probabilistic Grids
	25.1.3 The Kalman Filter
	25.1.4 Sequential Monte Carlo Methods
	25.1.5 Alternatives to Probability

	25.2 Multisensor Fusion Architectures
	25.2.1 Architectural Taxonomy
	25.2.2 Centralized, Local Interaction, and Hierarchical
	25.2.3 Decentralized, Global Interaction, and Heterarchical
	25.2.4 Decentralized, Local Interaction, and Hierarchical
	25.2.5 Decentralized, Local Interaction, and Heterarchical

	25.3 Applications
	25.3.1 Dynamic System Control
	25.3.2 ANSER II: Decentralized Data Fusion

	25.4 Conclusions
	References


	D Text-to-Speech Synthesis
	26 Motion for Manipulation Tasks
	26.1 Overview
	26.2 Task-Level Control
	26.2.1 Operational Space Control
	26.2.2 Combined Force and Position Control
	26.2.3 Operational Space Control of Redundant Mechanisms
	26.2.4 Combining Mobility and Manipulation
	26.2.5 Combining Multiple Task Behaviors

	26.3 Manipulation Planning
	26.3.1 Configuration Space Formalism
	26.3.2 Example of a Three-DOF Planar Manipulator
	26.3.3 Inverse Kinematics Considerations

	26.4 Assembly Motion
	26.4.1 Topological Contact States
	26.4.2 Passive Compliance
	26.4.3 Active Compliant Motion

	26.5 Unifying Feedback Control and Planning
	26.5.1 Feedback Motion Planning
	26.5.2 Augmenting Global Plans with Feedback

	26.6 Conclusions and Further Reading
	References

	27 Contact Modeling and Manipulation
	27.1 Overview
	27.1.1 Choosing a Contact Model
	27.1.2 Grasp/Manipulation Analysis

	27.2 Kinematics of Rigid-Body Contact
	27.2.1 Contact Constraints
	27.2.2 Collections of Parts
	27.2.3 Graphical Planar Methods

	27.3 Forces and Friction
	27.3.1 Graphical Planar Methods
	27.3.2 Duality of Contact Wrenches and Twist Freedoms

	27.4 Rigid-Body Mechanics with Friction
	27.4.1 Complementarity
	27.4.2 Quasistatic Assumption
	27.4.3 Examples

	27.5 Pushing Manipulation
	27.6 Contact Interfaces and Modeling
	27.6.1 Modeling of Contact Interface
	27.6.2 Pressure Distribution at Contacts

	27.7 Friction Limit Surface
	27.7.1 The Friction Limit Surface at a Soft Contact Interface
	27.7.2 Example of Constructinga Friction Limit Surface

	27.8 Contacts in Grasping and Fixture Designs
	27.8.1 Contact Stiffness of Soft Fingers
	27.8.2 Application of Soft Contact Theory to Fixture Design

	27.9 Conclusions and Further Reading
	References

	28 Grasping
	28.1 Background
	28.2 Models and Definitions
	28.2.1 Velocity Kinematics
	28.2.2 Dynamics and Equilibrium

	28.3 Controllable Twists and Wrenches
	28.3.1 Grasp Classifications
	28.3.2 Limitations of Rigid-Body Assumption
	28.3.3 Desirable Properties

	28.4 Restraint Analysis
	28.4.1 Form Closure
	28.4.2 Force Closure

	28.5 Examples
	28.5.1 Example 1: Grasped Sphere
	28.5.2 Example 2: Grasped Polygon in the Plane
	28.5.3 Example 3: Hyperstatic Grasps
	28.5.4 Example 4: Duality
	28.5.5 Example 5: Form Closure

	28.6 Conclusion and Further Reading
	References

	29 Cooperative Manipulators
	29.1 A Historical Overview
	29.2 Kinematics and Statics
	29.2.1 Symmetric Formulation
	29.2.2 Multifingered Manipulation

	29.3 Cooperative Task Space
	29.4 Dynamics and Load Distribution
	29.4.1 Reduced-Order Models
	29.4.2 Load Distribution

	29.5 Task-Space Analysis
	29.6 Control
	29.6.1 Hybrid Control
	29.6.2 PD Force/Motion Control
	29.6.3 Feedback Linearization Approaches
	29.6.4 Impedance Control

	29.7 Conclusions and Further Reading
	References

	30 Haptics
	30.1 Overview
	30.1.1 Human Haptics
	30.1.2 Application Examples

	30.2 Haptic Device Design
	30.2.1 Mechanisms
	30.2.2 Sensing
	30.2.3 Actuation and Transmission
	30.2.4 An Example Device

	30.3 Haptic Rendering
	30.3.1 Rendering Complex Environments
	30.3.2 Virtual Coupling

	30.4 Control and Stability of Haptic Interfaces
	30.5 Tactile Display
	30.5.1 Vibration Feedback
	30.5.2 Contact Location, Slip, and Shear Display
	30.5.3 Local Shape
	30.5.4 Temperature

	30.6 Conclusions and Further Reading
	References

	31 Telerobotics
	31.1 Overview
	31.2 Telerobotic Systems and Applications
	31.2.1 Historical Perspective
	31.2.2 Applications

	31.3 Control Architectures
	31.3.1 Supervisory Control
	31.3.2 Shared Control
	31.3.3 Direct and Bilateral Teleoperation

	31.4 Bilateral Control and Force Feedback
	31.4.1 Position/Force Control
	31.4.2 Passivity and Stability
	31.4.3 Transparency and Multichannel Feedback
	31.4.4 Time Delay and Scattering Theory
	31.4.5 Wave Variables

	31.5 Conclusions and Further Reading
	References

	32 Networked Telerobots
	32.1 Overview and Background
	32.2 A Brief History
	32.3 Communications and Networking
	32.3.1 The Internet
	32.3.2 Wired Communication Links
	32.3.3 Wireless Links
	32.3.4 Properties of Networked Telerobotics
	32.3.5 Building a Networked Telerobotic System
	32.3.6 State-Command Presentation
	32.3.7 Command Execution/State Generation
	32.3.8 Collaborative Control

	32.4 Conclusion and Future Directions
	References

	33 Exoskeletons for Human Performance Augmentation
	33.1 Survey of Exoskeleton Systems
	33.2 Upper-Extremity Exoskeleton
	33.3 Intelligent Assist Device
	33.4 Control Architecture for Upper-Extremity Exoskeleton Augmentation
	33.5 Applications of Intelligent Assist Device
	33.6 Lower-Extremity Exoskeleton
	33.7 The Control Scheme of an Exoskeleton
	33.8 Highlights of the Lower-Extremity Design
	33.9 Field-Ready Exoskeleton Systems
	33.9.1 The ExoHiker Exoskeleton
	33.9.2 The ExoClimber Exoskeleton

	33.10 Conclusion and Further Reading
	References


	E Speech Recognition
	34 Motion Control of Wheeled Mobile Robots
	34.1 Background
	34.1.1 Path Following
	34.1.2 Stabilization of Trajectories
	34.1.3 Stabilization of Fixed Postures

	34.2 Control Models
	34.2.1 Kinematics Versus Dynamics
	34.2.2 Modeling in a Frénet Frame

	34.3 Adaptation of Control Methods for Holonomic Systems
	34.3.1 Stabilization of Trajectories for a Nonconstrained Point
	34.3.2 Path Following with No Orientation Control

	34.4 Methods Specific to Nonholonomic Systems
	34.4.1 Transformation of Kinematic Models into the Chained Form
	34.4.2 Tracking of a Reference Vehicle with the Same Kinematics
	34.4.3 Path Following with Orientation Control
	34.4.4 Asymptotic Stabilization of Fixed Postures
	34.4.5 Limitations Inherent to the Control of Nonholonomic Systems
	34.4.6 Practical Stabilization of Arbitrary Trajectories Based on the Transverse Function Approach

	34.5 Complementary Issues and Bibliographical Guide
	References

	35 Motion Planning and Obstacle Avoidance
	35.1 Nonholonomic Mobile Robots: Where Motion Planning Meets Control Theory
	35.2 Kinematic Constraints and Controllability
	35.2.1 Definitions
	35.2.2 Controllability
	35.2.3 Example: The Differentially Driven Mobile Robot

	35.3 Motion Planning and Small-Time Controllability
	35.3.1 The Decision Problem
	35.3.2 The Complete Problem

	35.4 Local Steering Methods and Small-Time Controllability
	35.4.1 Local Steering Methods that Account for Small-Time Controllability
	35.4.2 Equivalence Between Chained-Formed and Feedback-Linearizable Systems

	35.5 Robots and Trailers
	35.5.1 Differentially Driven Mobile Robots
	35.5.2 Differentially Driven Mobile Robots Towing One Trailer
	35.5.3 Car-Like Mobile Robots
	35.5.4 Bi-steerable Mobile Robots
	35.5.5 Differentially Driven Mobile Robots Towing Trailers
	35.5.6 Open Problems

	35.6 Approximate Methods
	35.6.1 Forward Dynamic Programming
	35.6.2 Discretization of the Input Space
	35.6.3 Input-Based Rapidly Exploring Random Trees

	35.7 From Motion Planning to Obstacle Avoidance
	35.8 Definition of Obstacle Avoidance
	35.9 Obstacle Avoidance Techniques
	35.9.1 Potential Field Methods (PFM)
	35.9.2 Vector Field Histogram (VFH)
	35.9.3 The Obstacle Restriction Method (ORM)
	35.9.4 Dynamic Window Approach (DWA)
	35.9.5 Velocity Obstacles (VO)
	35.9.6 Nearness Diagram Navigation (ND)

	35.10 Robot Shape, Kinematics, and Dynamics in Obstacle Avoidance
	35.10.1 Techniques that Abstract the Vehicle Aspects
	35.10.2 Techniques of Decomposition in Subproblems

	35.11 Integration Planning - Reaction
	35.11.1 Path Deformation Systems
	35.11.2 Tactical Planning Systems

	35.12 Conclusions, Future Directions, and Further Reading
	References

	36 World Modeling
	36.1 Historical Overview
	36.2 World Models for Indoors and Structured Environments
	36.2.1 Occupancy Grids
	36.2.2 Line Maps
	36.2.3 Topological Maps
	36.2.4 Landmark-Based Maps

	36.3 World and Terrain Models for Natural Environments
	36.3.1 Elevation Grids
	36.3.2 3-D Grids and Point Sets
	36.3.3 Meshes
	36.3.4 Cost Maps
	36.3.5 Semantic Attributes
	36.3.6 Heterogeneous and Hierarchical Models

	36.4 Dynamic Environments
	36.4.1 Conclusion and Further Reading

	References

	37 Simultaneous Localization and Mapping
	37.1 Overview
	37.2 SLAM: Problem Definition
	37.2.1 Mathematical Basis
	37.2.2 Example: SLAM in Landmark Worlds
	37.2.3 Taxonomy of the SLAM Problem

	37.3 The Three Main SLAM Paradigms
	37.3.1 Extended Kalman Filters
	37.3.2 Graph-Based Optimization Techniques
	37.3.3 Particle Methods
	37.3.4 Relation of Paradigms

	37.4 Conclusion and Future Challenges
	37.5 Suggestions for Further Reading
	References

	38 Behavior-Based Systems
	38.1 Robot Control Approaches
	38.1.1 Deliberative - Think, Then Act
	38.1.2 Reactive - Don't Think, (Re)Act
	38.1.3 Hybrid - Think and Act Concurrently
	38.1.4 Behavior-Based Control - Think the Way You Act

	38.2 Basic Principles of Behavior-Based Systems
	38.2.1 Misconceptions

	38.3 Basis Behaviors
	38.4 Representation in Behavior-Based Systems
	38.5 Learning in Behavior-Based Systems
	38.5.1 Reinforcement Learning in Behavior-Based Systems
	38.5.2 Learning Behavior Networks
	38.5.3 Learning from History of Behavior Use

	38.6 Continuing Work
	38.6.1 Motivated Configuration of Behaviors

	38.7 Conclusions and Further Reading
	References

	39 Distributed and Cellular Robots
	39.1 Modularity for Locomotion
	39.1.1 Self-Reconfigurable Robot Locomotion
	39.1.2 Physically Cooperative Mobile Robots

	39.2 Modularity for Manipulation
	39.2.1 Independent Manipulators
	39.2.2 Reconfigurable Manipulators

	39.3 Modularity for Geometric Reconfiguration of Robot Systems
	39.3.1 Manually Reconfigured Systems
	39.3.2 Shape Generation via Self-Reconfiguring Systems
	39.3.3 Configuration Optimization
	39.3.4 Self-Replicating Systems

	39.4 Modularity for Robustness
	39.5 Conclusions and Further Reading
	References

	40 Multiple Mobile Robot Systems
	40.1 History
	40.2 Architectures for Multirobot Systems
	40.2.1 The Nerd Herd
	40.2.2 The ALLIANCE Architecture
	40.2.3 The Distributed Robot Architecture

	40.3 Communication
	40.4 Swarm Robots
	40.5 Heterogeneity
	40.6 Task Allocation
	40.6.1 Taxonomy for Task Allocation
	40.6.2 Representative Approaches

	40.7 Learning
	40.8 Applications
	40.8.1 Foraging and Coverage
	40.8.2 Flocking and Formations
	40.8.3 Box Pushing and Cooperative Manipulation
	40.8.4 Multitarget Observation
	40.8.5 Traffic Control and Multirobot Path Planning
	40.8.6 Soccer

	40.9 Conclusions and Further Reading
	References

	41 Networked Robots
	41.1 Overview
	41.2 State of the Art and Potential
	41.3 Research Challenges
	41.4 Control
	41.5 Communication for Control
	41.6 Communication for Perception
	41.7 Control for Perception
	41.8 Control for Communication
	41.9 Conclusions and Further Reading
	References


	F Speaker Recognition
	42 Industrial Robotics
	42.1 A Short History of Industrial Robots
	42.2 Typical Applications and Robot Configurations
	42.2.1 Welding
	42.2.2 Car Body Assembly
	42.2.3 Painting
	42.2.4 Material Transfer Automation
	42.2.5 Machining
	42.2.6 Human-Robot Cooperation for Handling Tasks

	42.3 Kinematics and Mechanisms
	42.4 Task Descriptions - Teaching and Programming
	42.5 End-Effectors and System Integration
	42.6 Conclusions and Long-Term Challenges
	References

	43 Underwater Robotics
	43.1 The Expanding Role of Marine Robotics in Oceanic Engineering
	43.1.1 Historical Background

	43.2 Underwater Robotics
	43.2.1 Modeling
	43.2.2 Sensor Systems
	43.2.3 Actuating Systems
	43.2.4 Mission Control System
	43.2.5 Guidance and Control
	43.2.6 Localization
	43.2.7 Underwater Manipulation
	43.2.8 Fault Detection/Tolerance
	43.2.9 Multiple Underwater Vehicles

	43.3 Applications
	43.4 Conclusions and Further Reading
	References

	44 Aerial Robotics
	44.1 Background
	44.2 History of Aerial Robotics
	44.3 Applications of Aerial Robotics
	44.3.1 Possible Applications of Aerial Robots
	44.3.2 Current Applications

	44.4 Current Challenges
	44.4.1 Regulations and Certification
	44.4.2 Human-Machine Interfaces
	44.4.3 Navigation
	44.4.4 Agile Flight and Fault Tolerance
	44.4.5 Obstacle Avoidance
	44.4.6 Aerial Robot Landing and Interaction with Other Vehicles
	44.4.7 Multivehicle Coordination

	44.5 Basic Aerial Robot Flight Concepts
	44.5.1 Aerial Robot Flight and the Importance of Scales
	44.5.2 Propulsion Systems
	44.5.3 Flight Vehicle Types and Flight Regimes
	44.5.4 Lighter-Than-Air Systems

	44.6 The Entry Level for Aerial Robotics: Inner-Loop Control
	44.6.1 Sensing and Estimation
	44.6.2 Estimator Design
	44.6.3 Inner-Loop Control

	44.7 Active Research Areas
	44.7.1 Interfacing with the Human Infrastructure: Meeting the Regulations
	44.7.2 High-Agility Flight
	44.7.3 Take-Off, Landing, and Interaction with Other Vehicles
	44.7.4 Reactive Flight in Cluttered Environments and Obstacle Avoidance
	44.7.5 Path Planning and Higher-Level Planning Capabilities
	44.7.6 Integrated Aerial Robotic Operations: Aerial Robotics Contests

	44.8 Conclusions and Further Reading
	References

	45 Space Robots and Systems
	45.1 Historical Developments and Advances of Orbital Robotic Systems
	45.1.1 Space Shuttle Remote Manipulator System
	45.1.2 ISS-Mounted Manipulator Systems
	45.1.3 ROTEX
	45.1.4 ETS-VII
	45.1.5 Ranger
	45.1.6 Orbital Express

	45.2 Historical Developments and Advances of Surface Robotic Systems
	45.2.1 Teleoperated Rovers
	45.2.2 Autonomous Rovers
	45.2.3 Research Systems
	45.2.4 Sensing and Perception
	45.2.5 Estimation
	45.2.6 Manipulators for In Situ Science

	45.3 Mathematical Modeling
	45.3.1 Space Robot as an Articulated-Body System
	45.3.2 Equations for Free-Floating Manipulator Systems
	45.3.3 Generalized Jacobian and Inertia Matrices
	45.3.4 Linear and Angular Momenta
	45.3.5 Virtual Manipulator
	45.3.6 Dynamic Singularity
	45.3.7 Reaction Null Space (RNS)
	45.3.8 Equations for Flexible-Based Manipulator Systems
	45.3.9 Advanced Control for Flexible Structure Based Manipulators
	45.3.10 Contact Dynamics and Impedance Control
	45.3.11 Dynamics of Mobile Robots
	45.3.12 Wheel Traction Mechanics

	45.4 Future Directions of Orbital and Surface Robotic Systems
	45.4.1 Robotic Maintenance and Service Missions
	45.4.2 Robonaut
	45.4.3 Aerial Platforms
	45.4.4 Subsurface Platforms

	45.5 Conclusions and Further Reading
	References

	46 Robotics in Agriculture and Forestry
	46.1 Definitions
	46.1.1 Technological Developments

	46.2 Forestry
	46.2.1 Overview
	46.2.2 Robot Locomotion in Forestry
	46.2.3 Forestry Automation
	46.2.4 Machine Perception and SLAM in the Forest Environment
	46.2.5 Autonomy, Teleoperation, and Fleet Management
	46.2.6 Autonomous Robots for Silviculture and Treatment
	46.2.7 Forestry Conclusions

	46.3 Broad Acre Applications
	46.3.1 An Overview of Automatic Guidance
	46.3.2 Sowing, Weeding, Spraying, and Broad-Acre Harvesting

	46.4 Horticulture
	46.4.1 Picking of Fruit and Vegetables
	46.4.2 Color Sorting and Produce Grading

	46.5 Livestock
	46.5.1 Robot Milking
	46.5.2 Sheep Shearing
	46.5.3 Slaughtering
	46.5.4 Livestock Inspection
	46.5.5 Robotic Animals

	46.6 Unmanned Vehicles
	46.7 Conclusions and Future Directions
	References

	47 Robotics in Construction
	47.1 Overview
	47.1.1 Industry Description
	47.1.2 Automation in Construction
	47.1.3 Robotics in Construction
	47.1.4 Sensing Systems in Construction

	47.2 Economic Aspects
	47.2.1 Scope
	47.2.2 Motivation
	47.2.3 Barriers

	47.3 Applications
	47.3.1 Construction
	47.3.2 Maintenance and Decommissioning

	47.4 Currently Unsolved Technical Problems
	47.4.1 Interoperability
	47.4.2 Structural Connection Systems
	47.4.3 Tolerances
	47.4.4 Power and Communications in the Field

	47.5 Future Directions
	47.6 Conclusions and Further Reading
	References

	48 Robotics in Hazardous Applications
	48.1 Operation in Hazardous Environments: The Need for a Robotics Solution
	48.2 Applications
	48.2.1 Eradicating Landmines
	48.2.2 Hazardous Materials Handling and Operations

	48.3 Enabling Technologies
	48.3.1 Mobility Issues
	48.3.2 Manipulator Design and Control for Hazardous Object Handling
	48.3.3 Control for Hazardous Tasks
	48.3.4 Data Communications
	48.3.5 Energetics
	48.3.6 System Architectures for Real-Time Mission Control

	48.4 Conclusions and Further Reading
	References

	49 Mining Robotics
	49.1 Background
	49.1.1 Robotics in Mining

	49.2 Metalliferous Mining
	49.2.1 Underground Hard-Rock Metalliferous
	49.2.2 Scope for Robotics
	49.2.3 Case Study: Nonconventional Robotic Miner

	49.3 Underground Coal Mining
	49.3.1 Coal Mining Process
	49.3.2 Scope for Robotics
	49.3.3 Rapid Roadway Development

	49.4 Surface Coal Mining
	49.4.1 Dragline Excavator
	49.4.2 Truck-Shovel Operation
	49.4.3 Surface Haulage

	49.5 Conclusions and Further Reading
	References

	50 Search and Rescue Robotics
	50.1 Overview
	50.1.1 Motivation
	50.1.2 Rescue Robot Tasks
	50.1.3 Types of Rescue Robots

	50.2 Disaster Characteristics and Impact on Robots
	50.2.1 Categories and Phases of Disasters
	50.2.2 Natural Disasters
	50.2.3 Suitable Robot Technologies for Natural Disasters
	50.2.4 Manmade Disasters
	50.2.5 Suitable Robot Technologies for Manmade Disasters

	50.3 Robots Actually Used at Disasters
	50.3.1 2001 World Trade Center, United States
	50.3.2 2005 La Conchita Mudslide, United States
	50.3.3 2005 Hurricanes Katrina, Rita and Wilma, United States
	50.3.4 2006 Sago Mine Disaster, United States
	50.3.5 Post-Disaster Experimentation
	50.3.6 Search and Recovery

	50.4 Promising Robots and Concepts
	50.4.1 Alternative Ground Rescue Robot Designs
	50.4.2 Aerial Rescue Robots
	50.4.3 Unique Concepts of Operations

	50.5 Evaluation and Benchmarks
	50.5.1 Computer Simulations for Rescue Robotics
	50.5.2 Physical Test Beds
	50.5.3 Standards Activity

	50.6 Fundamental Problems and Open Issues
	50.6.1 Mobility
	50.6.2 Communications
	50.6.3 Control
	50.6.4 Sensors
	50.6.5 Power
	50.6.6 Human-Robot Interaction
	50.6.7 Evaluation

	50.7 Conclusions and Further Reading
	References

	51 Intelligent Vehicles
	51.1 Why Intelligent Vehicles?
	51.1.1 Brief History
	51.1.2 Benefits of Intelligent Vehicles

	51.2 Enabling Technologies
	51.2.1 Environment State
	51.2.2 Driver State
	51.2.3 Communication
	51.2.4 Digital Maps and Satellite Data

	51.3 Road Scene Understanding
	51.3.1 Road/Lane Tracking
	51.3.2 Road Sign Detection
	51.3.3 Traffic-Light Detection
	51.3.4 Visibility Assessment
	51.3.5 Vehicle Detection
	51.3.6 Pedestrian Detection

	51.4 Advanced Driver Assistance
	51.4.1 Collision Avoidance and Mitigation
	51.4.2 Adaptive Cruise Control
	51.4.3 Stop and Go
	51.4.4 Parking Assist
	51.4.5 Lane Keeping
	51.4.6 Lane Changing

	51.5 Driver Monitoring
	51.5.1 Driver Fatigue, Inattention, and Impairment
	51.5.2 Driver and Passenger Protection
	51.5.3 Emergency Assistance

	51.6 Automated Vehicles
	51.6.1 Operating Safely
	51.6.2 Traffic Congestion
	51.6.3 Environmental Factors
	51.6.4 The Automobile of the Future
	51.6.5 Automated Vehicle Deployment

	51.7 Future Trends and Prospects
	51.8 Conclusions and Further Reading
	References

	52 Medical Robotics and Computer-Integrated Surgery
	52.1 Core Concepts
	52.1.1 Medical Robotics, Computer-Integrated Surgery, and Closed-Loop Interventions
	52.1.2 Factors Affecting the Acceptance of Medical Robots
	52.1.3 Medical Robotics System Paradigms: Surgical CAD/CAM and Surgical Assistance

	52.2 Technology
	52.2.1 Mechanical Design Considerations
	52.2.2 Control Paradigms
	52.2.3 Virtual Fixtures and Human-Machine Cooperative Systems
	52.2.4 Safety and Sterility
	52.2.5 Imaging and Modeling of Patients
	52.2.6 Registration

	52.3 Systems, Research Areas, and Applications
	52.3.1 Nonrobotic Computer-Assisted Surgery: Navigation and Image Overlay Devices
	52.3.2 Orthopaedic Systems
	52.3.3 Percutaneous Needle Placement Systems
	52.3.4 Telesurgical Systems
	52.3.5 Microsurgery Systems
	52.3.6 Endoluminal Robots
	52.3.7 Sensorized Instruments and Haptic Feedback
	52.3.8 Surgical Simulators and Telerobotic Systems for Training
	52.3.9 Other Applications and Research Areas

	52.4 Conclusion and Future Directions
	References

	53 Rehabilitation and Health Care Robotics
	53.1 Overview
	53.1.1 Taxonomy of Rehabilitation Robotics
	53.1.2 World Demographics
	53.1.3 Short History of the Field of Rehabilitation Robotics

	53.2 Physical Therapy and Training Robots
	53.2.1 Grand Challenges and Roadblocks
	53.2.2 Movement Therapy after Neurologic Injury
	53.2.3 Robotic Therapy for the Upper Extremity
	53.2.4 Robotic Therapy for Walking

	53.3 Aids for People with Disabilities
	53.3.1 Grand Challenges and Enabling Technologies
	53.3.2 Types and Examples of Assistive Rehabilitation Robots

	53.4 Smart Prostheses and Orthoses
	53.4.1 Grand Challenges and Roadblocks
	53.4.2 Targeted Reinnervation
	53.4.3 Brain-Machine Interfaces
	53.4.4 Advances in Neural Stimulation
	53.4.5 Embedded Intelligence

	53.5 Augmentation for Diagnosis and Monitoring
	53.5.1 Introduction: Grand Challenges and Enabling Technologies
	53.5.2 Smart Clinics with Automated Health Care Monitoring and Care
	53.5.3 Home-Based Rehabilitation Monitoring Systems
	53.5.4 Wearable Monitoring Devices

	53.6 Safety, Ethics, Access, and Economics
	53.7 Conclusions and Further Readings
	References

	54 Domestic Robotics
	54.1 Cleaning Robots
	54.1.1 The Task and Its Context
	54.1.2 Technical Challenges
	54.1.3 Domestic Floor-Cleaning Robots
	54.1.4 Pool-Cleaning Robots
	54.1.5 Window-Cleaning Robots
	54.1.6 Old Problems, New Technologies

	54.2 Lawn-Mowing Robots
	54.3 Smart Appliances
	54.3.1 Ironing Robots
	54.3.2 Intelligent Refrigerators
	54.3.3 Digital Wardrobes

	54.4 Smart Homes
	54.5 Domestic Robotics: It Is the Business Case Which Matters
	54.6 Conclusions and Further Reading
	References

	55 Robots for Education
	55.1 The Role of Robots in Education
	55.1.1 Interest in Science and Engineering
	55.1.2 Teamwork
	55.1.3 Problem Solving

	55.2 Educational Robot Tournaments
	55.2.1 Origins
	55.2.2 A Taxonomy of Robot Tournaments
	55.2.3 The Entertainment Link
	55.2.4 Tournaments for Education

	55.3 Education Robot Platforms
	55.4 Education Robot Controllers and Programming Environments
	55.4.1 Robot Controllers
	55.4.2 Edutainment Programming Environments

	55.5 Robots and Informal Learning Venues (Museums)
	55.5.1 Tour-Guide Robot Examples
	55.5.2 Lessons Learned

	55.6 Educational Evaluation of Robot Programs
	55.6.1 Design-Time Assessment
	55.6.2 Formative and Summative Evaluation

	55.7 Conclusions and Further Reading
	References


	G Language Recognition
	56 Humanoids
	56.1 Why Humanoids?
	56.1.1 The Human Example
	56.1.2 The Pleasing Mirror
	56.1.3 Understanding Intelligence
	56.1.4 Interfacing with the Human World
	56.1.5 Interfacing with People
	56.1.6 Entertainment, Culture, and Surrogates

	56.2 History and Overview
	56.2.1 Different Forms
	56.2.2 Different Degrees of Freedom
	56.2.3 Different Sensors
	56.2.4 Other Dimensions of Variation

	56.3 Locomotion
	56.3.1 Bipedal Locomotion
	56.3.2 Falling Down
	56.3.3 Sensing for Balance
	56.3.4 Localization and Obstacle Detection

	56.4 Manipulation
	56.4.1 The Arm and Hand
	56.4.2 Sensing for Manipulation
	56.4.3 Rhythmic Manipulation
	56.4.4 Cooperative Manipulation
	56.4.5 Learning and Development

	56.5 Whole-Body Activities
	56.5.1 Coarse Whole-Body Motion
	56.5.2 Generating Dynamically Stable Motions
	56.5.3 Generating Whole-Body Motions from Operational Point Motions
	56.5.4 Generating Motions when in Contact with an Object

	56.6 Communication
	56.6.1 Expressive Morphology and Behavior
	56.6.2 Interpreting Human Expression
	56.6.3 Alternative Models for Human-Robot Communication

	56.7 Conclusions and Further Reading
	References

	57 Safety for Physical Human-Robot Interaction
	57.1 Motivations for Safe pHRI
	57.2 Safety for Hands-Off pHRI
	57.3 Design of Intrinsically Safe Robots
	57.4 Safety for Hands-On pHRI
	57.5 Safety Standards for pHRI
	57.6 Conclusions
	References

	58 Social Robots that Interact with People
	58.1 Social Robot Embodiment
	58.2 Multimodal Communication
	58.2.1 Robots that Express Paralinguistic Information
	58.2.2 Robots that Understand Paralinguistic Information
	58.2.3 Group Conversation
	58.2.4 Communication in Collaboration

	58.3 Expressive Emotion-Based Interaction
	58.3.1 Kismet: Inspiration from Developmental Psychology
	58.3.2 WE-4RII: A Model of Emotion Inspired by Motion

	58.4 Socio-cognitive Skills
	58.4.1 Shared Attention
	58.4.2 Emotional Empathy
	58.4.3 Mental Perspective Taking
	58.4.4 Perspective Taking in Collaboration

	58.5 Conclusion and Further Reading
	References

	59 Robot Programming by Demonstration
	59.1 History
	59.2 Engineering-Oriented Approaches
	59.2.1 Learning a Skill
	59.2.2 Incremental Teaching Methods
	59.2.3 Human-Robot Interaction in PbD
	59.2.4 Joint Use of Robot PbD with Other Learning Techniques

	59.3 Biologically-Oriented Learning Approaches
	59.3.1 Conceptual Models of Imitation Learning
	59.3.2 Neural Models of Imitation Learning

	59.4 Conclusions and Open Issues in Robot PbD
	References

	60 Biologically Inspired Robots
	60.1 General Background
	60.2 Bio-inspired Morphologies
	60.3 Bio-inspired Sensors
	60.3.1 Vision
	60.3.2 Audition
	60.3.3 Touch
	60.3.4 Smell
	60.3.5 Taste
	60.3.6 Internal Sensors

	60.4 Bio-inspired Actuators
	60.4.1 Locomotion
	60.4.2 Grasping
	60.4.3 Drilling

	60.5 Bio-inspired Control Architectures
	60.5.1 Behavior-Based Robotics
	60.5.2 Learning Robots
	60.5.3 Evolving Robots
	60.5.4 Developing Robots

	60.6 Energetic Autonomy
	60.7 Collective Robotics
	60.8 Biohybrid Robots
	60.9 Discussion
	60.10 Conclusion
	References

	61 Evolutionary Robotics
	61.1 Method
	61.2 First Steps
	61.2.1 Evolution of Neural Controllers for Walking

	61.3 Simulation and Reality
	61.4 Simple Controllers, Complex Behaviors
	61.5 Seeing the Light
	61.5.1 Coevolution of Active Vision and Feature Selection

	61.6 Computational Neuroethology
	61.6.1 Emergence of Place Cells
	61.6.2 Spiking Neurons
	61.6.3 GasNets

	61.7 Evolution and Learning
	61.7.1 Learning to Adapt to Fast Environmental Variations
	61.7.2 Evolution of Learning

	61.8 Competition and Cooperation
	61.8.1 Coevolving Predator and Prey Robots
	61.8.2 Evolving Cooperative Behavior

	61.9 Evolutionary Hardware
	61.9.1 Evolvable Hardware Robot Controllers
	61.9.2 Evolving Bodies

	61.10 Closing Remarks
	References

	62 Neurorobotics: From Vision to Action
	62.1 Definitions
	62.2 Neuroethological Inspiration
	62.2.1 Optic Flow in Bees and Robots
	62.2.2 Visually Guided Behavior in Frogs and Robots
	62.2.3 Navigation in Rat and Robot
	62.2.4 Schemas and Coordinated Control Programs
	62.2.5 Salience and Visual Attention

	62.3 The Role of the Cerebellum
	62.3.1 The Human Control Loop
	62.3.2 Models of Cerebellar Control
	62.3.3 Cerebellar Models and Robotics

	62.4 The Role of Mirror Systems
	62.4.1 Mirror Neurons and the Recognition of Hand Movements
	62.4.2 A Bayesian View of the Mirror System
	62.4.3 Mirror Neurons and Imitation

	62.5 Extroduction
	62.6 Further Reading
	References

	63 Perceptual Robotics
	63.1 Overview
	63.2 Example-Based Object Representations
	63.2.1 Perceptual and Computational Basis of Object Representations
	63.2.2 Neural Representations in Object Recognition
	63.2.3 Object Recognition: Lessons from Computer Vision
	63.2.4 Object Learning and Recognition for Perceptual Robotics

	63.3 Example-Based Movement Representations
	63.3.1 Recognition of Complex Movements in Visual Cortex
	63.3.2 Example-Based Motion Recognition in Robots and Computer Vision

	63.4 Example-Based Synthesis Models: From Faces to Movements
	63.4.1 Face Synthesis: Realistic Faces for Avatars and Robots
	63.4.2 Example-Based Trajectory Synthesis

	63.5 Conclusions and Further Reading
	References

	64 Roboethics: Social and Ethical Implications of Robotics
	64.1 A Methodological Note
	64.2 Specificity of Robotics
	64.3 What Is a Robot?
	64.3.1 Robots Are Nothing Else But Machines
	64.3.2 Robots (and Technology in General) Have an Ethical Dimension
	64.3.3 Robots as Artificial Moral Agents (AMA)
	64.3.4 Robots: the Evolution of a New Species

	64.4 Cultural Differences in Robot's Acceptance
	64.5 From Literature to Today's Debate
	64.6 Roboethics
	64.7 Ethics and Morality
	64.8 Moral Theories
	64.9 Ethics in Science and Technology
	64.10 Conditions for Implementation
	64.11 Operativeness of the Principles
	64.12 Ethical Issues in an ICT Society
	64.13 Harmonization of Principles
	64.14 Ethics and Professional Responsibility
	64.15 Roboethics Taxonomy
	64.15.1 Humanoids
	64.15.2 Artificial Body
	64.15.3 Industrial Robotics
	64.15.4 Adaptive Robot Servants
	64.15.5 Distributed Robotic Systems
	64.15.6 Outdoor Robotics
	64.15.7 Surgical Robotics
	64.15.8 Biorobotics
	64.15.9 Biomechatronics
	64.15.10 Health Care and Quality of Life
	64.15.11 Military Robotics
	64.15.12 Educational Robot Kits
	64.15.13 Robot Toys
	64.15.14 Entertainment Robotics
	64.15.15 Robotic Art

	64.16 Conclusions and Further Reading
	References


	Acknowledgements
	About the Authors
	Detailed Contents
	Subject Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU <>
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




