
CIS 580 Spring 2012 - Lecture 1
January 11, 2012 Notes and figures by Matthieu Lecce.

Linear Shift-Invariant Systems

Consider a continuous signal f : R → R, t → f (t) and a filter f (t) →
g(t) = T { f (t)}:

System T- -f (t) g(t)

Figure 1: A filter represented as a block

Linear system

A system T is linear when T {a f1(t) + b f2(t)} = aT { f1(t)}+ bT { f2(t)}:

T- -f2(t) g2(t)

T- -f1(t) g1(t)
then T- -a f1(t) + b f2(t) ag1(t) + bg2(t)

Figure 2: Linear System

Examples:

• T { f }(t) = f (t) − f (t − 1) is linear:

g1(t) = f1(t) − f1(t − 1)

g2(t) = f2(t) − f2(t − 1)

T {a f1 + b f2}(t) =[a f1(t) + b f2(t)] − [a f1(t − 1) − b f2(t − 1)]

=a( f1(t) − f1(t − 1)) + b( f2(t) − f2(t − 1))

=aT { f1}(t) + bT { f2}(t)

• g(t) = f (t)2, g(t) = max( f (t), f (t − 1)) are not linear.

Shift invariant system

A system is shift-invariant when T { f (t − t0)}(t) = T { f (t)}(t − t0):

T- -f (t) g(t) then T- -f (t − t0) g(t − t0)

Figure 3: Shift-Invariant System

Examples:
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• T { f }(t) = f (t) − f (t − 1) is shift-invariant.

T { f (t − t0)} = f (t − t0) − f (t − t0 − 1)

=g(t − t0)

• g(t) = t f (t) is not shift-invariant.

Dirac function and impulse response

Definitions of the Dirac function:

1. δ(t) = lima→0
1
a rect( t

a ),

rect(t) =

1 |t| ≤ 1/2

0 elsewhere

2. Absorption property
∫ ∞
−∞

f (t)δ(t)dt = f (0)

3. δ(t) = 0 for t , 0 and
∫ ∞
−∞

δ(t)dt = 1

The impulse response of a system T is the output of the system when the
input is a Dirac:

h(t) =
∫ ∞
−∞

δ(t′)h(t − t′)dt′,

holds because of the absorption property t → t − t′.

LSI as a convolution

Question: is there a formula describing the action of a general LSI system?
Answer: Yes, it is the convolution of the signal with the impulse response

h(t):

g(t) =
∫ ∞
−∞

f (t′)h(t − t′)dt′

.
Notice that h(t − t′) is a reflection and shift of the impulse response (see

figure 4). To understand why we take the reflection of the impulse response,
we consider a special type of LSI’s: causal systems, where g(t) only depends
on values of f (t′) for t′ ≤ t. This means the impulse response will be non-
zero for t ≥ 0.
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Figure 4: Reflection and shift of the impulse
response when computing the convolution.

For example let’s consider T : f (t) → T { f (t)} = g(t) = f (t) + f (t −
1) + f (t − 2). The impulse response is h(t) = δ(t) + δ(t − 1) + δ(t − 2):
notice that the non-zero values of h(t) correspond to positive t’s. When we
apply the convolution sum, we will need to be careful to take the reflection of
h, so that g(t) depends indeed on values of f for t′ < t.
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Fourier Transform

Quick reminder on complex numbers:

• a + jb, j2 = −1

• Harmonic exponentials e jωt = cos(ωt) + j sin(ωt).

f (t)→F(ω) = F { f (t)}

F :R→ C

F(ω) =
∫ ∞
−∞

f (t)e− jωtdt,

where ω denotes the frequency.
Inverse Fourier transform:

f (t) =
1

2π

∫ ∞
−∞

F(ω)e jωtdω
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Last lecture’s main result: linear shift-invariant (LSI) systems can be repre-
sented as a convolution.

The Fourier Transform
Quick reminder on complex numbers:

• a + jb ∈ C, j2 = −1

• e jωt = cos(ωt) + j sin(ωt).

Definition of the Fourier Transform:

f (t)�F(ω) = F { f (t)}

F :R→ C

F(ω) =
∫ ∞

−∞

f (t)e− jωtdt,

where ω denotes the frequency. This definition is sometimes called non-
unitary Fourier transform, with angular frequency (ω is referred to as angular
frequency, and s such that ω = 2πs is the ordinary frequency).

Inverse Fourier transform:

f (t) =
1

2π

∫ ∞

−∞

F(ω)e jωtdω

Domains:

• f (t) defined in time (or space for x, y) domain

• F(ω) defined in frequency (or spatial frequency) domain

The Fourier transform can be defined as a function of s, the frequency,
where ω = 2πs, in which case the definitions can be rewritten as follows:

F(s) =
∫ ∞

−∞

f (t)e− j2πstdt

f (t) =
1

2π

∫ ∞

−∞

F(s)e j2πstds

Function symmetry and Fourier

Definitions:

• A function fe is said even when fe(−t) = fe(t)

• A function fo is said odd when fo(−t) = − fo(t)
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Figure 1: Even and odd functions.

Any function f (t) can be decomposed into an odd and an even part:

f (t) = fe(t) + fo(t)

where fe(t) =
1
2
( f (t) + f (−t)) is even

fo(t) =
1
2
( f (t) − f (−t)) is odd
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If we apply the Fourier transform to this decomposition, we obtain the
following: ∫ ∞

−∞

( fe(t) + fo(t))(cosωt − jsinωt)dt

=

∫ ∞

−∞

fe(t) cos(ωt)dt − j
∫ ∞

−∞

( fo sinωt)dt

The even part maps to the real part of the Fourier transform and the odd part Observe that
∫ ∞
−∞

ge(t)go(t)dt = 0

to the imaginary part (and vice versa).

Theorems

Shift theorem
f (t − t0)� F(ω)e− jωt0

Example: for f (t) even, f (t − T
2 )� F(ω)e− jω T

2 , where F(ω) is real.

Modulation theorem
f (t)e jω0t � F(ω −ω0)

Multiplying by a complex exponential causes a shift in the frequency domain.

Similarity theorem

f (at)�
1
|a|

F(
ω

a
)

Convolution This theorem is extensively used in image processing:

f (t) → h(t) → g(t) =
∫ ∞
−∞

g(t′)h(t − t′)dt′ = f (t) ∗ h(t)

� � �

F(ω) H(ω) G(ω)?

What happens in the Fourier domain?

G(ω) =

∫ ∞

−∞

∫ ∞

−∞

f (t′)h(t − t′)dt′e− jωtdt

=

∫ ∞

t′=−∞
f (t′)

{∫ ∞

t=−∞
h(t − t′)e− jωtdt

}
dt′

=

∫ ∞

t′=−∞
f (t′)H(ω)e− jωt′dt′ (shift theorem)

=H(ω)F(ω)

H(ω) is call the transition function (as opposed to impulse response).

Inverse convolution

f (t)h(t)�
1

2π
F(ω) ∗ H(ω)
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Figure 2: Low pass filtering by taking the
product H(ω)F(ω).

Fourier of some interesting functions

1. Recall the absorption property∫ ∞

−∞

δ(t − t0) f (t)dt = f (t0)

Then we have: ∫ ∞

−∞

δ(t)e− jωtdt = 1

We will remember the two following results:

δ(t) � 1
1 � 2πδ(t) (DC-component)

2. Fourier of a harmonic exponential e jω0t:

e jω0t �︸︷︷︸
modulation

2πδ(ω −ω0)

cos(ω0t) � 2π. 1
2 (δ(ω −ω0) + δ(ω+ω0))

sin(ω0t) � 2π. 1
2 j (δ(ω −ω0) − δ(ω+ω0))

Note: using the similarity theorem, we
can derive simpler expressions using the
ordinary frequency s instead of ω, for
example:

cos(2πs0t)�
1
2
δ(s + s0) + δ(s − s0)3. Fourier of the comb function X(t) =

∑∞
n=−∞ δ(t − nT ):

∞∑
n=−∞

δ(t − nT )�
1
|T |

∞∑
n=−∞

δ(s −
n
T
)

(or 2π
|T |

∑∞
n=−∞ δ(ω −

2πn
T ) when using the non-unitary Fourier Trans-

form with angular frequency).

4. Fourier of a 1D Gaussian The 1D Gaussian distribution is defined as
follows:

f (t) =
1

σ
√

2π
e−

t2

2σ2

When trying to integrate an exponential that contains the variable to
the power 2, we will always try to boil it down to the famous Gaussian
integral: ∫ ∞

−∞

e−x2
dx =

√
π
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Here is a loose proof of the Gaussian integral:

I =
∫ ∞

−∞

e−x2
dx

I2 =

∫ ∞

−∞

e−x2
dx

∫ ∞

−∞

e−y2
dy

=

∫ ∞

−∞

∫ ∞

−∞

e−(x2+y2)dxdy

We perform a substitution to use polar coordinates, the integral I2 now

x =r cos θ

y =r sin θ

dxdy =rdrdθ

takes the following form:

I2 =

∫ ∞

r=0

∫ 2π

θ=0
e−r2

rdrdθ

=2π
∫ ∞

r=0
re−r2

dr

=2π
(

1
−2

) [
e−r2

]∞
0

((e−r2
)′ = −2re−r2

)

=π

Now let’s compute the Fourier transform of a Gaussian distribution:

F { f (t)} =
1

σ
√

2π

∫ ∞

−∞

e−
t2

2σ2 e−2πstdt

=
1

σ
√

2π

∫ ∞

−∞

e
− t2

2σ2 −2πs t
σ
√

2
σ
√

2−π2 s2δ22+π2 s22
dt

=
1

σ
√

2π

∫ ∞

−∞

e−(t+ jπσs
√

2)2

=
1

σ
√

2π
e−2π2σ2 s2 √

2π

Therefore the Fourier Transform of a Gaussian is a Gaussian in terms
of s!

Sampling

Definition and problem

Sampling is a multiplication of the signal by the comb function XT (t) =∑∞
n=−∞ δ(t − nT ). T is the sampling interval:

fS (t) = f (t)
∞∑

n=−∞
δ(t − nT )

(S for “sampled”) After sampling, we forget about the T : we just obtain a
sequence of numbers, that we note fs[k].

Examples:
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(a) Video of a rotating wheel. Depending on T , no motion is perceived,
or even worse, a backward motion is perceived. (We will cover this
example in HW2)

(b) Sinusoidal signal: appearant frequency of sampled signal is different

(c) Same for a checker pattern (Sequence of step functions)

Problem: we want to find the lowest possible sampling frequency, such
that the sampled signal is not corrupted. Solution: Let’s use the frequency
domain to analyze the action of the comb (sampling) function.

Sampling in the frequency domain

Let’s compute the Fourier transform of the comb function:

∞∑
n=−∞

δ(t − nT )�
∞∑

n=−∞
δ(ω −

2πn
T

) =
∞∑

n=−∞
δ(s −

n
T
)

Remember we defined the frequency s
where ω = 2πsSampling in the time domain is a multiplication with the comb func-

tion X(t), therefore in the frequency domain it is a convolution with the
Fourier of the comb, which is a sum of impulses δ(ω −ω0).

The convolution with one impulse δ(ω − ω0) corresponds to shifting
the spectrum such that it is centered around w0 instead of 0.

While in the time domain sampling is very simple, in the Fourier do-
main it is a complete mess: it is equivalent to “xeroxing” the signal (mak-
ing several shifted copies of it) in the frequency domain:

−2pi −3pi/2 −pi −pi/2 0 pi/2 pi 3pi/2 2pi

0

−2pi −3pi/2 −pi −pi/2 0 pi/2 pi 3pi/2 2pi

0

−2pi −3pi/2 −pi −pi/2 0 pi/2 pi 3pi/2 2pi

0

Figure 3: Sampling in the time domain
corresponds to xerozing in the Fourier
domain. Plot 1: spectrum of a rectangle
(sinc function). Plot 2: spectrum and
replicas after convolving with impulses.
Plot3: result of convolution with comb
function (sum of spectrum and replicas).

Fourier transform of a discrete signal To recover the signal, we need to
be able to isolate the spectrum from its replicas: generally this is done by
applying a low-pass filter rect(Ts)(like in figure 2). Even if the signal is
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band-limited, i.e. with maximum frequency ωmax, we need to have:

ωsampling︸    ︷︷    ︸
= 2π

Ts

≥ 2ωmax, i.e. ωmax ≤
π

Ts
This result is known as the sampling
theorem.
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Review from last lecture:

• Sampling (or time-sampling) is a multiplication with the comb function
X(t) =

∑∞
n=−∞ δ(t − nT ) (infinite trail of Dirac functions).

• It corresponds to a convolution with
∑∞

n=−∞ δ(ω −
2πn
T ) in the frequency

domain.

• Concretely this means that in the frequency domain, the signal is replicated
(“xeroxed”) at frequencies 2πn

T , n ∈ Z

• Question: Can we recover the original signal? In other words, can we
isolate the original Fourier of f (t) for this convolution (replication).

• Answer: Yes, if 2ωmax ≤ ωsampling = 2π
T , in which case we multiply the

Fourier of the sampled function with a rectangle function (low-pass filter).

Fourier and sampling

Reconstructing a sampled signal

FS (ω) = F(ω) ∗
∞∑

n=−∞
δ(ω −

2πn
T

)

The rectangle function Π(t) is defined as follows:

Π(t) =


1

2π −π ≤ ω ≤ π

0 anywhere else

What signal do we recover by multiplying with Π(ω)?

f (t)
∞∑

n=−∞
δ(t − nT ) ∗ F −1(Π(ω))

Let’s compute the Fourier transform of a box (rect) filter:

Π(t) = rect(t)

1 |t| ≤ 1
2

0 anywhere else

Similarly, the inverse transform is the following (this is the one we need to
understand the effect of low-pass filtering)

F {rect(t)} =
∫ 1/2

−1/2
1e− jωtdt

=
1
− jω

[
e− jωt

]1/2

−1/2

=
1
− jω

[
e− jω/2 − e jω/2

]
=

1
− jω

(
−2 j sin

ω

2

)
=

sin ω
2

ω
2

= sinc
(
ω

2

)
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F −1{rect(ω)} =
1

2π

∫ ∞

−∞

rect(ω)e jωtdt

=
1

2π

∫ 1/2

−1/2
e jωtdt

=
1

2π
1
jω

[
e jωt

]1/2

−1/2

=
1

2π
sinc

( t
2

)
We will remember the following definititions and results: Definitions:

Π(ω) =

 1
2π |ω| ≤ π

0 anywhere else

rect(ω) =

 1
2π |ω| ≤ 1

2

0 anywhere else

1
2π

sinc(t/2)�rect(ω)

2πsinc(πt)�
1

2π
rect

(
ω

2π

)

Remember the scaling theorem:

f (αt)�
1
|α|

F
(
ω

t

)Reconstructed signal:

freconstr(t) = f (t)
∞∑

n=−∞
δ(t − nT ) ∗ 2πsinc(πt)

=
∞∑

n=−∞
f [n]2πsinc(πt)

Discrete Fourier Transform

Definition of the Discrete Fourier Transform, for a discrete signal f [n]:

f [n]�
L−1∑
n=0

f [n]e− j 2πk
L n = F[k]

with finite length: n = 0 . . . L − 1

Note the implicit definition ω = 2πk
L

Important: A discrete signal still has a continuous Fourier transform! The
Discrete Fourier Transform corresponds to a sampling in the (continuous)
frequency domain.

f [n]�
L−1∑
n=0

f [n]e− jωn −2pi −3pi/2 −pi −pi/2 0 pi/2 pi 3pi/2 2pi
0

1

2

3

4

5
Periodic spectrum corresponing to a sampled signal

−2pi −3pi/2 −pi −pi/2 0 pi/2 pi 3pi/2 2pi
0
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2

3

4

5
The DFT samples L values on one period of the spectrum

Figure 1: The DFT samples L values of one
period of the spectrum by multiplying by the
comb

∑
δ
(
ω − 2πk

L

)

What does sampling in the frequency domain (as in figure 1) correspond to
in the time/space domain? It corresponds to a convolution:

• Frequency domain: multiplication with
∑
δ(ω − 2πk

L )

• Time domain: convolution with with
∑
δ[n − kL], equivalent to replica-

tion of the signal at multiples of its length.
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Fourier and derivation

Exact derivative in the Fourier domain

We are interested in the Fourier of the derivative of a function:

f (t)�F(ω)

d f (t)
dt
�?

Bad idea: ∫ ∞

−∞

d f
dt

e− jωtdt

Smart idea:

f (t) =
1

2π

∫ ∞

−∞

F(ω)e jωtdω

d f (t)
dt

=
1

2π

∫ ∞

−∞

F(ω) jω e jωt

= jω
1

2π

∫ ∞

−∞

f (t)e jωtdω

= jωF(ω)

Therefore, when taking a DFT (spectrum is periodic), the derivation is
equivalent to multiplying the spectrum by the periodic function represented
by figure 2:
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Im
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ω
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Figure 2: Derivating is equivalent to multi-
plying the spectrum by jω

Approximating the derivation with a filter

In many applications we need the derivative of the signal with respect to
x or t. The goal of this section is to approximate the function in figure 2
(multiplication by jω in the frequency domain) with an LSI filter (we will
call it a derivative filter). More specifically, we want to find a discrete filter of
impulse response h[k], k = 1...K (K small) such that:

1. The DFT of h is close to jω

2. We “dump” high frequencies (DFT also corresponds to box sampling in
frequency domain, so no approximation is needed for high frequencies)

Then, when we are given a discrete signal f [n] represented in figure 3,
all we have to do is to apply the filter to obtain g[n], an approximation of the
derivative of f .

g[n] =
∞∑

l=−∞

f [l]h[n − l],

−1 0 1 2 3 4 5 6 7
−1

0

1

2

3

4

5

6

Figure 3: Discrete signal f[n]: how to
compute an approximation of the derivative
of f[n]?

Preliminary: The step function is defined such that d
dt u(t) = δ(t)
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The sign function comes handy: sgn(t) = 2u(t) − 1, u(0) = 1/2, or
equivalently u(t) = 1

2 + 1
2 sgn(t).

−5 0 5

0

1

Step function

Figure 4: Step function.

We have the following straightforward Fourier transforms:

u(t)�U(ω) =
1
2
δ(ω) +

1
jω

d
dt

sgn(t) = 2δ(t)� jωF (sgn(t)) = 2.

A simple derivative filter Let’s take the example of the following simple
filter designed to approximate the derivative:

g[n] = f [n] − f [n − 1]

h[l] = {1,−1}� H(ω) =
1∑

l=0

h[l]e− jωl

=1 − e− jω

=1 − cosω+ j sinω

=2 sin2 ω

2
+ j2 sin

ω

2
cos

ω

2

=2 sin
ω

2
(cos

ω

2
+ j sin

ω

2
)

Therefore the magnitude of the transform is the following

|H(ω)| =

∣∣∣∣∣2 sin
ω

2

∣∣∣∣∣
(to be continued)



CIS 580 Spring 2012 - Lecture 4
January 30, 2012 Notes and figures by Matthieu Lecce.

Review from last lecture:

• A discrete signal still has a continuous Fourier:

h[n] �
L−1∑
n=0

h[n]e− jωn

ω =
2πs
L

DFT ω =
2πk
L
→ H[k]

• Remember the effect of derivation in Fourier domain:

d
dt

f (t)� jω F(ω)

Short Matlab tutorial

• fft of a cos(2πt/8): two spikes in the Fourier domain:

cos(2πt/8)
�

cont. FT 1
2 (δ(ω −

2π
8 ) + δ(ω+ 2π

8 ))

discrete FT ω = 2πk
L = 2πk

32

ω = 2π
8 , 2πk

32 = 2π
8 , k = 4

ω = − 2π
8 k = −4

• In Matlab: n = 0 . . . L − 1, k = 0 . . . L − 1

• fftshift(fft(f)) performs a shift by L
2 (modulation of the signal by e

− j2πL/2
L =

e− jπ = −1)

Derivative Filters (continued)

Two simple filters

Remember the problem we stated in the previous lecture:

• We are given a sampled signal and want to approximate the derivation of
such a signal by “designing” a discrete filter h.

• In the Fourier domain, H(ω) = H(ω+ 2π) since the signal and filter are
discrete.

• We want H(ω) to be as close as possible to jω, for ω ∈ [−π, π]
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Last time we found that the filter h[n] = [1 − 1] verifies:

h[n] �︸︷︷︸
DT FT

H(ω), |H(ω)| =

∣∣∣∣∣2 sin
ω

2

∣∣∣∣∣
A more symmetrical form would be:

f [n] ∗ h[n] =
1
2
( f [n + 1] + f [n − 1]) (In this case we are trying to approximate

limε→0
f (x+ε)+ f (x−ε)

2ε )

Here h[n] = [1/2 0 − 1/2] � 1
2 e− jω(−1) − 1

2 e− jω1 = j sin(ω)

The two approximations are represented in figure 1. Note that while the
second filter we tried is a much better approximation of the first one, these
two filter are a good approximation only for low frequencies.

0 pi

0

pi

 

 

|jω|

|sin (ω/2)|

|sin (ω)|

Figure 1: The derivation and its approxima-
tion by two simple filters. We represented
the magnitude of the spectrum.

Ideal filter

What would be the ideal derivative filter? Remember that we mul-
tiplied the spectrum with the box function to prove the sampling theorem,
which corresponded to convolving the original signal with sinc

(
πt
T

)
(where T

is the sampling interval).
If the original signal is h[n], the reconstructed signal is the following (con-

volution with the sinc interpolation function): (best reconstruction according
to Shannon’s theorem)

h(t) =
L−1∑
n=0

h[n]sinc
(
π

T
(t − n)

)
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Note the above is now a continuous signal. Let’s compute its derivative:

d
dt

h(t) =
∑

n
h[n]d(t − nT )

where d(t) =
d
dt

 sin( πt
T )

πt
T

 = 1
(πt/T )2

[
πt
T

cos
πt
T
−
π

T
sin

πt
T

]

What we get is an infinite signal discretized as follows (see figure 2)

. . . 1/5 −1/4 1/3 −1/2 1 0 −1 1/2 −1/3 1/4 −1/5 . . .

−5 0 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1 Figure 2: Derivative of the sinc interpola-
tion function.

If we compute the Fourier transform of this, we see that it approximates
jω but is wiggly.

Least squares filter design

Given constraints on the length of my filter, how can we obtain the best
derivative filter?

• The length should be L, so there are L unknowns

• The target is jω: more concretely we want
∑−L

n=0 h[n]e− jωn ≈ jω for all ω

It is not possible to solve this system for all ω, so we solve a least-squares
problem:

min
h[n]

∫ π

0

L−1∑
n=0

h[n]e− jωn − jω


2

dω

This solves the length constraint problem but does not solve the smoothing
problem. For smoothing we apply the Fourier transform of a Gaussian:

jωe−2σ2ω2
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2D Fourier Transform

f (x, y)�
∫ ∞

−∞

∫ ∞

−∞

f (x, y)e− jωx x+ωyydxdy

F(ωx,ωy)�

(
1

2π

) ∫ ∞

−∞

∫ ∞

−∞

F(ωx,ωy)e...dωxdωy

Shift
f (x − x0, y − y0)� F(ωx,ωy)e− j(ωx x0+ωyy0)

The shift is not as obvious to obtain as in the 1D case. This can be a prob-
lem in motion estimation.

Affine transformation We note A
 x

y

 a linear transformation of the 2D

space. A =

[
a11 a12
a21 a22

]
f (a11x + a12y, a21x + a22y)

�∫ ∞

−∞

∫ ∞

−∞

f (A(x; y)) exp(− j
[
ωx ωx

]  x
y

)dxdy

=

∫ ∞

−∞

∫ ∞

−∞

f (x′, y′) exp
− j

[
ωxωy

]
A−1

 x′

y′

 det(A−1)dx′dy′

=det(A−1)F
A−T

 wx

wy


Substitution

[
x′

y′

]
= A

[
x
y

]
)

A−T = 1
det(A)

[
a22 −a21
−a12 a11

]

If A is a rotation R (RT R = I, also det(R) = 1), the formula is even
simpler:

R
 x

y

 � F

R  wx

wy


Separable functions

f (x, y) = f1(x) f2(y)�
∫ ∞

−∞

f1(x)e− jωx xdx
∫ ∞

−∞

f2(y)e− jωyydy = F1(ωx)F2(ωy)

Examples:

• f (x, y) = cos(ω0x) (see figure 3)

50 100 150 200 250 300

50

100

150

200

250

300

Figure 3: Unidirectional cosine

It is important to notice that f (x, y) = f (x) f (y) where f (y) = 1 is a
constant function. Therefore the Fourier transform is the following:

f (w, y)�
1
2
(δ(ωx −ω0) + δ(ωx +ω0)).δ(ωy)

.
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• f (x, y) = cos(ω1x) cos(ω2y) corresponds to four points in the Fourier
domain.

• cos(
√

2
2 x −

√
2

2 y): unidirectional cosine rotated of π/4

(to be continued)
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2D Fourier Transform

Review:

f (x, y)�
∫ ∞

−∞

∫ ∞

−∞

f (x, y)e− jωx x+ωyydxdy

F(ωx,ωy)�

(
1

2π

) ∫ ∞

−∞

∫ ∞

−∞

F(ωx,ωy)e...dωxdωy

Results from last lecture:

• Shift

• Affine transformation:

f
A

 x
y

 2D
�

1
det(A)

F
A−T

 ωx

wy

)
• Separability: if a function is separable, the Fourier transform is separable

too and the Fourier transform can be applied separately as a 1D transform
along each axis.

Examples:

• f (x, y) = cos(ω0x)� 1
2 (δ(ωx −ω0) + δ(ωx +ω0)).δ(ωy)

• f (x, y) = cos(ω1x) cos(ω2y) corresponds to four points in the Fourier
domain.

• cos(
√

2
2 x −

√
2

2 y): two points in the Fourier domain, along the direction
π/4

Sampling in 2D

The 2D equivalent of the comb function is a “bed of nails”:∑
n

∑
m
δ(x−n∆x, y−m∆y) =

∑
n
δ(x−n∆x)

∑
m
δ(y−m∆y)�

∑
n

∑
m
δ

(
sx −

n
∆x

, sy −
m
∆y

)
In order to avoid sampling artifacts, we need a result similar to the 1D

case:

∆x ≤
λx min

2

∆y ≤
λy min

2
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Rotation

Using the result on affine transformations, we have:

f
R  x

y

� F
R  ωx

ωy


Therefore the spectrum of cos(ω0(x cos φ − y sin φ)) corresponds to two

points along the direction φ, at distance ω0 of the origin.

Wave signals

Consider an xyt-signal (video), in which we keep only one line (fixed y) of
each frame. The effect of a translation in the video can be seen as a wave
moving along the line at fixed y at constant speed u (in px/frame):

f (x, t) = f0(x − ut)

Example: f0(x) = cos(ω0x), and f (x, t) = cos(ω0(x − ut))
The Fourier transform of f is the following:

F(ωx,ωt) =

∫ ∞

−∞

∫ ∞

−∞

f0(x − ut)e− jωx x+ωttdxdt

If we note f0(x) � F0(ωx) and make the substitution x′ = x − ut, we
have

F(ωx,ωt) =

∫ ∞

−∞

∫ ∞

−∞

f0(x′)e− jωx(x′+ut)+ωttdx′dt

=

∫ ∞

−∞

∫ ∞

−∞

f0(x′)e− jωx x′e− j(ωxu+ωt)tdx′dt

=F0(ωx)δ(ωxu +ωt)

Representing the spectrum F(ωx,ωt) of the wave is equivalent to taking
the original F0(ωx) spectrum, rotating it and stretching it by

√
1 + u2.

Examples:

• In our initial example F0(ωx) = 1
2 (δ(ωx + ω0) + δ(ωx − ω0)): the

F0(ωx,ωt) is made of two diracs located at (ω0,−uω0) and (−ω0,+uω0),
which are at distance ω0

√
1 + u2 of the origin.

• If the spectrum F0(ωx) is a Gaussian, we have:

f0(x) =
1

σ
√

2π
e−

x2

2σ2 � F0(ωx) = e−σ
2ω2

x/2,

which again corresponds to “rotating and stretching” the Gaussian.
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−w_0 w_0

−uw_0

uw_0

ω
x

ω
t

 

 

ω
t
 = −uω

x

Figure 1: Wave signal in the xt Fourier
domain: the spectrum F0(ωx) is multiplied
by the indicator of te line ωt = −uωx

Aliasing in video (Simoncelli, 1991)

Sampling in time is a multiplication by
∑∞

n=−∞ δ(t − n∆t). It corresponds to a
convolution with

∑∞
n=−∞ δ(st −

n
∆t ) (or

∑∞
n=−∞ δ(ωt =

2πn
∆t )).

See 7. Reconstruction by boxing: aliasing causes perception of a speed of
opposite sign.

uω0︸︷︷︸
maxωt

≤
π

∆t
=
ωsampling

2

Filters for detection

How to build a filter to recognize a cosine wave cos(ω0x)? In the frequency
domain it corresponds to two impulses.

It is not possible to build a filter that looks like an impulse in Fourier do-
main, because it would correspond to a function of infinite support in time
domain. Instead we could use a box filter: H(ω) = Πa/2(ω0). The inverse
function is still complicated (sinc(πx/q)e jω0 x, the harmonic exponential is
here for modulation). A better candidate is a Gaussian filter centered around
the frequency to detect, since the inverse transform of a Gaussian is a Gaus-
sian.

(to be continued)
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In this section, we are interested in building filters to detect patterns in a
signal. By pattern we mean a portion of the signal with a distinctive behavior:
edge, corner, portion oscillating at a specific frequency.

Gabor functions

Gabor functions can be considered as local band-pass filters: they are de-
signed to detect portions of the signal that oscillate at a specific frequency ω1:
namely the output of the convolution tells us how much each position of the
signal looks locally like a sinusoidal wave of frequency ω1.

Gaussian filter

As an example, let’s first consider a simple Gaussian filter:

g(t) =
1

σ
√
(2π)

e−t2/2σ2
� G(ω) = e−σ

2ω2/2

What is the output of this filter for a cosine input? We have:

f (t) = cos(ω0t)�
1
2
(δ(ω −ω0) + δ(ω+ω0))

Therefore in the Fourier domain the output spectrum is (see figure 1):

F(ω)G(ω) = e−σ
2ω2

0/2(
1
2
(δ(ω −ω0) + δ(ω+ω0)))

−w_0 0 w_0

exp(−s^2 w_0^2/2)

ω

|F
|

Figure 1: Spectrum of a cosine filtered by a
Gaussian: F(ω)G(ω)

And the output signal is (by taking the inverse transform and noticing that
e−σ

2ω2
0/2 acts as a constant):

cosω0t ∗ g(t) = e−σ
2ω2

0/2 cosω0t

Gabor functions are modulated Gaussians

The Gaussian filter can be seen as a low-pass filter: it eliminates frequencies
too far away from its mean, zero. How to obtain a band-pass filter instead?
We can simply modulate the Gaussian filter, and we obtain what we call a
Gabor function:

h(t) =
1

σ
√

2π
e−t2/(2σ2)e jω1t

�

H(ω) =e−σ
2(ω−ω1)

2/2
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See figure 2 for an example of Gabor filter (real and imaginary parts).
What is the output of this modulated filter for cos(ω0t)? In the Fourier do-
main we obtain (see figure 3):

1
2
(e−σ

2(ω1+ω0)
2/2δ(ω+ω0) + e−σ

2(ω1−ω0)
2/2δ(ω −ω0))

−400 −300 −200 −100 0 100 200 300 400
−1

−0.5

0

0.5

1
Real part of the filter

−400 −300 −200 −100 0 100 200 300 400
−1

−0.5

0

0.5

1
Imaginary part of the filter

Figure 2: Example of Gabor filter: notice
the exponential envelope, and the real and
imaginary part are in quadrature (cos and
sin)

When the Gaussian is relatively narrow in the frequency domain, the small
peak at −ω0 in figure 3 can be neglected, and the output is essentially a com-
plex exponential of frequency ω0, and of magnitude eσ

2(ω1−ω0)
2
. The good

news is that as ω0 gets away from ω1, the magnitude decreases, producing
the desired band-pass effect. The bad news is that the real and imaginary
part of the output depend on t: they are “phase-dependent”, which means
that even when we convolve a sine wave at fixed frequency with a Gabor
filter, the real/imaginary components of the output are not constant but are
waves of same frequency. Because the components are in quadrature (the
phase difference is π/4), we simply take the norm of the output and obtain a
non-oscillating response, as demonstrated in figure 4.

−w_0 0 w_0 w_1
−0.5

0

0.5

1

1.5

2

ω

|F
|

Figure 3: Spectrum of a cosine filtered by a
modulated Gaussian: F(ω)G(ω)0 200 400 600 800 1000

Signal (sine wave with increasing frequence)

0 200 400 600 800 1000

Real part of the convolution output

0 200 400 600 800 1000

Imaginary part of the convolution output

0 200 400 600 800 1000

Magnitude of the convolution output (Re
2
 + Im

2
)

Figure 4: Convolution of our Gabor
example (fig. 2) with a signal at increasing
frequency: notice that the outputs have same
frequency as the input, only the magnitude
change: it reaches a maximum exactly when
the signal is oscillating at the frequency
of the filter. All these plots are in the time
domain.

The phase-invariance of the norm of the Gabor output is important, since
we want to be able to detect frequency patterns (and potentially edges and
ridges) no matter what their phase is (how much they locally look like a sine
or a cosine, or how they are translated).
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Signal/spectrum spread: time localization VS frequency accuracy

We can use Gabor filters to localize pieces of a signal that oscillate at a cer-
tain frequency: for instance, if we were looking for the character “Waldo”
in a 2D image, we could use the fact that he is wearing a distinctive red-and-
white striped shirt and use a Gabor filter of appropriate frequency on the red
channel of the image.

When using such a filter for detection, we are interested in the spread
of a filter and its spectrum, because:

• a filter of small spread in the time/space domain enables precise localiza-
tion of the pattern (for example in figure 4, the localization of

the desired frequency is rough, as the filter
in figure 4 has quite a large support)• a filter whose spectrum has a narrow spread (think of it as a narrow band-

pass filter) will enable precise detection of a specific frequency.

The spread of a signal of finite support f is the second order moment∫ ∞
−∞

t2 f 2(t)dt and gives a measure of how wide the support is. As we have observed in the past lectures,
signals of small spread tend to have a wide
spectrum.

This is formalized by a result named the “uncertainty principle of signal
processing”:

• For a signal/filter of spread ∆t2 =
∫ ∞
−∞

t2 f 2(t)dt...

• ...whose spectrum has spread ∆ω2 =
∫ ∞
−∞

ω2F2(ω)dω...

• ... we have ∆t∆ω ≥ lower bound.

2D Gabor function

We can derive a 2D version of the Gabor function to detect oscillating patters
in images, at a given frequency ω1 and orientation θ. Let’s start from the
horizontal version of the filter:

h(x, y,σ1,σ2,ω1) =
1

σ1σ22π
e−(x2/2σ2

1+y2/2σ2
2)e jω1 x

Notice that the Gaussian envelope is 2D, but the harmonic exponential
is along one direction (x-xaxis here). If we want to detect oscillations at a
different orrientation, we need a rotated Gabor:

h(x, y,σ1,σ2,ω1, θ) =
1

σ1σ22π
e−1/2(x y)RT ()R(x y)T

e jω1(x cos(θ)−y sin(θ))

Let’s compute the Fourier of the 2D Gabor function:

e−(x2/2σ2
1+y2/2σ2

2) � e−(σ
2
1ω

2
x+σ

2
2ω

2
y )/2

e−(x2/2σ2
1+y2/2σ2

2)e jω1 x � e−(σ
2
1(ω1−ωx)2+σ2

2ω
2
y )/2

Now for the rotated version, notice that:

x2

2σ2
1

+
y2

2σ2
2

=
1
2

[
x y

]  1/σ2
1 0

0 1/σ2
2

  x
y

 ,
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and we apply a rotation Rθ to x and y 1: 1

[
x
y

]
= Rθ

[
x′

y′

]
where Rθ =

[
cos θ − sin θ
sin θ cos θ

]
)

[
x′ y′

]  1/σ2
1 0

0 1/σ2
2

  x′

y′


=
[

x y
]

Rθ

 1/σ2
1 0

0 1/σ2
2

RT
θ

 x
y

 = [
x y

]  1/σ2
1 0

0 1/σ2
2

  x
y


Since the diagonal matrix commutes and RθRT

θ = I. Intuitively the Fourier
of the rotation is the original Fourier, rotated of the same amount. Indeed,
remember this result from last lecture:

h
R  x

y

� H
R  ωx

ωy


Edge detection with Gaussian derivative filters

We now look at a different set of filters: Gaussian derivatives. They can also
be seen as band-pass filters, but here instead of modulating a Gaussian, we
look at its derivatives. Intuitively, because of the derivation rule for convolu-
tion, convolving an image with a Gaussian derivative is the same as smooth-
ing the image (applying a Gaussian filter) and then looking at the derivatives
of the output.

1D edge

An ideal edge is a step function u(t). Instead of detecting the ideal edge, we
can detect a smoothed edge. We have the following result from HW1:

d
dt
(u(t) ∗ g(t)) = g(t)

 

 

u(t)

d/dt(u*g(t))=g(t)

Figure 5: Edge detection with a Gaussian
filter: d

dt (u(t) ∗ g(t)) = g(t).

Therefore the location of the edge can be given by maxt
d
dt ( f ∗ g)(t), as

shown in figure 5.

2D edge detection

The 2D version can be see as an image intensity that goes from a low to a
high along a direction θ.



cis 580 spring 2012 - lecture 6 filters for detection 5

The isotropic Gaussian is the following:

g(x, y) =
1

σ22π
e−(x2+y2)/2σ2

We have:

gx(x, y) =
∂g(x, y)
∂x

=
1

σ22π
−

2x
2σ2 e−(x2+y2)/2σ2

Now again, when we apply a rotation of angle θ > 0
[

x
y

]
= Rθ

[
x′

y′

]
where Rθ =

[
cos θ − sin θ
sin θ cos θ

]
.

The function gx(RT (x; y)) takes the following very simple form:

gx(RT (x; y)) = cos θgx + sin θgy = (cos θ sin θ)∇g.

To compute the derivative of an image in direction θ, all we need to do is the
following:

cos θ(gx ∗ I) + sin θ(gy ∗ I) This property is called steerability: we will
cover it more extensively in the next lecture.

Recall that the 1D step edge can be localized as the maximum of d
dt (u(t) ∗

g(t)).
In the 2D case, there is an edge at (x, y) if the first derivative of the convo-

lution with the Gaussian has a maximum in the direction of the gradient.
Remark: the maximum is a non-linear operation. Is there a linear way to

find edges? Yes, by taking the derivative of the above quantity: d2

dt2 (u(t) ∗
g(t)). Therefore an edge corresponds to a zero-crossing of the second
derivative of the smoothed signal.
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Note on steerability of derivative filters

A filter is “steerable” when its response in any orientation θ can be
computed as a linear combination of the responses from a few filters, called
the “basis”. The general definition is the following:

h(x, y, θ) =
K∑

k=1

Ak(θ)hk(x, y) (1)Steerability of the first Gaussian derivative Recall from the end of last
lecture that the first Gaussian derivative is steerable. Indeed, if g′(x, y, θ) is
the derivative of the Gaussian along direction θ, we have:

g′(x, y, θ) = cos θgx(x, y) + sinθgy(x, y)

=
[

cos θ sin θ
]  gx

gy

︸ ︷︷ ︸
∇G

This comes from the fact that derivation itself is steerable: the derivative of
an image along a direction θ is simply the gradient of the image multiplied by
a unit vector in direction θ: I′(x, y, θ) =

[
cos θ sin θ

]
∇I.

Figure 1: Original image.

The nice property of steerability is that we can compute the derivative of
a smoothed image in any direction by simply computing two derivatives! See
figures 1,2 and 3.

Gaussian derivative along x Gaussian derivative along y
Figure 2: Convolution with horizontal and
vertical Gaussian derivative filters: ∇I(x, y).

Derivative along theta=45deg Derivative along theta=−30deg Figure 3: Derivative along any angle θ by
simply taking the linear combination of
the two derivatives shown in figure 2, with
weights cos θ and sin θ
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Steerability of Gaussian derivatives of higher order Remember that the
m-th derivative of a Gaussian has the following Fourier:

∂mg(x, y)
∂xm � ( jωx)

me−ω
2
xσ

2/2e−ω
2
yσ

2/2

What happens when we rotate the Gaussian?

∂mg(x cos θ+ y sin θ)
∂xm � jm(ωx cos θ+ωy sin θ)me−ω

2
xσ

2/2e−ω
2
yσ

2/2

Note that the exponential part is unchanged,

as
[
ωx ωy

]
RT R

[
ωx
ωy

]
= ω2

x +ω2
y .

For m = 2, we have the following steerability formula as in equation 1:

cos2 θ︸︷︷︸
A1(θ)

ω2
x + sin2 θ︸︷︷︸

A2(θ)

ω2
y + 2 sin θ cos θ︸       ︷︷       ︸

A3(θ)

ωxωy

H1(ωx,ωy) = j2ω2
xe−σ

2(ωx+ωy)2/2

�

A1(θ)h1(x, y) =
∂2g
∂x2 cos2 θ

A2(θ)h2(x, y) =
∂2g
∂y2 sin2 θ

A3(θ)h3(x, y) =
∂2g
∂x∂y

2 cos θ sin θ

Note that there are three components in
the linear combination instead of 2. This is
generalizable to higher order.

Discrete derivative filters Exact Gaussian derivatives satisfy steerability, but
in concrete applications we sometimes need to use discrete approximations.
For example we approximate the first derivative with the following filter:
d[k] =

[
1
2 0 − 1

2

]
. Is such a filter steerable? We can check that steer-

ability is satisfied in the frequency domain. Indeed, if a filter is steerable, its
Fourier transform is steerable too:

f (x, y)� F(ωx,ωy)

f
R  x

y

 � F
R  ωx

ωy


We would like to have the following (steerability of the FT of the filter):

D
R  ωx

ωy

 = cos θD1(ωx,ωy) + sin θD2(ωx,ωy).

The DTFT of the discrete filter we are trying to use is the following:[
1
2 0 − 1

2

]
�

1
2

e− jωx(−1) −
1
2

e− jωx1 = j sinωx.

Therefore we have D(cos θωx + sin θωy) = j sin(cos θωx + sin θωy) which
is not the linear combination we would like to obtain (as in equation 1):
this simple filter is not steerable. In general we use binomial filters (see
Kosta’s slides on those filters) to closely approximate Gaussian filters, and the
steerability is approximately satisfied.
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Scale Space and Scale Invariant features

We would like to build a (LSI) system that detects features (blobs, edges,
corners...), independently from their scale: ideally it would output the
location and scale (“intrinsic size”) of the features.

Example: Detecting edges (steps) in a 1D cosine with the first Gaussian

derivative filter g′σ =
dgσ
dx where gσ = 1√

2πσ
e−x2/2σ2

:

cosω0x → g′σ(x) → “smoothed derivative”

�
1
2 (δ(ω −ω0) + δ(ω+ω0)) jωe−ω

2σ2/2

= 1
2 (δ(ω −ω0) − δ(ω+ω0)) jω0e−ω

2
0σ

2/2

(remember this trick from previous lectures)

−0.5 0 0.5
−1

0

1

2

Original spectrum for cos(ω
0
 x)

−0.5 0 0.5
−200

0

200

Output spectrum for 1
st

 Gaussian deriv., σ=0.5/ω
0

−0.5 0 0.5
−100

0

100

Output spectrum for 1
st

 Gaussian deriv., σ=1/ω
0

−0.5 0 0.5
−50

0

50

Output spectrum for 1
st

 Gaussian deriv., σ=2/ω
0

Figure 4: Cosine wave in Fourier domain,
and spectrum of the convolution with a
Gaussian first derivative filter. This figure
shows the imaginary part of the spectrum
(as shown above the output is purely
imaginary). The peaks of the output are
maximal when the sigma of the Gaussian
filter matches the scale (ω0) of the cosine.

As shown in figure 4, the output spectrum looks like the spectrum of a
sine at frequency ω0, which makes sense since we are computing a derivative
here1. On top of simulating a multiplication by jω (derivation), the Gaussian 1 Note that of course here the edges are the

inflexion points of the wave, since they are
midway between high and low intensity
points.

filter (actually its FT) acts as a band-pass filter: noise frequencies are filtered
out.

Figure 4 also clearly introduces the problem of scale: if the σ of the Gaus-
sian is not calibrated according to the “scale” (here period) of the cos wave,
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the amplitude of the output is not as high. Figure 5 shows what happens in
the time domain: all outputs look like derivatives of the original wave, but it
seems like a Gaussian derivative of sigma σ = 1

ω0
yields maximum ampli-

tude on edges. Can we explain the optimal σ = 1
ω0

? Also, how to devise a
system that scans the wave at different scales (different σ) and automatically
detects ω0 for any wave?

0 500 1000
−1

0

1

Original signal cos(ω
0
), ω

0
 = 2π/T

−100 −50 0 50 100

−1

0

1

σ
1
 = 0.5/ω

0

200 400 600 800 1000
−40
−20

0
20
40

Convolution output for σ
1

−100 −50 0 50 100
−1

0

1

σ
2
 = 1/ω

0

200 400 600 800 1000
−40
−20

0
20
40

Convolution output for σ
2

−100 −50 0 50 100
−1

0

1

σ
3
 = 2/ω

0

200 400 600 800 1000
−40
−20

0
20
40

Convolution output for σ
3

Figure 5: Cosine wave as in figure 4,
but here we show the time domain. The
left column compares the “size” of the
filter used and the period of the wave, and
the right column shows the output of the
convolution. The amplitude of the output is
maximal when the scale of the filter matches
the one of the wave.

Gaussian filters and scale of cosine waves We generalize the example
above (cosine wave filtered by a Gaussian first derivative) to a Gaussian filter

of any order m (m = 1 in the example): dmgσ
dxm .

The amplitude of the peaks (as in figure 4) of the spectrum of (cosω0x) ?
dmgσ
dxm is the following:[

|( jω)me−ω
2σ2/2|

]
ω=ω0

= ωm
0 e−ω

2
0σ

2/2. (2)

If we plot this as a function of σ, the argmax σmax should indicate the intrin-
sic size of the wave. This maximum corresponds to a zero of the following
derivative:

∂(ωm
0 e−ω

2
0σ

2/2)

∂σ
= ωm

0

−ω2
02σ

2
e−ω

2
0σ

2/2

 = 0.

The obvious solution is σmax = 0 (a quick look at equation 2 confirms
it, as it is a Gaussian centered at σ = 0!). Did we do something wrong?
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Why is this theoretic result different from what figures 4 and 5 show, (i.e.
maximum output amplitude is reached for a non-zero σ that corresponds to
the scale of the wave)? The answer lies in the normalization of the Gaussian:
figures 4 and 5 were obtained by using what we call a scale normalized first
Gaussian derivative. The reason why we have to do scale normalization is
that as a Gaussian gets wider and wider, its peak value gets lower and lower.
Indeed if gσ(x) = 1√

2πσ
e−x2/2σ2

, and we multiply σ by a scaling factor s, we
have:

gsσ(sx) =
1

√
2πsσ

e−(sx)2/2(sσ)2
=

1
s

gσ(x). (3)

−80 −60 −40 −20 0 20 40 60 80
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

 

 
g

σ
(x)

g
2σ

(2x)

Figure 6: As a Gaussian gets wider, its peak
gets lower (here σ = 20, and g2σ(2x) =
1
2 gσ(x)).

This result, illustrated in figure 6, helps us understand why g′2σ? cos
(

1
2ω0x

)
and g′σ ? cos(ω0x) do not have the same amplitude, although they should if
we want to detect scale correctly. If we want to be able to compare the ampli-
tudes of the convolutions for different σ, we need to multiply with something
proportional to σ (scale normalization).

Scale normalization

It is interesting to notice that scale normalization is actually not necessary
at order 0 (simple smoothing with no derivatives, i.e. convolution with gσ).
Indeed, if I′(x) = I

(
x
s

)
is the scaled version of a signal I(x) (I′ is twice as

big as I for s = 2), we have:

(I′ ? gsσ)(x) =
∫ ∞

−∞

gsσ(x − x′)I
(

x′

s

)
dx′

=

∫ ∞

−∞

1
s

gσ

(
x − x′

s

)
I
(

x′

s

)
dx′ applying equation 3

=

∫ ∞

−∞

gσ
( x

s
− u′

)
I(u′)du′ (u′ = x′/s, du′ =

1
s

du′)

=(I ? gσ)
( x

s

)

(I′ ? gsσ)(x) = (I ? gσ)
( x

s

)
(4)

In English: scaling by s and then applying a scaled Gaussian is the same as
applying a Gaussian and then scaling by s. The intuition behind this result
is that the scaled Gaussian gsσ, s > 1 has a lower peak than gσ, but we
integrate over s as many values when convolving with I(sx), yielding the
same intensity range. Figure 7 shows the application of this result in 2D.

The scalability result we derived (eq. 4) does not work for higher or-
der (m > 0) Gaussian filters! Figure 9 shows what happens in our 1D cosine
example when we scale the wave and convolve it with scaled first order Gaus-
sian derivatives: the output (third row) has lower and lower amplitude as the
scale increase. The fourth row shows how to normalize (simply multiply
the output by the scale) so that the output amplitudes are comparable across
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Original image I(x)

Scaled image I’(x)=I(x/s), s=2

Processed image (g
σ
* I)(x)

(g
sσ

* I’)(x), max value: 0.99599

(g
σ
* I)(x/s), max value: 0.99599

Scaling by s

Scaling by s

Figure 7: Scaling by s and then applying a
scaled Gaussian gsσ is the same as applying
a Gaussian gσ and then scaling by s. We
use the loose notation I(x) for the image
although of course it has two coordinates.

scales. Figure 8 shows the same problem in 2D (here we take the first order

derivative w.r.t. x, g′σ =
∂gσ
∂x ). Here again, multiplying the output images by

the scale would make them identical. The following simple derivation shows
the result in 1D for m = 1:

(I′ ? g′sσ)(x) =
(
I′ ?

dgsσ

dx

)
(x)

=
d
dx

[(I′ ? gsσ)(x)]

=
d
dx

[
(I ? gσ)

( x
s

)]
(result we just showed at order 0)

=
d
dξ

[(I ? gσ)(ξ)]
d(x/s)

dx
(chain rule, ξ = x/s)

=
d
dξ

[(I ? gσ)(ξ)].
1
s

(I′ ? g′sσ)(x) =
1
s
(I ? g′σ)

( x
s

)
(5)

As an exercise, you can practice generalizing this derivation to m > 1 and
show that it introduces a factor 1/sm instead of 1/s, we will do the derivation
in class next time: (

I′ ?
dmgsσ

dxm

)
(x) =

1
sm

(
I ?

dgσ
dx

) ( x
s

)



cis 580 spring 2012 - lecture 8 7

Original image I(x)

Scaled image I’(x)=I(x/s), s=2

Processed image (g’
σ
* I)(x)

(g’
sσ

* I’)(x), max value: 0.031164

(g’
σ
* I)(x/s), max value: 0.062065

Scaling by s

Scaling by s

Figure 8: The scaling result we showed
at order 0 (for gσ) does not apply at order
1 (here we note g′σ the first derivative
of gσ along x). We applied a scaling
s = 2, and it seems like (g′sσ ? I′)(x) =

1
s
(g′σ ? I)(x/s). We formalize this result

in this section.
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200 400 600 8001000

−0.5

0

0.5

cos(ω
1
 x), ω

1
=2ω

0

200 400 600 8001000
−1

0

1

cos(ω
0
 x)

200 400 600 8001000
−1

0

1

cos(ω
2
 x), ω

2
=0.5ω

0

−20 0 20
−2

0

2

g
σ
 and g

σ
’, σ

1
 = 1/ω

1

200 400 600 8001000
−2

0

2

cos(ω
1
) * g

σ1
’

200 400 600 8001000
−20

0

20

σ
1
 cos(ω

1
) * g

σ1
’

−50 0 50
−2

0

2

g
σ
 and g

σ
’, σ

0
 = 1/ω

0

200 400 600 8001000
−2

0

2

cos(ω
0
) * g

σ0
’

200 400 600 8001000
−20

0

20

σ
0
 cos(ω

0
) * g

σ0
’

−100 0 100
−2

0

2

g
σ
 and g

σ
’, σ

2
 = 1/ω

2

200 400 600 8001000
−2

0

2

cos(ω
2
) * g

σ2
’

200 400 600 8001000
−20
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Figure 9: Scale normalization applied to
our 1D example g′σ ? cos(ωx).

No matter what the scale of the
feature is (period ωi of the wave here), the
magnitude of the output should reach the
same maximum value when the filter size
matches the scale of the feature (σi = 1/ωi
here). Each column corresponds to a signal
at a given scale.

The first row shows the three wave
signals of same amplitude and different
frequency.

The second row shows Gaussian filters
(gσ: thin blue curve, g′σ: thick black curve)
at optimal scale σi = 1/ωi for each of the
three waves: without multiplying by σi, the
derivative filters g′σ have lower and lower
peak values as σ increases (one period of the
signal signal is shown as a dashed curve, pay
attention to the x-axis values).

The third row shows the convolution
with the unnormalized derivative filters at
optimal scale.

The last row shows the effect of
multiplying by σi (“scale normalization”):
the optimal output amplitudes are now
comparable.
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We can now go back to our initial example, the 1D cosine wave. Now that
we now that the outputs of the mth Gaussian derivative are shrunk by sm when
the scale is increased by s, we introduce a factor σm (scale normalization) to
compensate for the shrinkage:

∂(σmωm
0 e−ω

2
0σ

2/2)

∂σ
=(ωm

0 e−ω
2
0σ

2/2)

mσm−1 −
ω2

0

2
2σσm

 = 0

⇔ mσm−1 =ω2
0σ

m+1

⇔ m =ω2
0σ

2

⇔ σ =

√
m

ω0
=

√
m

2π
T

This explains why in our example (first order) the optimal scale is σ =
1
ω0

. The gist of the detection framework would be the following: (1) build The famous SIFT features are computed
with second order Gaussian derivatives
(m = 2).

a scale space by smoothing the image/signal with different sigmas; (2) get
the maximum responses in position and scale; indeed like a Gabor filter
(see the corresponding lecture) detections can be local (the output shows
local oscillations of high amplitude) (3) the size (wave period) T (or λ) of
each local detection (local maximum in position and scale) is T = 2π√

2
σ by

applying the formula we just derived.
We introduced the concept of scale by using an example where scale is

naturally interpreted as the period of a cosine wave. The concept can be
generalized to any detection task where scale matters (blob, ridges...). We
will formalize scale selection and extend it to 2D images in the following
section and lecture.

Formalizing the 2D scale space

Lindeberg, 1991 (PhD thesis)
Notation: t will denote the scale t = σ2, not the time.

Gaussians and heat diffusion One of the many interests of using Gaussians
is that they satisfy the following heat diffusion partial differential equation (t
is the scale):

∂L
∂t

=
1D

1
2
∂2L
∂x2

∂L
∂t

=
2D

1
2
∇2L

L(x, y, t = 0) = I(x, y)︸ ︷︷ ︸
image

The solution to the PDE has the following simple form:

L(x, y, t) = g(x, y, t) ? I(x, y).

where g(x, y, t) is the 2D Gaussian of variance σ2 = t.
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Scaling Gaussians Here we generalize the 1D result that we illustrated in
figure 6 to the 2D case: the only difference is that a factor s2 appears in the
2D version, instead of s in the 1D version (equation 3).

Let I′ be a scaled version of an image I: I(x) = I′(sx) , where s is a
scaling factor, which is also the potential size of the feature to detect).

• L(x, t) = g(x, t) ? I(x) is the filtered original image

• L′(sx, t′) = g(sx, t′) ? I′(sx) is the filtered scaled image.

• What should t′ be so that L(x, t) = L′(sx, t′)?

• We showed (eq. 5) that t′ = s2t verifies the above condition.

• Another simple proof would use Fourier:

I′(x)� F(ωx), I′(sx)� 1
s F

(
ωx
s

)
(to be continued)
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Scale Space and Scale Invariant features

Last time, we introduced the diffusion equation ∂L
∂t =

2D
1
2∇

2L with boundary

conditions L(x, y, t = 0) = I(x, y)︸ ︷︷ ︸
image

, and said that the solution is the image

I(x, y) convolved with a Gaussian (t = σ2):

L(x, y, t) = g(x, y, t = σ2) ∗ I(x, y).
Indeed the necessary condition is ∂g

∂t =
1
2∇

2g, in 1D ∂g
∂t = 1

2
∂2g
∂x2

We introduced the scalability property of the Gaussian. Let I′ be a scaled
version of an image I (I(x) = I′(sx), where s is the size) ) and L′(x′, t′) = Do not confuse s with t or σ, s in the

intrinsic scale or “size” of a feature.g(x′, t′) ∗ I′(x′), we have:
We define x′ = sx

L(x, t) = L(x′, t′) for t′ = s2t .

(Last time we showed it two ways: by computing the convolution and by
using Fourier)

We also showed that this is not true for the derivatives of the diffused
image (recall they are equal to the image convolved with the Gaussian deriva-
tive):

∂mL(x, t)
∂xm =

∂mL′(x′, t′)
∂x′m

∂mx′

∂xm

=
∂mL′(x′, t′)

∂x′m
sm

Last time we introduced and explained, with a 1D and a 2D example, the

since x′ = sx

need for a scale normalization to compensate for this shrinkage of the output
amplitude at bigger scales.

We now formalize this concept of normalized derivative by substituting
ξ = x

tγ/2 (“γ-normalized” derivative). We have:

∂mL(x, t)
∂ξm =

∂mL(x, t)
∂xm

∂mx
∂ξm

=sm(1−γ) ∂
mL(x′, t′)
∂x′m

=
∂mL(x′, t′)

∂x′m
for γ = 1
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We are mostly interested in the second derivative (Laplacian), because of
the diffusion equation. In the non-normalized case, we have:

∂g
∂t

=
1
2
∂2g

∂x2

Normalized case (with γ = 1):

∂2g

∂ξ2 =
∂2g

∂x2
∂2x

∂ξ2 = σ2 ∂
2g

∂x2

ξ =
x

tγ/2
=

x
σ

t = σ2, γ = 1

∂g
∂σ

= σ
1
σ2

∂2g

∂ξ2 =
1
σ

∂2g

∂ξ2

Let’s take a moment to realize how useful this result is:

• Instead of filtering the image with a normalized 2nd-derivative filter w.r.t.

x, we can use ∂g
∂σ

The 2nd-derivative filter is also called
Laplacian of Gaussian (LoG)

• ∂g
∂σ

can be simply approximated as a finite difference

• Therefore we have a simple and efficient way to compute the scale normal-
ized second derivative filtering of an image I: we take a simple difference
of two blurred versions of I.

We saw that scale normalization is critical if
we want responses to be comparable across
scales.

Approximating ∂g
∂σ

∂g
∂σ
≈

g(x,σ+ ∆σ) − g(x,σ)
∆σ

We note σ+ ∆σ = κσ (κ = 1.01 would be a good approximation), and
we have:

∂g
∂σ
≈

g(x, κσ) − g(x,σ)
σ(κ − 1)

= DoG A Difference of Gaussians (DoG) is the
difference of two Gaussians of same center
and different σ.

DoG = (κ − 1)σ ∂g
∂σ

= (κ − 1)
∂2g

∂ξ2︸︷︷︸
normalized LoG

“Every DoG is a LoG” in the normalized case (which is the only case we
care about of course).

We apply this recursively to build a pyramid, starting from original image:

• We convolve it with a Gaussian g(x,σ)

• We subsample it by 2

• We obtain I2(x)� I(ω) ∗
∑∞

n=−∞ δ(ω − nπ)



cis 580 spring 2012 - lecture 9 3

Because of the effect of subsampling in the frequency domain, we should
eliminate all frequency components |ω| > π

2 . A rect-filter is not an option
because it has an infinite impulse response (sinc).

Given that we want to maintain the scale space properties, we have to find
out the effect of a discrete Gaussian filter (e.g. the binomial filter introduced
in lecture 7 ). Remember that the DTFT of a discrete filter is: the binomial filters also have the nice

property that they sum to powers of 2

(
∑n

k=1

(
n
k

)
= 2n), so they are easily

normalized
H(ω) =

n∑
k=−n

h[k]e− jωk

(Slides)

Scale for feature matching

Scale is important to match features: the window size to compute local fea-
tures (histogram) needs to be right in order to match features correctly.

Many recent algorithms apply scale detection (SIFT) at all positions in the
image, but ideally we are interested in finding interest points, by finding

max
x,y

max
σ

(
σ2 ∂

2g

∂x2 ∗ I(x)
)

Note that some approaches don’t take the
maximum over positions and just compute
the features at optimal scale for every point
on a grid.

Blob detection We will implement a simple multi-scale blob detection sys-
tem in the next homework. We will use the LoG filter because of its appear-
ance similar to a blob. Inside the same octave, we will take simple differences
of Gaussians to approximate the normalized Laplacian. We will not implement octaves, which are

obtained by subsampling.After computing the DOG, we compute maximum at every pixel (wrt. σ),
and then we try to find maximum with respect with position (using derivative
approximation: Taylor expansion, see slides).

Play with Andrea Vedaldi’s VLFeat toolbox for SIFT detection and de-
scriptor computation.
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Review: Projective plane P2

P2 is the set of all projective equivalence classes, with projective equiva-
lence defined as:

x
y
ω

 ∼


x′

y′

ω′

 iff ∃λ , 0


x
y
ω

 = λ


x′

y′

ω′

 for


x
y
ω

 ,


x′

y′

ω′

 ∈ R3 −




0
0
0



P2 is not a linear space, since it is made of
equivalence classes.

• Both points and lines are represented with elements of P2.

• A line l ∼


a
b
c

 corresponds to equation lT x = ax + by + cw = 0

• Points at infinity


x
y
0

 lie on the line


0
0
1

 (corresponding to the equation

w = 0).

Projective transformations

See Szeliski, chapter 9.
Projective transformations (homographies) are ubiquitous in computer vi-

sion. They are the most general type of linear transformations in P2, mapping
p ∈ P2 to p′ ∼ Ap (det A , 0). Note that we will either write p′ ∼ Ap or

λp′ = Ap.

Properties

• Projective transformations preserve colinearity and concurrency.

• If p′1 ∼ Ap1 and p′2 ∼ Ap2 and l ∼ p1 × p2 is the line between p1 and p2,
then the image of l is:

l′ ∼ Ap1 × Ap2 ∼ A−>(p1 × p2), i.e. l′ ∼ A−>l Ap1 × Ap2 = 1
det A A−>(p1 × p2)

Determining a projective transformation for matching points Given a set of
correspondences {(pi, p′i)} known to be related p′i ∼ Api, det A , 0

Fact: A is the same as λA because Ap ∼ λAp, hence A can be computed up
to a scale factor.

Let’s consider the mappings A1, A2, the points a′, b′, c′, d′ matched to
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a, b, c, d, and the following equalities are verified:

[
a b c

]
∼A1


1 0 0
0 1 0
0 0 1

 ,
[

a′ b′ c′
]
∼A2


1 0 0
0 1 0
0 0 1

 ∼ A2A−1
1

[
a b c

]
We have: 

...
...

...
a b c
...

...
...

 =


...

...
...

αa βb γc
...

...
...




1 0 0
0 1 0
0 0 1


Three points are not enough to determine the parameters. Let’s add a

fourth point:

d ∼ A1


1
1
1

 ∼ [ αa βb γc
] 

1
1
1

 = αa + βb + γc

We have λd = αa + βb + γc.

W.L.O.G we can set λ = 1, and


α

β

γ

 = [ a b c
]−1

d.

Therefore 4 points are enough to determing the coefficients of the transfor-

mation:
[

a b c d
]
∼ A1


1 0 0 1
0 1 0 1
0 0 1 1

.
Repeat the same for

[
a′ b′ c′ d′

]
∼ A2


1 0 0 1
0 1 0 1
0 0 1 1

.
We then have p′ ∼ A2A−1

1 p.

Camera model

(See slides) If matching points cannot be found but the rotation of the camera
is known, the projection can simply be recovered from the following camera
model:

• Pixel u/w, v/w

• u
w = sx

Xc
Zc

+ u0

• v
w = sy

Yc
Zc

+ v0
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• This is summarized as


u
v
w

 ∼


sx 0 u0

0 sy v0

0 0 1

 [ R T
]

︸                            ︷︷                            ︸
P projection matrix


Xw

Yw

Zw

Ww

︸  ︷︷  ︸
∈P3

Important: P is 3 × 4, it is a projection but it is not a projective transfor-
mation, obviously because it is not invertible. If we consider only the 3D
rotation (no translation) and the projection using K, we then have a projective
transformation.
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P2 projective plane.
Projective transformation x′ ∼ Ax, x, x ∈ P2.
Projection model for a pinhole camera (see slides):


u
v
w

 ∼


sx 0 u0

0 sy v0

0 0 1

 [ R T
]

︸                            ︷︷                            ︸
P projection matrix


X
Y
Z
1

︸︷︷︸
∈P3

(w , 0→ u/w, b/w)

Examples of projective transformations

Transformation from a horizontal plane to the image plane

Suppose that all points lie on a horizontal plane Z = h. There is a projective
transformation between the plane in the world and the the camera screen.

Notation: R =


| | |

r1 r2 r3
| | |

 ∈ SO(3)
(special orthogonal group, RT R = I)[

R t
]


X
Y
Z
1

 =Xr1 + Yr2 + hr3 + t

=
[

r1 r2 t + hr3
] 

X
Y
1


replace


X
Y
1

 with


X
Y
W

, the pixel coordinates of the projection verify:


u
v
w

 ∼ K
[

r1 r2 t + hr3
] 

X
Y
W


This clearly defines a projective transformation mapping (X, Y , W) to

(u, v, w).
det
[

r1 r2 t + hr3
]
= 0 iff (r1 × r2)T (t + hr3) = rT

3 t + h = 0

Parenthesis on rotations Consider a point (X, Y , Z) to which we apply a
rotation followed by a translation to obtain (X′, Y′Z′). If the columns of
R define the axes of the rotated and translated frame (images of (1, 0, 0),
(0, 1, 0) and (0, 0, 1)) we have the following:

Figure 1: Coordinate transform.
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
X
Y
Z

 =R


X′

Y′

Z′

+ T

=R


X′′

Y′′

Z′′


To summarize if the camera coordinates are expressed as follows in terms

of world coordinates: 
Xc

Yc

Zc

 = R


X
Y
Z

+ T ,

then we can simply transform camera coordinates back to world coordinates
with the following expression:

X
Y
Z

 = RT




Xc

Yc

Zc

 − T


Horizontal plane expressed in the camera camera coordinate system

Let’s consider a horizontal plane in the world coordinate system, of equation
Πh : Z = h. We would like to find the equation of this same plane in the
camera coordinate system, i.e. we would like to find n and d veryfying the
following:

(Xc, Yc, Zc) ∈ Πh ⇔ nT


Xc

Yc

Zc

 = d

Using the result we just derived, we can express the “world” Z in terms of
camera coordinates:

Z = rT
3


Xc

Yc

Zc

 − rT
3 T

Therefore the equation of Πh in camera coordinates simply is:

rT
3


Xc

Yc

Zc

 = h + rT
3 T

The parameters we were looking for are
n = rT

3 and d = h + rT
3 T .
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Panoramic stitching

(Ch.9 Szeliski)
We consider a set of images taken from the same point of view: the cam-

era transformation is a pure rotation. Note that in practice it is hard to do achieve
a perfect pure rotation (a robot would need
pan-tilt unit).

For a given 3D point, we note X0, Y0, Z0 the coordinates of the point in a
first camera frame and X1, Y1, Z1 in a second camera frame, rotated w.r.t. the
first frame. 

X0

Y0

Z0

 = R


X1

Y1

Z1


If the camera zoom is used or if auto-focus is enabled, the intrinsic param- We will use the symbols X, Y , Z for metric

coordinates coordinates and u, v, w for pixel
coordinates.

eters are also different for the two images: K0, K1 denote the two intrinsic
matrices. The two camera models enable us to derive the following equali-
ties:


u0

v0

w0

 ∼K0
[

I 0
]


X0

Y0

Z0

1

 ∼ K0


X0

Y0

Z0




u1

v1

w1

 ∼K1


X1

Y1

Z1




u0

v0

w0

 ∼ K0RK−1
1


u1

v1

w1


det(K0RK−1

1 ) = det K0 det R
det K1

=
sx0 sy0
sx1 sy1

, 0

Therefore, if we know the camera parameters, we can warp and align
images resulting from any pure camera rotation without knowing the scene.

Change in focal length When the only change that affects the intrinsics is a
change of focal length, the intrinsic matrix K1 takes the following form:

λsx 0 u0

0 λsy v0

0 0 1

 Assuming K0 =


sx 0 u0
0 sy v0
0 0 1

. Note

that we do not put a λ in the last diagonal
coefficient, otherwise it would cancel out :
u = λsx

X
λZ + u0

Projections of vanishing points

Let’s relate the projections of the vanishing points to the extrinsic and in-
trinsic camera parameters. Consider three orthogonal vanishing points as in
figure 2.

Figure 2: Three orthogonal vanishing points.
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The horizontal vanishing point takes the following form:

v1 ∼
[

R T
]


1
0
0
0


∈P3

∼ Kr1

R =


| | |

r1 r2 r3
| | |

A similar reasoning applied to v2, v3 yields the following result:[
v1 v2 v3

]
∼ K
[

r1 r2 r3
]

We can therefore derive a constraint on K, using the orthogonality of R
and the above result:

ri ∼ K−1vi, r>i r j = 0, i , j

vT
i K−>K−1v j = 0

If we assume the following simple form of K:

K =


f 0 0
0 f 0
0 0 1

 ,
the expression in the constraint takes the following form:

K−>K−1 =


1/ f 2 0 0

0 1/ f 2 0
0 0 1


For two of the vanishing points, the constraint translates as follows:

vxivx j

f 2 +
vyivy j

f 2 + vwivw j = 0 For i = 1, 2, 3, we note the vanishing points
vi =

[
vxi vyi vwi

]
,

vwi = 0 if the vanishing point is at infinity.

Therefore, we can compute the focal length f if vwivw j , 0, i.e. if none
of the two vanishing points are at infininty.
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Review: examples of projective transformations

• There is a projective transformation between any horizontal plane Z = h
and the camera screen.

• More generally there is a projective transformation betwee any plane and
the camera screen.

• A purely rotating camera induces a projective transformation.

Single-view geometry

Vanishing points

We consider the simple case where the intrinsic matrix of a camera takes the
following form:

K =


f 0 u0

0 f v0

0 0 1

 .
Last time, we saw how to compute the focal length of a camera, given the

projections of the vanishing points. We saw that under the condition that
vanishing points are not at infinity, we can
derive f from the constraint on K.

Can we recover the image center from the projections of three orthogonal
vanishing points?

Theorem: The image center (u0, v0) is the orthocenter of the triangle formed
by the projections of three orthogonal vanishing points.

Proof: See figure 1. Let C = (u0, v0, 1) denote the homogeneous coor-
dinates of the image center: it is defined as the intersection of image plane
V1V2V3 with the optical axis, which is the line through O and perpendicular
to V1V2V3.

Figure 1: Three orthogonal vanishing points
and image center.

OC ⊥ V1V2V3 ⇒OCV1 ⊥ V1V2V3

OV1 ⊥ OV2 ⇒OCV1 ⊥ any line contained in V1V2V3

In particular OCV1 ⊥ V2V3. Moreover, OV1 ⊥ OV2, therefore OCV1 ⊥ OV2V3 .
We used the fact that the two non-parallel
lines OV2 and V2V3 contained in the plane
OV2V3 are perpendicular to OCV1, therefore
OV2V3 ⊥ OCV1.

When two planes are perpendicular, their intersections with a third plane
are also perpendicular. Therefore, the intersection of OCV1 with V1V2V3 is
perpendicular to intersection of OV2V3 with V1V2V3.

In other words V1C ⊥ V2V3. A similar reasoning leads to V2C ⊥ V3V1 and
V3C ⊥ V1V2, therefore C is the orthocenter of V1V2V3.

This elegant result would enable one to calibrate a camera using only the
vanishing points in an image. In practice we don’t use this method because it
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is reliable only when there is a strong perspective in the image, i.e. when van-
ishing points have low coordinates. When it is not the case, the intersection
of parallel lines projected in the image have large coordinates (thousands of
pixels), and the relative error is too big to guarantee precise calibration.

Cross-ratios

See fig. 3.

Definition Given four points A, B, C, D, we define the cross-ratio of their
distances as follows: CR(A, B, C, D) = AC

AD : BC
BD

Invariance of the cross-ratio It is easy to prove that CR(A, B, C, D) remains
invariant under projective transformations Pn → Pn:

AC
AD

:
BC
BD

=
A′C′

A′D′
:

B′C′

B′D′

Simple example Consider the following projective transformation in P1: u′

w′

 ∼  a b
c d

  u
w

 , ad − bc , 0

We have the following:
u′

w′
=

au + bw
cu + dw

W.L.O.G we can set w = w′ = 1, which yields:

u′ =
au + b
cu + d

If we consider four points of coordinates u1, u2, u3, u4 ∈ R1, we have:

u′3 − u′1
u′4 − u′1

:
u′3 − u′2
u′4 − u′2

=

au3+b
cu3+d −

au1+b
cu1+d

au4+b
cu4+d −

au1+b
cu1+d

:
au3+b
cu3+d −

au2+b
cu2+d

au4+b
cu4+d −

au2+b
cu2+d

=
(cu4 + d)(cu1 + d)
(cu3 + d)(cu1 + d)

(cu3 + d)(cu2 + d)
(cu4 + d)(cu2 + d)

.

(au3 + b)(cu1 + d) − (au1 + b)(cu3 + d)
(au4 + b)(cu1 + d) − (au1 + b)(cu4 + d)

(au3 + b)(cu2 + d) − (au2 + b)(cu3 + d)
(au4 + b)(cu2 + d) − (au2 + b)(cu4 + d)

=
(au3 + b)(cu1 + d) − (au1 + b)(cu3 + d)
(au4 + b)(cu1 + d) − (au1 + b)(cu4 + d)

(au3 + b)(cu2 + d) − (au2 + b)(cu3 + d)
(au4 + b)(cu2 + d) − (au2 + b)(cu4 + d)

=
(ad − bc)(u3 − u1)

(ad − bc)(u4 − u1)

(ad − bc)(u3 − u2)

(ad − bc)(u4 − u2)

=
u3 − u1

u4 − u1
:

u3 − u2

u4 − u2

Point ordering and cross-ratios For the same set of four points A, B, C, D,
there are 24 ways to write a cross-ratio (permutations of A, B, C, D) to obtain
λ,1 − λ, 1

λ , 1
1−λ .
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Cross-ratios containing vanishing points The invariance holds even when
the cross-ratio contains vanishing points. For A, B, C ∈ P3, we obtain the
following result by starting from the cross-ratio defined above, and taking the
limit when one of the points goes to infinity:

CR(A, B, C,∞) = lim
D→∞

AC
BC

:
AD
BD

=
AC
BC

Notational abuse: ∞ ↔


1
0
0



This trick provides us with a useful geometrical reasoning to “transfer”
distances in an image:

• Let’s assume we know the pixel positions of A′, B′, C′, the projections of
three points A, B, C,

• Let’s assume we also know the pixel position of V′, projection of the
vanishing point V

We know that there is a projective transformation between the plane con-
taining A, B, C and the camera screen. Therefore, if we know AC we can
obtain BC and vice versa:

A′C′

A′D′
:

B′C′

B′D′︸          ︷︷          ︸
Known pixel positions

=
AC
BC

Example 1: See fig. 4. Given this picture, what is the distance to the finish
line? Assume D is at infinity (the two lines are parallel):

λpx =
x

1 + x
→ x = . . .

.

Example 2: Given a picture of the William Penn statue (Town Hall) and the
Liberty tower # 1, and the horizon of the ground plane, find the height of the
Lierty tower given the fact the W. Penn statue has a height from the ground of
167m.

See fig. 5.
The horizon is the intersection of two horizontal vanishing points. We

know the vertical vanishing point of the line through the Liberty tower
(LP=Liberty Place).

How can we find which point on Liberty place has a height of 167m?
Q, the intersection of the horizon and AA’, is a horizontal vanishing point,
therefore any line through Q is parallel to AA’ ! Therefore the point we are
looking for is B (on figure 6, intersection of QB’ and vertical line through
LP).

In the world, the pre-image of BB’Q is parallel to the ground, which
means that the pre-image of AB is 167m long.

{A, B, L, V}pixels =
AL
A∞

:
BL
B∞

=
AL
BL

=
AL

AL − 167
= f (AL)
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Therefore we can transfer the length from Town Hall to Liberty place if
we know the points above. In practive, A and A’ are hard to find because of
occlusions.

Another example: picture of a man standing in front of his house. See fig.
7.

{A, B, C, V}pixels =
AC
A∞

:
BC
B∞

=
AC
BC

=
AC

AC − h
=

220
220 − h

→ h = . . .
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Review: single-view geometry

• The image center is the orthocenter of the projections of three orthogonal
vanishing points.

• The cross-ratio CR(A, B, C, D) = AC
AD : BC

BD is invariant w.r.t. to projective
transformations.

• If D is at infinity, CR(A, B, C, D) = AC
BC . The knowledge of a point at

infinity and one distance enables us to recover many other distances by
computing corresponding cross-ratios in the image. Remark: no calibration
is needed.

Cross-ratios and distance transfer (continued)

See figure.
AC
BC

= λ1,
AE
CE

= λ2, AE = AC +CE

((A, B, C, D)px and (A, C, E, D)px) x.
From the above we can retrieve CE.
This setting enables us to reconstruct all possible rectangular boxes in

the view. See figure: P is on the same plane as the bottom face of the cube
“ground plane”

Pose from a single view

We are interested in answering the question “Where is the camera?”
Given n points in the world coordinate system (measured as metric dis-

tances, not just ratios as previously) and their projections (in pixels), we want
to compute the camera extrinsics. Extrinsics: translation and rotation (T , R)

w.r.t. the world coordinate system.This problem is at the core of many applications: augmented reality,
special effects, etc. The challenge is actually not to solve the linear system to
recover the camera extrinsics (which we will do in this section), but to track
and match beacon points, i.e. establish a correspondence betwee 2D points in
the camera image and 3D points in the world coordinates In precise applications like movie post-

production, the tracking is done in a semi-
automatic way, and sometimes hundreds of
CG artists just have to click on thousands
of images to manually track the reference
points.

Remember the pixel position (u, v) of the projection of a beacon point
verifies the camera model:


u
v
w

 ∼ K
3×3

[
R T

]
3×4


Xw

Yw

Zw

1

 In most applications, we assume K does not
vary and is obtained by calibration, and R, T
are the unknowns
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When intrinsics are unknown

Assume we have a set of 2D-3D matchings (u, v, w)↔ (Xw, Yw, Zw)

λ


u
v
1

 = [ M m
]


Xw

Yw

Zw

1

 = M


Xw

Yw

Zw

+ m

The following results simply states that a 3D point is on the ray going

We define M = KR and m = KT for clarity.

through the camera center and the point on the screen:
Xw

Yw

Zw

 = λM−1


u
v
1

 −M−1m
Notice that −M−1m is the projection
(camera) center in world coordinates. This
equation defines a ray (line) that goes
through the camera center and the point on
the screen.

Given n 2D-3D correspondences (associations between 3D beacon points
and their 2D projections), we can recover P =

[
M m

]
using the following

equations:

u =
pT

1 Xw

pT
3 Xw

, v =
pT

2 Xw

pT
3 Xw

We obtain two such equations per point. The projection matrix P can be

We note P =


p>1
p>2
p>3

.

computed up to a scale factor, so it has 3 ∗ 4− 1 = 11 independent unknowns.
Therefore, 6 points determine a unique (up to a scale) P-matrix if and only if
4 of them are not coplanar.

When the intrinsics are known (photogrammetry augmented reality)

Now, let’s assume K is known, therefore we only have to estimate R and T .
We know the back-projection of the point on the screen:

x
y
1

 = K−1


u
v
1


The following simple equation is similar to the one we derived when K is

Note that (x, y) are metric coordinates,
whereas (u, v) are pixel coordinates.

unknown:

λ


x
y
1

 = R


Xw

Yw

Zw

+ T

See fig. 3. For three 3D points A, B, C, we know AB,BC,AC,δAC ,δAB,δBC .
Unknowns are λA, λB, λC .

We use the law of cosines:

AC2 = λ2
A + λ2

C − 2λAλC cos δAC .

(to be continued)
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Review:

Single-view geometry

• We showed how focal length and projection center of a camera could be
recovered from the projections of three orthogonal vanishing points on the
screen.

• We showed how the camera pose can be recovered from a set of 2D-3D
matchings, when K is unknown (uncalibrated pose estimation)

• This time we will cover calibrated pose estimation.

Single-view geometry (continued)

Pose from a single view, using 3 points
Here we assume the camera is calibrated,
i.e. K is known.Given A, B, C in world (object) coordinate system, their projections a, b, c

in calibrated coordinates (a ∼ K−1apixels). We want to recover the camera
extrinsics (R, T ). This problem is very similar to the problem of GPS local-
ization (triangulation).

See figure 1. From the law of cosines, we have:

BC2 =d2
B + d2

C − 2dBdC cos δBC

AC2 =d2
A + d2

C − 2dAdC cos δAC

AB2 =d2
A + d2

B − 2dAdB cos δAB

If we introduce u, v such that dB = udA and dC = vdA, we have:

BC2 = d2
A(u

2 + v2 − 2uv cos δBC)

AC2 = d2
A(u

2 + v2 − 2uv cos δAC)

AB2 = d2
A(u

2 + v2 − 2uv cos δAB)

Therefore we have the following:

BC2

(u2 + v2 − 2uv cos δBC)
=

AC2

(u2 + v2 − 2uv cos δAC)

AB2

(u2 + v2 − 2uv cos δAB)
=

AC2

(u2 + v2 − 2uv cos δAC)

These two equations of second order in u, v yield one equation of fourth
order: we find four solutions for u2, which correspond to eight pairs (u, v).
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Each of the pairs (u, v) yields a set of dA, dB, dC values, and finally:

OA =dAa = RA + T

OB =dBb = RB + T

OC =dCc = RC + T

(where a, b, c have been normalized to unit vectors)

Absolute pose or absolute orientation

Let’s consider two sets of 3D points (as measured by a Kinect sensor for
instance), and assume we want to estimate the transformation that maps one

set to the other. See figure 2. Pi
1 = RPi

2 + T (R ∈ S O(3), T ∈ R3).
It can be easily shown that the least-squares translation estimate between

the two point clouds is given by the following formula:

T =
1
n

∑
Pi

1︸    ︷︷    ︸
P1

−R
1
n

∑
Pi

2︸    ︷︷    ︸
P2

= P1 − RP2

We now want to find R verifying the following equation:

Pi
1 = RPi

2 + P1 − RP2

We can rewrite the above equation in the simple form P = RQ. As usual, P = P1 − P1 + RP2, Q = P2

this equation cannot generally be solved exactly, so perform a least-squares
estimation. The squared Frobenius norm of P − RQ can be expressed as
follows:

‖P − RQ‖2F =tr ((P − RQ)T (P − RQ))

=tr (PT P + QT RT R︸︷︷︸
I

Q − PT RQ − QRT )

= − tr (PT RQ + QT RP)

= − 2tr (R QPT︸︷︷︸
H

)
We use the fact that tr (AT ) = tr (A) and the
trace is invariant to circular permutation of
the matrix product

To summarize we are trying to find maxR tr (R H
3×3

)

Theorem: If H is symmetric and positive definite, and R is orthogonal, then:

tr (H) ≥ tr (RH)

To maximize tr (RH), we want to find an R such that tr (RH) is positive
definite. We can achieve this by performing an SVD decomposition of H:
H = US VT , set R = VUT then RH = VUT US VT = VS VT which is
symmetric, positive and definite.

Therefore we can use the following recipe to estimate R:
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• take the SVD of QPT = H = US VT ,

• return optimal R = VUT .

Is it that simple? No, we forgot to take into account that we want R ∈ SO(3).
If we set R = VUT with VT V = UT U = I, we have RT R = UVT VUT = I,
and det R = 1 or − 1. Therefore instead of R = VUT , we should return the
following normalized estimate:

R = V


1 0 0
0 1 0
0 0 det(UVT )

UT

.

Two views uncalibrated

• 1966 soccer game, goal incorrectly awarded because of perspective error.

• Goal-directed Video Metrology, I. Reid and A. Zisserman

Two views synced Let’s assume that we know the projective transformation
of the ground x1 ∼ Px2, b1 / Pb2

l1 ∼ b1 × v1, l2 ∼ b2 × v2, f1, f2 are the back-projections of l1, l2 on ground
plane, f1, f2 have to intersect at F because both planes (l1, l2) and

If x1 ∼ Px2 then l1 ∼ P−T l′1, l′1 is the projection of f1 on the second image
plane. Then f ∼ l1 × l2

We have done all this without any knowledge of the focal length.

Two views of a plane

See figure 4. X1 = RX2 + T , x1 =


x′1
y′1
1

, x2 =


x′2
y′2
1

, Z1x1 = RZ2x2 + T .

Plane equation w.r.t second camera NT X2 = d, or equivalently NT X2
d = 1
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Review: (Camera) pose estimation

• Given 2D-3D point correspondences

p ∼
[

R T
] [ P

1

]
→ p′ = λp

See ARToolKit augmented reality toolbox
available on most platforms: http://en.
wikipedia.org/wiki/ARToolKit

• 3D-3D motion estimation between two 3D point clouds: least-squares
estimation of R and T . When correspondences are not established, ICP
(iterative closest point) is performed by iteratively matching points in the
first cloud to their closest neighbors in the second cloud, estimating (R, T )
and recomputing matches between closest neighbors.

Pose estimation: special cases

Pose estimation on a plane

Consider a 2D transformation P′ = RP + T for P, P′ ∈ R2
R =

[
cos θ − sin θ
sin θ cos θ

]
, T =

[
Tx
Ty

]
This estimation problem can be applied in a 3D setting where all the per-

ceived 3D points are in the same plane, along with the camera center: for
instance, consider the situation depicted in figure 1, where you are standing
on the ground (plane Y = 0), taking a picture of two lighthouses (say two
monuments that are visible far away, located at the same height Y = 0) and
trying to determine your position and orientation, knowing the absolute posi-
tions of the lighthouses. Given “lighthouse” points (Xi, Zi) and the bearings
(projections in the image), we want to find T .

Figure 1: World frame X, Y , Z, camera frame
Xc, Yc, Zc and two “lighthouse” points of
known 3D. Here all the points are on the
plane Y = 0, therefore we only show X, Z.

See figure 1. The projection of a lighthouse point (Xi, Zi) in your camera
is given by the following equations:

xi =
Xi cos θ − Zi sin θ+ Tx

Xi sin θ+ Zi cos θ+ Tz
, yi = 0.

∆β is called the relative bearing.
We therefore need two lighthouse points to solve for (Tx, Tz).
Useful geometry result: The locus of points “seeing” two points with a

fixed angle is a circle. If three points are given then the intersection of two
circles is the solution and one of the points.

Motion estimation on a plane

Let’s consider the same setting as previously, with two cameras now: all
points observed and the two camera centers are in the same plane. Let’s
assume we don’t know the world frame.

http://en.wikipedia.org/wiki/ARToolKit
http://en.wikipedia.org/wiki/ARToolKit
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Two 3D points P and Q are observed by two cameras 1 and 2, as depicted
in figure 2. Can we recover the orientation and length of the baseline? We The baseline is the vector between the two

camera centerscan recover the orientation of the baseline and the rotation between the two
cameras, but the translation between the two cameras will be up to a scaling
factor. The baseline and reconstructions are up to a

scaling factor because an object that is twice
as big but placed twice as far away from
the camera centers, with a baseline twice as
long, producces the same images.

Figure 2: We assume C1, C2, P, Q are
coplanar.

We denote P1 the coordinates of P in the frame of camera 1, and p1 the
projection of P1 on the screen of camera 1:

P1 = RP + T , P1 = λp1

The problem can be formulated as follows: given (p1, p2) (cameras are
calibrated i.e we know intrinsics), find R, T with T up to a scaling factor.

If the points lie on a plane NT p2 = d w.r.t the second coordinate system,
we have: NT p2

d = 1

λ1 p1 =λ2Rp2 + T
NT p2

d

=λ2

(
R +

T NT

d

)
p2

Suppose we obtain H such that p1i ∼ Hp2i (i = 1, . . . , 4) using four pairs
of matching points, then the transformation and plane parameters are related
to the homograpy as follows: R has 3 unknowns since RT R = I, T has 3

unknowns and N has two unknowns. Note
that although H is defined up to a scaling
factor, the relationship pT

1 Hp2 = 0 is
independent of the depth λ.

H
3×3

= λ

(
R +

T NT

d

)
, ‖N‖ = 1

Can we recover rotation and translation of the plane from the homogra-
phy? Recovering them would for instance enable us to take two pictures of a
facade, and recover the normal vector to the facade and the relative rotation
of the cameras. We have: We have to check that the system is not

singular, but it looks ok because it’s an
orthogonal matrix + a matrix of form UVT .

HT H =λ2
(
RT +

NT T

d

) (
R +

T NT

d

)
=λ2

(
I +

RT T NT

d
+

NT T R
d

+
1
d2 NT T T NT

)
=λ2(I + uNT + NuT + NuT uNT )

We define u = 1
d RT T .

By noticing that almost all the terms in the parentheses define projections
on N or u, we obtain the following simple equation by multiplying both sides
of the equation by the vector u × N:

HT H(u × N) = λ2(u × N) (1)
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Therefore λ2 is one of the eigenvalues of HT H. Which of the three eigen-
values of HT H is λ2? Consider the terms within the parentheses in the previ-
ous derivation:

uNT + NuT + NuT uNT =wvT + vwT + vwT wvT

=(v + w)(v + w)T −wwT We define v = ‖u‖N, w = u
‖u‖

By defining Q = (v + w)(v + w)T −wwT (such that H = λ2(I + Q)), we
obtain a result similar to equation 1:

Q(v ×w) = 0

Q has eigenvalues µ1 > 0, µ2 = 0, µ3 < 0. The eigenvalue λ2 of HT H
is associated to the eigenvalue µ2 = 0 of Q. Therefore λ2 is the second
eigenvalue of H. Indeed if the eigenvalues of Q are the

follwoing:

µ1, µ2 = 0, µ3,

then the eigenvalues of HT H are λ2(1 +
µ1), λ2, λ2(1 + µ3):

Qu =µu

⇔ λ2(I + Q)u =λ2(1 + µ)

⇔ HT Hu =λ2(1 + µ)u

It remains to find the eigenvectors of Q = H
λ2 − I. The task is now to

extract T and N from Q. We summarize the definition of Q:

Q =(w + v)(w + v)T −wwT

u =
1
d

RT T

v =‖u‖N

w =
u
‖u‖
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Reconstruction from two calibrated views
Structure from motion, epipolar geometry

We want to estimate the transformation between two camera and the 3D
positions of a set of observed points, given 2D-2D correspondences in the
two images: (u1, v1) matched to (u2, v2).

Figure 1: R, T transform the axes of 1
into the axes of 2, therefore in terms of
coordinates P1 = RP2 + T .

Assuming a simple camera model with focal length f , the calibrated rays
are directed by the following vectors:

p1 =


u1−cx1

f1v1−cy1
f1
1

 , p2 =


u2−cx2

f2v2−cy2
f2
1


The epipolar constraint relates p1, p2 and the motion parameters:

pT
1 (T × Rp2) = 0 , (1)

and it just states that the two calibrated rays are coplanar in a plane that goes Note that λ2 p2 = Rλ2 p2 + T , but the
epipolar constraints enables us to get rid of
the depth.

through the baseline T .
If we fix p1, the constraint defines a line which is simply the projection of

the ray p1 in the screen of 2. Such a line is called an epipolar line.
All epipolar lines in 2 go through e2, the projection of C1 in the screen of

2. e1, e2 are called the epipoles.

Geometric interpretation: In figure 1, notice that the plane C1C2P in-
tersects screen 1 at the epipolar line e1 × p1, and it intersects screen 2 at the
epipolar line e2 × p2. Both lines are defined from the epipolar constraint (eq.
1), by fixing p1 or p2. Using this geometric interpretation, it is easy to derive
e1, e2 either from the epipolar constraint:

e1 ∼ T , e2 ∼ −RT T

Note on coordinate transforms If the axes of camera 2 are translated of
T and rotated of R with respect to the axes of camera 1, the relationship
between the coordinates is the following: Notice that what happens to the coordinates

is the “opposite” of what happens to the
axes: if C2 is translated of 100 along X with
respect to C1, then we need to subtract 100
to the X-coordinate of P1 to obtain P2 if
P1, P2 describe the same point P

P1 = RP2 + T

Therefore we have another way to derive e1, e2:

e1 = R.0 + T , i.e. e1 = T

0 = Re2 + T , i.e. e2 = −RT T
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The essential matrix

We define the essential matrix E = T̂R ∈ R3×3, where T̂ =


0 −tz −ty
tz 0 −tx

−ty tx 0

 Using the anti-symmetric matrix T̂ enables
us to write the cross-product with T as a
matrix-vector product: for any P ∈ R3,
T × P = T̂ P.The epipolar constraint can then be reformulated very simply:

pT
1 Ep2 = 0

Naturally, this linear equation involving the parameters of E encourage us
to estimate E using several pairs of matching points (p1, p2). The interest of
estimating the essential matrix is two-fold:

• Once we have E, we can plot epipolar lines: given a point p2, then the
corresponding point in the first image is on the following line:[

x y 1
]

Ep2︸︷︷︸
3×1

= 0

• Since E is defined with the help of T and R, we can first estimate E from a
set of correspondences, and then recover the motion parameters from E.

Estimating E As usual, we want to formulate and solve a linear system
Ae = 0 where A is some matrix containing the point positions and e contains
the parameters of E, to estimate. Given a pair of matching points p1, p2, we
can further rewrite the constraint as follows, writing E in form of a vector:

The vector


p2x p1
p2y p1
p2z p1

 ∈ R9 is called the

Hadamard product of p1 and p2 and is noted
p1 ⊗ p2.

Therefore equation 2 can be rewritten as
(p1 ⊗ p2)T es = 0.

[
p2x pT

1 p2y pT
1 p2z pT

1

]︸                              ︷︷                              ︸
1×9


e1

e2

e3


9×1

= 0 (2)

where es =


e1

e2

e3

 ∈ R9 is just E written as a vector, i.e. E =


| | |

e1 e2 e3

| | |

.
For every correspondence p1, p2 we obtain a linear homogeneous equation E can be estimated up to a scale factor

w.r.t.


e1

e2

e3

 = eS : we need 8 independent equations, i.e. 8 matching points.

The 8-point algorithm

By stacking eight independent equations as defined in equation 2, we obtain
a system of form AeS = 0 (A is 8 × 9): es is in the null-space of A, hence

es = v9 if A = UΣVT is the SVD of A and V =


| | | |

v1 v2 . . . v9

| | | |

.
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If we recover E with this method, are we sure it will be an “acceptable”
essential matrix? We have to define what it means from a matrix to be es-
sential: concretely it means that is is the product of an antisymmetric and a
special orthogonal matrix. Can any 3 × 3 real matrix E be decomposed into
E = T̂R? We know other examples of decompositions

that work for any 3 × 3 matrix:

• QR factorization: A = QR (Q orthogo-
nal, R upper triangular),

• SVD decompositions, A = UΣVT

Is “T̂R” a valid decomposition for any 3 × 3
matrix?

E-properties

Here are a few properties that will be useful in subsequent derivations:

• ET = RT T̂ T

• T̂ T = −T̂ , T̂ a = T × a

• ET T = 0.

• det(E) = det T̂ . det R = 0, therefore σ3 = 0 (σ3 is the smallest singular
value of E) Remember that the determinant of a matrix

is the product of its eigenvalues, and for any
matrix A, the null-space of A is the same as
the null-space of AT A.In this section, we are going to show that an essential matrix can be char-

acterized by its singular values. Namely if E is an essential matrix (i.e. de-
composable into T̂R), its singular values verify σ1 = σ2, and σ3 = 0. We
just proved that σ3 = 0.

Remember that the singular values of E are the eigenvalues of ET E or
EET , i.e. the solutions of the following characteristic polynomial:

det EET −σI = 0.

We want to characterize the singular values without solving the characteristic
polynomial. We exploit the fact that RT R = I to find a nice form for EET :

EET =T̂ T̂ T

=TT T − T T T I

=


t2x txty txtz
0 t2y tytz
0 0 t2z

 − ‖T‖2I

If ‖T‖ = 1, then there exists a rotation U such that UT =


0
0
1

 = Tz We can always rotate a vector to align it to
the Z-axis.

And we are going to try to express EET as a function of the following
simple matrix:

T̂zT̂z
T
=


1 0 0
0 1 0
0 0 0


Lemma: If Q is orthogonal (QT Q = I), then

Q̂a = QâQT
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Proof: Q̂ab = Qa × b = Q(a × QT b) = QâQT b.
We are now able to express T̂ as T̂zUT = UT T̂U

EET = T̂ T̂ T =UT T̂zUUT T̂ T
z U

=UT T̂zT̂z
T

U

=UT


1 0 0
0 1 0
0 0 0

U
EET is symmetric hence σ1 = 1,σ2 = 1,σ3 = 0. We can now formulate

conditions that characterize essential matrices.

Necessary condition: If E is an essential matrix (i.e. E = T̂R) then E has
two equal singular values and one singular value equals zero.

Sufficient condition:

E =U


σ 0 0
0 σ 0
0 0 0

VT

=σU


1 0 0
0 1 0
0 0 0

VT

=σUT̂z
T

RzVT

=σ ÛTz︸︷︷︸
antisymmetric

URVT︸ ︷︷ ︸
orthogonal


1 0 0
0 1 0
0 0 0


=


0 1 0
−1 0 0
0 0 0




0 −1 0
1 0 0
0 0 1


=T T

z Rz,π/2

Observe UTz = U


0
0
1

, which is the last column of U

We just showed that there is at least one such decomposition, but is it
unique?

Necessary and sufficient condition: E is essential iff σ1(E) = σ2(E) ,
0 and σ3(E) = 0.

How many ways can we decompose E?. This is important, not just for mathematical
purposes: we need to find all solutions of
the system, in case some of them are not
correct (do not satisfy some constraints)

We showed the following decomposition:
1 0 0
0 1 0
0 0 0

 =


0 1 0
−1 0 0
0 0 0

︸            ︷︷            ︸
−T̂z


0 −1 0
1 0 0
0 0 1

︸            ︷︷            ︸
Rz,π/2

But we could similarly write


1 0 0
0 1 0
0 0 0

 = T̂zRz,−π/2.
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Pose recovery from the essential matrix

If E = UΣVT = U


σ 0 0
0 σ 0
0 0 0

VT , there are two solutions for the pair

(T̂ , R):

(T̂1, R1) =(URz,+π/2ΣUT , URT
z,+π/2VT )

(T̂2, R2) =(URz,−π/2ΣUT , URT
z,−π/2VT )



CIS 580 Spring 2012 - Lecture 24
April 16, 2012 Notes and figures by Matthieu Lecce.

Review: pose recovery from E:
Theorem: A real 3 × 3 matrix is essential (i.e. E = T̂R) iff it has two equal T̂ anti-symmetric, R orthogonal

singular values and one zero singular value:

E =U


σ 0 0
0 σ 0
0 0 0

 VT

T = ± u3 (third column of U)

R =U


0 ±1 0
±1 0 0
0 0 1

 VT

To summarize, when trying to recover the motion parameteres from E,
there is more than one solution: if (T , R) is a solution, then (−T , RT ,πR) is a
also a solution . RT ,π is a rotation of π around T

(RT = I + 2T̂ 2)This phenomenon is called the twisted pair ambiguity: it can be proved
that if pT

1 (T × Rp2) = 0 then pT
1 (T × RT ,πRp2) = 0 too.

Rodrigues formula for rotations: (axis n, ‖n‖ = 1)

Rn(θ) = I + sin θ̂u + (1 − cos θ)̂u2

This useful formula comes from the formulation of a rotation as the expo- See derivation in Jean Gallier’s book.

nential of an antisymmetric matrix:

Rn(θ) = eθ̂u = I +
1
2!
θ̂u +

1
3!
θ2û2 + . . .

Example: u =


1
2
3

 1√
14

, θ = π
6

Rn
(
π
6

)
= I + sin π

6
1√
14


0 −3 2
3 0 −1
−2 1 0

+(1− cos2 π
6 )


0 −3 2
3 0 −1
−2 1 0


2

Rn(θ)p = p + sin θ(n × p) + (1 − cos θ(n × (n × p)))
We now apply this result to a rotation of π around T :

a × (b × c) = aT cb − aT bc
RT (π)p =p + (1 − cos π)(T × (T × p))

=p + (T T pT − T T T p)

End of derivation in handout.
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Obtaining a valid E-matrix

Recall that our estimation algorithm is the following:

• Estimate E by performing SVD on the following system, obtained by
stacking 8 equations coming from 8 pairs of matching points:

︸       ︷︷       ︸
8×9


e1

e2

e3


9×1

= 0,

with E =
[

e1 e2 e3
]
∈ R3×3

• Recover (T̂ , R) from E.

Our problem is that the output E′ of the SVD is not necessarily an
acceptable essential matrix: it does not necessarily verify σ1 = σ2 and
σ3 = 0. For an arbitrary E′ with σ′1 , σ

′
2 and σ′3 , 0, how can we find the

“closest” matrix E with σ1 = σ2 and σ3 = 0? In other words we want to project E′ on
the space of essential matrices, for the
Frobenius norm.

We want to find argminE‖E − E′‖F with E essential. We can also formu-
late the cost as follows:∥∥∥∥∥∥∥∥∥∥U


σ 0 0
0 σ 0
0 0 0

 VT −U′


σ′1 0 0
0 σ′2 0
0 0 σ′3

 V′T

∥∥∥∥∥∥∥∥∥∥
2

F

We use the following algebra results:

1. ‖A − B‖2F = tr ((A − B)T (A − B)) = tr (AT A) + tr (BT B) − tr (AT B) −
tr (BT A)

2. For Q orthogonal, ‖QAQT ‖F = ‖A‖F

We have the following:∥∥∥∥∥∥∥∥∥∥

σ 0 0
0 σ 0
0 0 0

 − UT U′︸︷︷︸
P orthogonal


σ′1 0 0
0 σ′2 0
0 0 σ′3

 V′T V︸︷︷︸
Q orthogonal

∥∥∥∥∥∥∥∥∥∥
2

F

=tr



σ 0 0
0 σ 0
0 0 0


2+ tr



σ′1 0 0
0 σ′2 0
0 0 σ′3


2 − tr



σ 0 0
0 σ 0
0 0 0

 P


σ′1 0 0
0 σ′2 0
0 0 σ′3

 Q

︸                                                ︷︷                                                ︸
(1)

(1) =σ(σ′1(p11q11 + p12q12) + σ′2(p21q21 + p22q22))

because of the minus sign, (1) has to be maximized. P and Q are orthogo-
nal.

p11q11 + p12q12 ≤1

p21q21 + p22q22 ≤1

σ,σ′1,σ′2 > 0
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Therefore we can rewrite the cost to minimize as follows:

tr


σ2 0 0
0 σ2 0
0 0 0

+ tr


σ′21 0 0
0 σ′22 0
0 0 σ′23

 − 2(σσ′1 + σσ′2)

=2σ2 + σ′1 + σ′2 + σ′3 − 2σσ′1 − 2σσ′2
=(σ −σ′1)

2 + (σ −σ′2)
2 + σ′23

This expression is convex in σ and has to be minimized, therefore we
obtain the solution by setting the derivative to 0:

∂

∂σ
= 0⇒ σ =

σ′1 + σ′2
2

The 8-point algorithm: summary

We can now (at last!) write the complete algorithm for camera motion esti-
mation from eight pairs of matching points:

1. Build the homogeneous linear system by stacking epipolar constraints
pT

1i(T × Rp2i) = 0, i = 1, . . . , 8: Recall the Hadamard product: p1 ⊗ p2 =
p2x p1
p2y p1
p2z p1

 ∈ R9
...

(p1i ⊗ p2i)T

...


A (8×9)


e′1
e′2
e′3



2. Let


e′1
e′2
e′3

 be the nullspace of A (if σ8 ≈ 0 give up)

3.
[

e′1 e′2 e′3
]
= Udiag (σ′1, s′2,σ′3)V

T . Then use the following esti-
mate of the essential matrix:

E = Udiag
(
σ′1 + σ′2

2
,
σ′1 + σ′2

2
, 0

)
VT

4. T = ±u3 → R = URZ,π/2VT or R = RT ,πR

5. Try all pairs (T , R) to check if reconstructed points are in front of the
cameras λ1 p1Rp2 + T (three equations, two unknowns).

We are then left with a triangulation problem: λ1 p1 = λ2Rp2 + T ⇒
λ1, λ2 =?

Why are there three equations but two unknowns? This is overconstrained
because in general two lines in space do not intersect. In our case, we know
that they should intersect if the epipolar constraint is satisfied (which means
p1, T , p2 are coplanar).
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But the constraint pT
1 (T × Rp2) = 0 is subject to noise: the input points of

the algorithm are not perfect!
The problem of finding λ1, λ2 can be formulated as the following simple

linear system: [
p1 Rp2

]
3×2, rank 2 because p1∦Rp2

 λ1

λ2

 = T

We can solve the system by hand:

λ1 p1 × Rp2 =T × Rp2

λ1(p1 × Rp2)
T (p1 × Rp2) =(T × Rp2)

T (p1 × Rp2)

λ1 =
(T × Rp2)T (p1 × Rp2)

‖p1 × Rp2‖2
> 0

Minimal problems in computer vision

Using the 8-point is a bad idea for RANSAC, because 8 points are not the
minimal number of correspondences needed to solve for 5 unknowns. Techni-
cally the following system obtained by stacking only five epipolar constraints
should be enough:

pT
11(T × RP21) =0

pT
12(T × RP22) =0

...

pT
15(T × RP25) =0

This defines five equations with five unknowns, but we have no way to
find five variables that we could set as unknowns. In the 8-point algorithm, we defined the

coefficients of E as the unknowns and
therefore needed more equations, but those
8 independent coefficients of E contained
redundant information about the real five
unknowns that we were interested in: the
coefficients of R and T .

The trick is to define a polynomial system. Let’s go back to the E-matrix
system:

A
5×9


e1

e2

e3


9×1 solution

= 0

E =
[

e1 e2 e3
]
∈ R3 × 3. If we perform an SVD of A5×9 = UΣVT ,

we expect by definition that σ6 = σ7 = σ8 = σ9 = 0.
Therefore, solutions are in the null-space, of which {v6, v7, v8, v9} is an

orthonormal basis. This means that we can write the following decomposition
of the vector of essential matrix coefficients:

e1

e2

e3

 = xv6 + yv7 + zv8 + wv9, x, y, z, w unknowns (w = 1)
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Our goal is now to find x, y, z such that
[

e1 e2 e3
]

is an E-matrix.

Theorem: A real 3 × 3 matrix E is essential (i.e. E = T̂R,antisym-orthogonal
decomposition) iff:

det(E) = 0, 2EET E − tr (EET )E = 0

These are 10 equations where we can replace


e1

e2

e3

 = xv6 + yv7 + zv8 +

v9, and we obtain 10 equations with three unknowns x, y, z. The equations are
cubic in x, y, z.

We use a linear algebra trick, the “hidden variable elimination trick”:

a0(z)x3 + a1(z)x2y + a2(z)xy2 + a3(z)y3

+a4(z)x2 + a5(z)xy + a6(z)y2

+a7(z)x + a8(z)y + a9(z)

=0

[
a0(z) . . . . . . a9(z)

]
10×10



x3

x2y
xy2

x2

xy
y2

x
y
1


The technique we just used, which consists in precomputing monomials of

z and placing them in linear forms, is called lifting. It enables them to solve
linear equations instead of polynomial ones.

(to be continued)
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Continuous epipolar constraint and the motion field

Consider P1 measured at t1, P2 at t2, with t2 − t1 small.

P1 = RP2 + T

The camera undergoes a motion with linear velocity V and angular veloc-
ity Ω.

Parenthesis on visual servoing

• State x, ẋ = f (x, u), where u is the
control input

• Measurement y = h(x) (image points in
our case)

The goal is to design a control

u = g(y, ydesired)

so that y − ydesired is minimized. The
variation of y is given by the following
equation:

ẏ =
∂h
∂x

ẋ =
∂h
∂x

f (x, u).

The velocity of a 3D point P is given by the following equation:

Ṗ = −Ω × P − V

The 2D projection is given by the following equations:

• Uncalibrated: p′ ∼
[

K 0
]  P

1


• Calibrated: p ∼

[
I 0

]  P
1

, i.e. :

p =


x
y
1

 , x =
X
Z

, y =
Y
Z

, where P =


X
Y
Z


Our goal is to find

 ẋ
ẏ

 the motion field . Since p = 1
Z P, we have the Note that the motion field is different

from the optical flow, that we defined by
Ixu + Iyv = 0following expression for the derivative of p:

ṗ =
ZṖ − ŻP

Z2

=
1
Z

Ṗ −
Ż
Z

p

=
1
Z
(−V −Ω × P) − f racŻZp

= −
V
Z
−Ω × p −

Ż
Z

p

Instead we write:

z0 =


0
0
1

ṗ =
1
Z

ṗ −
1
Z

Ż
P
Z

=
1
Z

zT
0 pṖ −

1
Z

zT
0 Ṗp

=
1
Z

z0 × (Ṗ × p)

=
1
Z

z0 × ((−V −Ω × P) × p)

=
1
Z

z0 × (p × V) + z0 × (p × (p ×Ω))



cis 580 spring 2012 - lecture 25 2

ṗ =
1
Z

 xVz − Vx

yVz − Vy

︸             ︷︷             ︸
translational flow

+

 xy −(1 + x2) y
(1 + y)2 −xy −x

 Ω︸                                      ︷︷                                      ︸
rotational flow independernt of depth!!

ṗtrans =
Vz

Z

 x − Vx
Vz

y − Vy
Vz


If Z is known, ṗ is linear in V and Ω!

1. By intersecting the lines spanned by ṗtrans, we can obtain the epipole1 1 F.O.E: focus of expansion

2. What is the length of ṗ?

‖ ṗtrans‖ =
Vz

Z

∥∥∥∥∥∥∥p −
 Vx/Vz

Vy/Vz


∥∥∥∥∥∥∥

3. The time to collision (sometimes studied in biology) is given by Z
Vz

:

Vz

Z
=

‖ ṗtrans‖∥∥∥∥∥∥∥p −
 Vx/Vz

Vy/Vz


∥∥∥∥∥∥∥

Recovering the motion field from image measurements

Let’s say we measure the image velocities of five points. The unknowns can
be:

• V , Ω and the depths of four of the points (one depth is fixed)

• V , Ω with ‖V‖ = 1, and the depths of all five points

We solve the following equations for V , Ω, Zi=1,...,n:

ṗ =
1
Z

B(V)
2×1

+ A
2×3

Ω

=
[

B(V) A
]

2×4

 1/Z
Ω


For n points, we obtain the following system:


...
ṗi
...


2n×1

=


...

...
...

...
. . . Bi(V) . . . A1
...

...
...

...


2n×(n+3)



...

...
1/Zi

...
Ω


(n+3)×1
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This is an overconstrained linear system d = C(V)m solved by mini-
mizing ‖d −Cm‖ with the solution m = C†d. But C is still a function of V!
Therefore we need to add the following minimization:

min
V
‖d −C(V)C†(V)d‖

D. Heeger and A. Jepson, 1991

Continuous epipolar constraint

How does our epipolar constraint pT
1 (T × Rp2) = 0 translate here? We obtain

an equation involving p, ṗ, V , Ω without Z:

(V × p)T ( ṗ + Ω × p)︸         ︷︷         ︸
translational flow in spherical

= 0

Spherical eye ṗ = − 1
λ (p × (V × p)) −Ω × p

(p × ṗ)T V + pT
(

VΩT + ΩVT

2
−ΩT VI

)
3×3 symmetric

p = 0

[
−ẏ ẋ xẏ − yẋ 1 x y x2 xy y2

]



Vx

Vy

Vz

−VxΩx − VyΩy

VxΩz + VzΩx

VzΩy + VyΩz

−VzΩz − VyΩy

VxΩy + VyΩx

−VzΩz − VxΩx



= 0

This 9 × 1 vector is the “continuous essential parameter” vector:
e1

e2

e3

 =V



e4

e5

e6

e7

e8

e9


=



−e1 −e2 0
e3 0 e1

0 e3 e2

0 −e2 e3

e2 e1 0
−e1 0 −e3


This linear system has to be solvable w.r.t. Ω: given the system Ax = b,

the necessary and sufficient condition for solvability is for
[

A b
]

to be
linearly dependent.
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(Condition on determinant)
Note that, we assumed ∆P = Ṗ, and this assumption does not work for

high velocities or low framerate. Ṗ = −Ω × P − V


