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1 Review: ML Parameter Estimation

Suppose we have a set Bf example vector§ = {X,,} that are drawn independently
from an unknown probability distribution. We now want to fit a parametric mpgled)
to these data. To do this, we identify the most probable parameter vegteen the

dataS: R
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This holds if the prior probabilities over the valuesiadre uniform. This maximization
can often be solved by finding roots of the log-likelihood functi@nis a vector that
satisfies
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Consider, for example, a univariate Gaussian model:
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2 Mixture Models

Suppose now that we have a set\bfexample vectorS = {X,,} that were drawn from
K independent, unknown probability distributions. Now, the probability of a data point
given a model parameterization is

K
Prix(Xen | 01, . 6) = D P(Xem | BIP(K) (5)
k=1

whereP(k) denotes the prior probability that a data point is generated by mixture com-
ponentk, with 3'i, P(k) = 1. Analogously to Eqrﬂl, the log-likelihood function to be
maximized over all théy is

M
(6, ...,0k) = Z l0g Pmix(Xm | 61, . .., 0k) (6)
m=1

This is a multi-dimensional optimization problem Wi, Vi + K — 1 free parameters:
For each of theK mixture components, &-dimensional parameter vector is to be
determined. Th& mixture proportionsP(k) give rise to onlyK — 1 free parameters,
since they add up to one.

If the parametric modelpy are diferentiable, this maximization problem can in prin-
ciple be solved by finding roots of the gradient, computed with respect to all scalar
parameters of all mixture componemktsand forP(k), k =1,..., K - 1:

M
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These are the partial derivatives with respect toRfl9, fork =1,...,K - 1:
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i Pc(Xin | 61) = P (Xin | 6)
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Equationg 7 anfl]8 define a systemXf ; Vi + K — 1 simultaneous equations. Due

to the presence of the mixture probabilify (5), this system is non-linear in all practical
cases, and closed-form solutions usually do not exist. Therefore, one needs to resort to
numerical optimization problems, using appropriate constraints ofy ued theP(k).



3 TheK-Means Problem and an EM solution

Often, an elegant way to estimate the parameters of a mixture model is Expectation-
Maximization (EM) [1]. To illustrate this, we will begin with a simplified version of the
above problem, known d@s-Means.

Suppose we are givev data pointsS that we want to fit using a mixture & univari-

ate Gaussian distributions with identical and known variangeand non-informative
component prior$ (k). If we knew which distribution generated which data point, this
problem would be easy to solve. For this purpose, let us represent the dataXppints
as K + 1)-tuples{Ym, Wms, - . . , Wmk), Wherewn, = 1 if Y, was generated by compo-
nent distributiork, otherwise 0. Then, from Eqp] 3, the maximum-likelihood solution
is simply given by

1 M
Mk = Vk ;kaYm (9)
whereMy = M wiy, andk = 1,.. ., K.

However, the values of the,,c are not known. On the other hand, if we knew e
meansu, we could easily compute maximume-likelihood estimates ofithgi.e., those
that maximizep(S | ux, Wmk), the likelihood of the data, for ak and allm:

Wink = argkmaxp(Ym | ) P(K) (10)

Unfortunately, we have neither thg, nor theuy.

The idea of the EM algorithm is to estimate both simultaneously by iterating between
the above two calculations. We start by initializing gqtto arbitrary initial values, and
then iterate the following two steps:

Expectation (E) Calculate the expected value of thg, based on the current estimates
of the,uk.
Maximization (M) Calculate the new maximum-likelihood estimate for thebased

on the current expected values of thg..

At the E step, the expected value wf, is simply the probability tha¥,, was generated
by componenk, that we compute using Bayes’ Rule:

(Ym—#)?
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The P(k) cancel out with the>(j) since, as stated above, we are assuming equal compo-
nent priors.



Atthe M step, we need to find the parametgyshat maximize the likelihood function

P(S | ux, Wnkfork=1,...,Kandm=1,..., M)
K
k=
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where the second equality holds because in reality, each data point has been generated
by exactly one random process, i.e. @&} are either zero or one.

Equivalently, we can maximize the log-likelihood, here simplified by dropping irrele-
vant terms:

M K
O Wi fork=1,..., K andm=1,..., M) = ZZka(Ym—/Jk)Z (13)

m=1 k=1

Sincef(-) is a random variable governed by the distribution that genefates equiva-
lently, by the distribution governing the unobserved variablgs we must consider its
expected valu&[£(-)]. Sincef(:) is linear in thewy, we have
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For a closed-form solution, we set the derivatives with respect toth®zero:

P M
M
0 = > ElWmd(Ym~ )
m=1
M
" 2m=1 E[ka]Ym (15)
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Thus, Equations 11 afd]15 define the EM algorithm forkkleans problem.



4 The EM Algorithm

The EM algorithm is a general method for solving the following class of problems:

Given: AsetY ={Y,},m=1 ..., M, of observation vectors.

Assumption: TheY are the observable part of data poids= {Xy} from a higher-
dimensional space. In other word$,= Y(X) via a many-to-one mapping. The
complete datx follow a parametric probability density functiqg(X | 6) (or, for
discreteX, a probability mass functioR(X | 6)).

Wanted: An explanation of the observed datan terms of a parametric description of
the full dataX. Formally, we seek a maximume-likelihood estimate of the paramter
vectoreo:

6 = argmaxog py(Y | 6) (16)
[4

The incomplete-data specificatiqn is related to the complete-data specificatpr
for which we have a parametric model — by

pA(Y16) = fx | X 100X (17)

where X(Y) denotes all values oX for which Y(X) = Y. Since we do not have the
full data X to compute the solution (17) directly, we maximize instead its expectation
E[log p(X | 8)]. This expectation is taken over the probability distribution governing
X, which is determined by the known valu¥sand the probability density function
describing the unobserved portionXf

Unfortunately, we do not have the parameter veéttirat defines the probability dis-
tribution governingX (this vector is exactly what we set out to find in the first place).
Therefore, we use an estimate of it, that we iteratively improve. Let us define a function
Q that expresses the sought expectation of the likelihood as a function of the parameters
6 that we are trying to estimate, given the observed ¥atad a current estimateof
the parameters: A A

Q(616) = Ellog p(X | 6) | Y. 6] (18)

This Q function will allow us to compute the expected log-likelihood of the complete
dataX for any parameterizatiofi, while the expectations are computed using a fixed
probability distribution defined by the observed d#tand a given parameterization



The general EM algorithm specifies an iterative procedure for improving the estimate

1. Choose an initialization fat.
2. (E) Construct a computable representation for Egh. 18, using the cérrent

3. (M) Find a new parameterizatigrthat maximizes the currei@ function:

6 — argmaxQ(6 | 6) (19)
%

4. If 6 has barely changed, stop. Otherwise, continue at@tep 2.
This algorithm will improve the estima increasing the value d at every M step
until it reaches a local maximum.

In practice, the E step involves the computation of some parameters defnird-
though the EM algorithm is conceptually simple, both E and M steps may be quite
difficult to compute. However, in many practical cases there exist closed-form solutions
for both E and M steps.

5 Examples

5.1 TheK-Means Problem Revisited

In the case of th&-Means problem, we havé, = Y, U Z,,, where theZ,, = {wy} are
the hidden variables, artd= [y, . .., ux]. The Q function (18) is (cf. Eq. 12)

Q@1 6) o

M L L A
— mzzl[log o = 552 ; E[Wmk | Ym, ]1(Ym _ﬂk)z] (20)

Thus, at the E step, specifying tRefunction amounts to computing the expected values
of the unknown variable&y, = {Wm} as shown in Eqrj. 11, using the current parameter
estimate® = {{i}.

M
E {log 1_[ ! e_ﬁ Tiea Wnk(Ym—42k)?
m=1

v,@]

At the M step, theQ function is maximized as shown in Eqfs.] [[4}-15 after dropping
constant terms.



5.2 Mixture Models

A typical application of EM is the estimation of the parameters of a mixture model

K

Prix(Yin | ©) = > p(Yen | 6) P(K) (21)

k=1

to fit an observed set of data poirit4,}. The mixing proportiond?(k) and the com-
ponentsk,, that generated each data po¥tare unknown. The objective is to find the
parameter vectat, describing each component denguyy | 6y).

For distributions of the exponential family whose logarithms are linear imghe the
Expectation step essentially computes, as shown in[Eqn. 20 above, the expected values
of the indicatorswy that each data point,, was generated by compondqtgiven the

current parameter estimat@sandP(k), using Bayes’ Rule:

P(Vm 16 P p(Ym | 6) P(K)
K PV [ 6)PG)  Prix(Ymn | ©)

E[Wmnd = (22)

At the Maximization step, a new set of parametéssk = 1,...,K, is computed to
maximize the log-likelihood of the observed data:

M
£(©) = ) log prix(Y | ©) (23)
m=1
At the maximum, the partial derivatives with respect to all parameters vanish:

M
0 = Vul(®) = Z& Vo P(Ym | 6k)
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M Wi
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where the second ling (P4) follows from substituting Eqn. 22. The Maximization is then
computed by solving this systeifn {24) for g}l Moreover, the estimates of the com-
ponent priors are updated by averaging the data-conditional component probabilities
computed at the Expectation step:

P() = 15 ) Wik (25)



5.3 Gaussian Mixture Models

The one-dimension&-Means problem arguably constitutes the simplest special case of
Gaussian mixture fitting. We will now derive an EM algorithm for the similar problem
of a one-dimensional Gaussian mixture, where we do not know the variafceshe
mixture proportiond?(k) either. The parameter vector for mixture componeistthus

Ok = [ o] ™

(-2

e ¥k (26)

1
Pe(Y | pw, ok) =
\ /ZJTO'E

The Expectation step is easily defined by plugging [Eqh. 26 into[Eqn. 22.
For the Maximization, we plug Eqp. P6 into Edn] 24:
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Finally, we recompute the mixture proportions using Eqgmp. 25.



5.4 ET Image Reconstruction

In emission tomography (ET), body tissues are stimulated to emit photons, that are
detected byD detectors surrounding the tissue. The body is modeled as a bld8k of
equally-sized boxes. Given the numhgd) of photons detected by each deteatior

we want to know the numbet(b) of photons emitted at each béx The emission of
photons from bob is modeled as a Poisson process with mé):

n
p(n(e) | A(0) = e ® 20 @27)
Thea = {A(b), b = 1,..., B} are thus the unknown parameters we need to estimate,
using the measurements= {y(d), d=1,...,D}.

A photon emitted from bo is detected by detectarwith probability p(b, d), and we
assume that all photons are detected by exactly one detector:

D
> pb.d) =1 (28)

d=1

The p(b, d) are known, as they can be determined from the geometry of the detectors.
The numbery(d) of photons detected by detectbrs Poisson distributed

ply 1 (@) = e 0 (29)
and it is intuitive and provable that
B
A(d) = E[y(d)] = Z A(b)p(b, d). (30)
b=1

Let x(b, d) be the number of photons emitted from dodetected by detectat. Thus,
x ={x(b,d), b=1,...,B, d =1,...,D} constitute the complete data. Eax{t, d) is
Poisson distributed with mean

A(b, d) = A(b)p(b, d). (31)

Assuming independce between all boxes and between all detectors, the likelihood func-
tion of the complete data is

~ /l(b, d)x(b’d)
— A(b,d)
pxi )= || e g (32)
d=1...D

and, using Eqn. 31, the log-likelihood is

logp(x | 1) =
Z ( — A(b)p(b, d) + x(b, d) log A(b) + x(b, d) log p(b, d) — log (b, d)!) (33)

10



For the E step, we set up the function

Q1 ) = E[log p(x | 2) | y, A]. (34)

Since the Poisson distribution belongs to the exponential family, this once more boils
down to estimating A A
E[x(b,d) |y, 4] = E[x(b,d) | y(d), 1] (35)

where the simplifying equality comes from the fact that all boxes are independent.

At the M step, we maximize Eqp. B3 by settiRigy, log p(x | 2) = 0. The remaining
details are omitted here.

6 Bibliographical Remarks

TheK-Means problem and its EM solution are borrowed from Mitchell’s excellent text-
book [2]. The ET image reconstruction example is from Madn [3], where the full solu-
tion is given. He also explains the general EM procedure quite clearly, and gives other
examples as well.
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