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1 Review: ML Parameter Estimation

Suppose we have a set ofM example vectorsS = {Xm} that are drawn independently
from an unknown probability distribution. We now want to fit a parametric modelpθ(x)
to these data. To do this, we identify the most probable parameter vectorθ̂ given the
dataS:

θ̂ = argmax
θ

p(θ | S)

= argmax
θ

p(S | θ)p(θ)
p(S)

= argmax
θ

p(S | θ) = argmax
θ

M∏
m=1

p(Xm | θ)

= argmax
θ

log p(S | θ) = argmax
θ

M∑
m=1

log p(Xm | θ)

= argmax
θ

`(θ)

(1)

This holds if the prior probabilities over the values ofθ are uniform. This maximization
can often be solved by finding roots of the log-likelihood function.θ̂ is a vector that
satisfies

∇θ`(θ) =
M∑

m=1

∇θ log p(Xm | θ) =
M∑

m=1

1
p(Xm | θ)

∇θp(Xm | θ) = 0 (2)

Consider, for example, a univariate Gaussian model:

p(Xm | µ, σ) =
1

√
2πσ2

e−
(Xm−µ)2

2σ2

log p(Xm | µ, σ) = −
1
2

log(2πσ2) −
(Xm− µ)2

2σ2

∇µ,σ log p(Xm | µ, σ) =

 Xm−µ

σ2

− 1
σ
+

(Xm−µ)2

σ3


Closed-form solution for ˆµ:

M∑
m=1

Xm− µ̂

σ2
= 0 ⇒

M∑
m=1

Xm = Mµ̂ ⇒ µ̂ =
1
M

M∑
m=1

Xm (3)

Closed-form solution for ˆσ:

M∑
m=1

(
−

1
σ̂
+

(Xm− µ̂)2

σ̂3

)
= 0

⇒
M
σ̂
=

1
σ̂3

M∑
m=1

(Xm− µ̂)
2 ⇒ σ̂2 =

1
M

M∑
m=1

(Xm− µ̂)
2 (4)
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2 Mixture Models

Suppose now that we have a set ofM example vectorsS = {Xm} that were drawn from
K independent, unknown probability distributions. Now, the probability of a data point
given a model parameterization is

pmix(Xm | θ1, . . . , θK) =
K∑

k=1

pk(Xm | θk)P(k) (5)

whereP(k) denotes the prior probability that a data point is generated by mixture com-
ponentk, with

∑K
k=1 P(k) = 1. Analogously to Eqn. 1, the log-likelihood function to be

maximized over all theθk is

`(θ1, . . . , θK) =
M∑

m=1

log pmix(Xm | θ1, . . . , θK) (6)

This is a multi-dimensional optimization problem with
∑K

k=1 Vk+K −1 free parameters:
For each of theK mixture components, aVk-dimensional parameter vector is to be
determined. TheK mixture proportionsP(k) give rise to onlyK − 1 free parameters,
since they add up to one.

If the parametric modelspk are differentiable, this maximization problem can in prin-
ciple be solved by finding roots of the gradient, computed with respect to all scalar
parameters of all mixture componentsk, and forP(k), k = 1, . . . ,K − 1:

∇θk`(θ1, . . . , θK) =
M∑

m=1

P(k)
pmix(Xm | θ1, . . . , θK)

∇θk pk(Xm | θk) = 0 (7)

These are the partial derivatives with respect to theP(k), for k = 1, . . . ,K − 1:

∂

∂P(k)
`(θ1, . . . , θK)

=
∂

∂P(k)

M∑
m=1

log

K−1∑
k=1

pk(Xm | θk)P(k) + pK(Xm | θK)

1− K−1∑
k=1

P(k)


=

M∑
m=1

pk(Xm | θk) − pK(Xm | θK)
pmix(Xm | θ1, . . . , θK)

(8)

Equations 7 and 8 define a system of
∑K

k=1 Vk + K − 1 simultaneous equations. Due
to the presence of the mixture probability (5), this system is non-linear in all practical
cases, and closed-form solutions usually do not exist. Therefore, one needs to resort to
numerical optimization problems, using appropriate constraints on theθk and theP(k).
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3 The K-Means Problem and an EM solution

Often, an elegant way to estimate the parameters of a mixture model is Expectation-
Maximization (EM) [1]. To illustrate this, we will begin with a simplified version of the
above problem, known asK-Means.

Suppose we are givenM data pointsS that we want to fit using a mixture ofK univari-
ate Gaussian distributions with identical and known varianceσ2, and non-informative
component priorsP(k). If we knew which distribution generated which data point, this
problem would be easy to solve. For this purpose, let us represent the data pointsXm

as (K + 1)-tuples〈Ym,wm1, . . . ,wmK〉, wherewmk = 1 if Ym was generated by compo-
nent distributionk, otherwise 0. Then, from Eqn. 3, the maximum-likelihood solution
is simply given by

µk =
1

Mk

M∑
m=1

wmkYm (9)

whereMk =
∑M

m=1 wmk, andk = 1, . . . ,K.

However, the values of thewmk are not known. On the other hand, if we knew theK
meansµk, we could easily compute maximum-likelihood estimates of thewmk, i.e., those
that maximizep(S | µk,wmk), the likelihood of the data, for allk and allm:

wmk = argmax
k

p(Ym | µk)P(k) (10)

Unfortunately, we have neither thewmk nor theµk.

The idea of the EM algorithm is to estimate both simultaneously by iterating between
the above two calculations. We start by initializing ourµk to arbitrary initial values, and
then iterate the following two steps:

Expectation (E) Calculate the expected value of thewmk based on the current estimates
of theµk.

Maximization (M) Calculate the new maximum-likelihood estimate for theµk based
on the current expected values of thewmk.

At theE step, the expected value ofwmk is simply the probability thatYm was generated
by componentk, that we compute using Bayes’ Rule:

E[wmk] = p(k | Ym) =
p(Ym | k)P(k)

p(Ym)
=

p(Ym | µk)P(k)∑K
j=1 p(Ym | µ j)P( j)

=
e−

(Ym−µk)2

2σ2

K∑
j=1

e−
(Ym−µ j )

2

2σ2

(11)

TheP(k) cancel out with theP( j) since, as stated above, we are assuming equal compo-
nent priors.
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At theM step, we need to find the parametersµk that maximize the likelihood function

p(S | µk,wmk for k = 1, . . . ,K andm= 1, . . . ,M)

=

M∏
m=1

K∑
k=1

wmk
√

2πσ2
e−

(Ym−µk)2

2σ2

=

M∏
m=1

1
√

2πσ2
e−

1
2σ2

∑K
k=1 wmk(Ym−µk)2

(12)

where the second equality holds because in reality, each data point has been generated
by exactly one random process, i.e., allwmk are either zero or one.

Equivalently, we can maximize the log-likelihood, here simplified by dropping irrele-
vant terms:

`(µk,wmk for k = 1, . . . ,K andm= 1, . . . ,M) =
M∑

m=1

K∑
k=1

wmk(Ym− µk)
2 (13)

Since`(·) is a random variable governed by the distribution that generatesS, or, equiva-
lently, by the distribution governing the unobserved variableswmk, we must consider its
expected valueE[`(·)]. Since`(·) is linear in thewmk, we have

E[`(·)] = E

 M∑
m=1

K∑
k=1

wmk(Ym− µk)
2

 = M∑
m=1

K∑
k=1

E[wmk](Ym− µk)
2 (14)

For a closed-form solution, we set the derivatives with respect to theµk to zero:

∂

∂µk
E[`(·)] = −2

M∑
m=1

E[wmk](Ym− µk)

0 =

M∑
m=1

E[wmk](Ym− µk)

µk =

∑M
m=1 E[wmk]Ym∑M

m=1 E[wmk]
(15)

Thus, Equations 11 and 15 define the EM algorithm for theK-Means problem.
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4 The EM Algorithm

The EM algorithm is a general method for solving the following class of problems:

Given: A setY = {Ym}, m= 1, . . . ,M, of observation vectors.

Assumption: The Y are the observable part of data pointsX = {Xm} from a higher-
dimensional space. In other words,Y = Y(X) via a many-to-one mapping. The
complete dataX follow a parametric probability density functionp(X | θ) (or, for
discreteX, a probability mass functionP(X | θ)).

Wanted: An explanation of the observed dataY in terms of a parametric description of
the full dataX. Formally, we seek a maximum-likelihood estimate of the paramter
vectorθ:

θ̂ = argmax
θ

log pY(Y | θ) (16)

The incomplete-data specificationpY is related to the complete-data specificationp –
for which we have a parametric model – by

pY(Y | θ) =
∫

X(Y)
p(X | θ) dX (17)

whereX(Y) denotes all values ofX for which Y(X) = Y. Since we do not have the
full data X to compute the solution (17) directly, we maximize instead its expectation
E[log p(X | θ)]. This expectation is taken over the probability distribution governing
X, which is determined by the known valuesY and the probability density function
describing the unobserved portion ofX.

Unfortunately, we do not have the parameter vectorθ that defines the probability dis-
tribution governingX (this vector is exactly what we set out to find in the first place).
Therefore, we use an estimate of it, that we iteratively improve. Let us define a function
Q that expresses the sought expectation of the likelihood as a function of the parameters
θ that we are trying to estimate, given the observed dataY and a current estimatêθ of
the parameters:

Q(θ | θ̂) = E[log p(X | θ) | Y, θ̂] (18)

This Q function will allow us to compute the expected log-likelihood of the complete
dataX for any parameterizationθ, while the expectations are computed using a fixed
probability distribution defined by the observed dataY and a given parameterizationθ̂.
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The general EM algorithm specifies an iterative procedure for improving the estimateθ̂:

1. Choose an initialization for̂θ.

2. (E) Construct a computable representation for Eqn. 18, using the currentθ̂.

3. (M) Find a new parameterization̂θ that maximizes the currentQ function:

θ̂ ← argmax
θ

Q(θ | θ̂) (19)

4. If θ̂ has barely changed, stop. Otherwise, continue at Step 2.

This algorithm will improve the estimatêθ, increasing the value ofQ at every M step
until it reaches a local maximum.

In practice, the E step involves the computation of some parameters definingQ. Al-
though the EM algorithm is conceptually simple, both E and M steps may be quite
difficult to compute. However, in many practical cases there exist closed-form solutions
for both E and M steps.

5 Examples

5.1 TheK-Means Problem Revisited

In the case of theK-Means problem, we haveXm = Ym ∪ Zm, where theZm = {wmk} are
the hidden variables, andθ = [µ1, . . . , µK]. TheQ function (18) is (cf. Eqn. 12)

Q(θ | θ̂) = E

log
M∏

m=1

1
√

2πσ2
e−

1
2σ2

∑K
k=1 wmk(Ym−µk)2

∣∣∣∣∣∣∣ Y, θ̂


=

M∑
m=1

log
1

√
2πσ2

−
1

2σ2

K∑
k=1

E[wmk | Ym, θ̂](Ym− µk)
2

 (20)

Thus, at the E step, specifying theQ function amounts to computing the expected values
of the unknown variablesZm = {wmk} as shown in Eqn. 11, using the current parameter
estimateŝθ = {µ̂k}.

At the M step, theQ function is maximized as shown in Eqns. 14–15 after dropping
constant terms.
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5.2 Mixture Models

A typical application of EM is the estimation of the parameters of a mixture model

pmix(Ym | Θ) =
K∑

k=1

p(Ym | θk) P(k) (21)

to fit an observed set of data points{Ym}. The mixing proportionsP(k) and the com-
ponentskm that generated each data pointYm are unknown. The objective is to find the
parameter vectorθk describing each component densityp(Y | θk).

For distributions of the exponential family whose logarithms are linear in thewmk, the
Expectation step essentially computes, as shown in Eqn. 20 above, the expected values
of the indicatorswmk that each data pointYm was generated by componentk, given the
current parameter estimatesθk andP(k), using Bayes’ Rule:

E[wmk] =
p(Ym | θk) P(k)∑K
j=1 p(Ym | θ j) P( j)

=
p(Ym | θk) P(k)
pmix(Ym | Θ)

(22)

At the Maximization step, a new set of parametersθk, k = 1, . . . ,K, is computed to
maximize the log-likelihood of the observed data:

`(Θ) =
M∑

m=1

log pmix(Y | Θ) (23)

At the maximum, the partial derivatives with respect to all parameters vanish:

0 = ∇θk`(Θ) =
M∑

m=1

P(k)
pmix(Ym | Θ)

∇θk p(Ym | θk)

=

M∑
m=1

wmk

p(Ym | θk)
∇θk p(Ym | θk) (24)

where the second line (24) follows from substituting Eqn. 22. The Maximization is then
computed by solving this system (24) for allθk. Moreover, the estimates of the com-
ponent priors are updated by averaging the data-conditional component probabilities
computed at the Expectation step:

P(k) =
1
M

M∑
m=1

wmk (25)
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5.3 Gaussian Mixture Models

The one-dimensionalK-Means problem arguably constitutes the simplest special case of
Gaussian mixture fitting. We will now derive an EM algorithm for the similar problem
of a one-dimensional Gaussian mixture, where we do not know the variancesσ2

k or the
mixture proportionsP(k) either. The parameter vector for mixture componentk is thus
θk = [µk, σk]T :

pk(y | µk, σk) =
1√

2πσ2
k

e
(y−µk)2

2σ2
k (26)

The Expectation step is easily defined by plugging Eqn. 26 into Eqn. 22.

For the Maximization, we plug Eqn. 26 into Eqn. 24:

0 =
∂

∂µk
`(Θ) =

M∑
m=1

wmk

pk(ym | µk, σk)
−2(ym− µk)

2σ2
k

pk(ym | µk, σk)

=

M∑
m=1

wmk(ym− µk)

µk =

∑M
m=1 wmkym∑M

m=1 wmk

0 =
∂

∂σk
`(Θ) =

M∑
m=1

wmk

pk(ym | µk, σk)

(
−1
σk
+
−2(ym− µk)2

2σ3
k

)
pk(ym | µk, σk)

=

M∑
m=1

wmk

(
σ2

k + (ym− µk)
2
)

σ2
k =

∑M
m=1 wmk(ym− µk)2∑M

m=1 wmk

Finally, we recompute the mixture proportions using Eqn. 25.
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5.4 ET Image Reconstruction

In emission tomography (ET), body tissues are stimulated to emit photons, that are
detected byD detectors surrounding the tissue. The body is modeled as a block ofB
equally-sized boxes. Given the numbery(d) of photons detected by each detectord,
we want to know the numbern(b) of photons emitted at each boxb. The emission of
photons from boxb is modeled as a Poisson process with meanλ(b):

p(n(b) | λ(b)) = e−λ(b)λ(b)n

n!
(27)

The λ = {λ(b), b = 1, . . . , B} are thus the unknown parameters we need to estimate,
using the measurementsy = {y(d), d = 1, . . . ,D}.

A photon emitted from boxb is detected by detectord with probability p(b,d), and we
assume that all photons are detected by exactly one detector:

D∑
d=1

p(b,d) = 1 (28)

The p(b,d) are known, as they can be determined from the geometry of the detectors.
The numbery(d) of photons detected by detectord is Poisson distributed

p(y | λ(d)) = e−λ(d)λ(d)y

y!
(29)

and it is intuitive and provable that

λ(d) = E[y(d)] =
B∑

b=1

λ(b)p(b,d). (30)

Let x(b,d) be the number of photons emitted from boxb detected by detectord. Thus,
x = {x(b,d), b = 1, . . . , B, d = 1, . . . ,D} constitute the complete data. Eachx(b,d) is
Poisson distributed with mean

λ(b,d) = λ(b)p(b,d). (31)

Assuming independce between all boxes and between all detectors, the likelihood func-
tion of the complete data is

p(x | λ) =
∏

b=1,...,B
d=1,...,D

e−λ(b,d)λ(b,d)x(b,d)

x(b,d)!
(32)

and, using Eqn. 31, the log-likelihood is

log p(x | λ) =∑
b=1,...,B
d=1,...,D

(
− λ(b)p(b,d) + x(b,d) logλ(b) + x(b,d) log p(b,d) − log x(b,d)!

)
(33)
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For the E step, we set up the function

Q(λ | λ̂) = E[log p(x | λ) | y, λ̂]. (34)

Since the Poisson distribution belongs to the exponential family, this once more boils
down to estimating

E[x(b,d) | y, λ̂] = E[x(b,d) | y(d), λ̂] (35)

where the simplifying equality comes from the fact that all boxes are independent.

At the M step, we maximize Eqn. 33 by setting∇λ(b) log p(x | λ) = 0. The remaining
details are omitted here.

6 Bibliographical Remarks

TheK-Means problem and its EM solution are borrowed from Mitchell’s excellent text-
book [2]. The ET image reconstruction example is from Moon [3], where the full solu-
tion is given. He also explains the general EM procedure quite clearly, and gives other
examples as well.
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