CIS 580 Spring 2012 - Lecture 2
January 23, 2012

Last lecture’s main result: linear shift-invariant (LSI) systems can be repre-
sented as a convolution.

The Fourier Transform

Definition of the Fourier Transform:
f(t) o—F(w) = F{f(1)}
F:R—->C
Flw) = f Fl)e s,

where w denotes the frequency. This definition is sometimes called non-
unitary Fourier transform, with angular frequency (w is referred to as angular
frequency, and s such that w = 2xs is the ordinary frequency).

Inverse Fourier transform:

1 .

f(t) = > [m F(w)edw
Domains:

e f(t) defined in time (or space for x, y) domain

e F(w) defined in frequency (or spatial frequency) domain

The Fourier transform can be defined as a function of s, the frequency,
where w = 275, in which case the definitions can be rewritten as follows:

F(s) = f " ()e gy
1) =5- f : F(s)e™™ds

Function symmetry and Fourier
Definitions:
e A function f, is said even when f,(—1) = f,(¢)
e A function f, is said odd when f,(—t) = —f, (1)
Any function f () can be decomposed into an odd and an even part:
f(8) =Fe(0) + fo(1)
where f,(1) = = (f(r) + f(—t)) is even

(f(5) = f(=1)) is odd

N = N —

folt) =

Notes and figures by Matthieu Lecce.

Quick reminder on complex numbers:
e atjpeC,?=-1

o el = cos(wt) + jsin(wt).
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Figure 1: Even and odd functions.
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If we apply the Fourier transform to this decomposition, we obtain the

following:
fm (fe(2) + fo(2))(cos wt — jsinwt)dt
_ f " L) cos(wt)dr  j f " (f, sin wi)dt
The even part maps to the real part of the Fourier transform and the odd part Observe that [~ g.(t)go()dt = 0

to the imaginary part (and vice versa).

Theorems

Shift theorem
ft—=19) o F(w)e /@0

Example: for f(t) even, f(t— 1) o F(w)e 7, where F(w) is real.

Modulation theorem
f(1)e" o— F(w—wp)

Multiplying by a complex exponential causes a shift in the frequency domain.

Similarity theorem

a

1
at) o —F(—
flat) o+ o F(2)
Convolution This theorem is extensively used in image processing:
f(0) = ()] - g() = [ 8(t)h(t=r)dr = f(r) = h(r)

F(w) H(w) G(w)?

What happens in the Fourier domain?

[: I: PO )h(e=1)dr' e dr

:ft::_w f(t) {jt‘_w_mh(t—t’)e‘f“”dt} dr’

= f F(7)H(w)e " di’ (shift theorem)
t

! —_ 0

G(w)

=H(w)F(w)
H(w) is call the transition function (as opposed to impulse response).

Inverse convolution

F(D)h(1) oo —F(w) x H(w)

2



H(o) ideal low-pass filte

Fourier of some interesting functions

1. Recall the absorption property

[ ote=rpsar = sa)

(o8]

f §(1)e /@t = 1

We will remember the two following results:

Then we have:

6(r) o 1
1 o-e 276(t) (DC-component)

2. Fourier of a harmonic exponential e/®0’;

elwot o—e 276 (w — wp)
N——
modulation

cos(wor)  oe  271(6(w-wp) +8(w+ wp))

sin(wot) o—e Zﬂ.zlj (6(w—wo) —6(w + wp))

3. Fourier of the comb function I11(7) = Y22 _ 6(t —nT):

[e] (o]

n:Z_mé(t—nT) oe % nzz_w(s(s - ;)

(or % 0% oo 6(w — Z2) when using the non-unitary Fourier Trans-
form with angular frequency).

4. Fourier of a 1D Gaussian The 1D Gaussian distribution is defined as

follows:

1 A
e 202

) = oV2rn

When trying to integrate an exponential that contains the variable to
the power 2, we will always try to boil it down to the famous Gaussian

f e dx = r

(se]

integral:
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Figure 2: Low pass filtering by taking the
product H(w)F(w).

Note: using the similarity theorem, we
can derive simpler expressions using the
ordinary frequency s instead of w, for
example:

1
cos(2msgt) o—e 56(5 +s50) +6(s—s0)
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Here is a loose proof of the Gaussian integral:

1= f e dx
P’ = f e dx f e_yzdy
foo foo e—(xz+y2)dxdy

We perform a substitution to use polar coordinates, the integral /> now

takes the following form: x =rcosf

y =rsinf

f f rdrdg dxdy =rdrd6
r=0 Jo=
=2n f 2 dr

r=0

_zn(Lz) [e-rz]w (e) = —2re™)

- 0

=

Now LET’s comPUTE the Fourier transform of a Gaussian distribution:

Ff(1)} e "2 "2l
loa \/271
- _ 2252 2.2
2rs ﬁO' 2 7rs62+7rs2dt
o V27T
—(t+jnos ‘f)
oV2or
1 222
= \Dp
o N2
Therefore the Fourier Transform of a Gaussian is a Gaussian in terms
of s!
Sampling

Definition and problem

Sampling is a multiplication of the signal by the comb function 117 (f) =
> oo 6(t—nT). T is the sampling interval:

[ee]

fs(t) =f(1) Y. 8(t=nT)
n=-—o00
(S for “sampled”) After sampling, we forget about the 7': we just obtain a
sequence of numbers, that we note f;[k].
Examples:
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(a) Video of a rotating wheel. Depending on 7', no motion is perceived,
or even worse, a backward motion is perceived. (We will cover this
example in HW2)

(b) Sinusoidal signal: appearant frequency of sampled signal is different
(c) Same for a checker pattern (Sequence of step functions)

Problem: we want to find the lowest possible sampling frequency, such
that the sampled signal is not corrupted. Solution: Let’s use the frequency
domain to analyze the action of the comb (sampling) function.

Sampling in the frequency domain

Let’s compute the Fourier transform of the comb function:

n;wé(t—nT) o n;wa(w— 2%) _ n;wa(s— )

Remember we defined the frequency s

Sampling in the time domain is a multiplication with the comb func- where w = 27s

tion IT1(¢), therefore in the frequency domain it is a convolution with the
Fourier of the comb, which is a sum of impulses §(w — wy).

The convolution with one impulse 6(w — wy) corresponds to shifting
the spectrum such that it is centered around wy instead of 0.

While in the time domain sampling is very simple, in the Fourier do-
main it is a complete mess: it is equivalent to “xeroxing” the signal (mak-
ing several shifted copies of it) in the frequency domain:

Figure 3: Sampling in the time domain
corresponds to xerozing in the Fourier
domain. Plot 1: spectrum of a rectangle
(sinc function). Plot 2: spectrum and
replicas after convolving with impulses.

oo a2 i iz 0 piz p ooz 2p Plot3: result of convolution with comb
function (sum of spectrum and replicas).
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Fourier transform of a discrete signal To recover the signal, we need to
be able to isolate the spectrum from its replicas: generally this is done by
applying a low-pass filter rect(7)(like in figure 2). Even if the signal is
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band-limited, i.e. with maximum frequency wmax, we need to have:

This result is known as the sampling

Wsampling 2 2Wmax, 1.€. Wmax <
S——— theorem.
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