
CIS 580 Spring 2012 - Lecture 2
January 23, 2012 Notes and figures by Matthieu Lecce.

Last lecture’s main result: linear shift-invariant (LSI) systems can be repre-
sented as a convolution.

The Fourier Transform
Quick reminder on complex numbers:

• a + jb ∈ C, j2 = −1

• e jωt = cos(ωt) + j sin(ωt).

Definition of the Fourier Transform:

f (t)�F(ω) = F { f (t)}

F :R→ C

F(ω) =
∫ ∞

−∞

f (t)e− jωtdt,

where ω denotes the frequency. This definition is sometimes called non-
unitary Fourier transform, with angular frequency (ω is referred to as angular
frequency, and s such that ω = 2πs is the ordinary frequency).

Inverse Fourier transform:

f (t) =
1

2π

∫ ∞

−∞

F(ω)e jωtdω

Domains:

• f (t) defined in time (or space for x, y) domain

• F(ω) defined in frequency (or spatial frequency) domain

The Fourier transform can be defined as a function of s, the frequency,
where ω = 2πs, in which case the definitions can be rewritten as follows:

F(s) =
∫ ∞

−∞

f (t)e− j2πstdt

f (t) =
1

2π

∫ ∞

−∞

F(s)e j2πstds

Function symmetry and Fourier

Definitions:

• A function fe is said even when fe(−t) = fe(t)

• A function fo is said odd when fo(−t) = − fo(t)
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Example of odd function

Figure 1: Even and odd functions.

Any function f (t) can be decomposed into an odd and an even part:

f (t) = fe(t) + fo(t)

where fe(t) =
1
2
( f (t) + f (−t)) is even

fo(t) =
1
2
( f (t) − f (−t)) is odd
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If we apply the Fourier transform to this decomposition, we obtain the
following: ∫ ∞

−∞

( fe(t) + fo(t))(cosωt − jsinωt)dt

=

∫ ∞

−∞

fe(t) cos(ωt)dt − j
∫ ∞

−∞

( fo sinωt)dt

The even part maps to the real part of the Fourier transform and the odd part Observe that
∫ ∞
−∞

ge(t)go(t)dt = 0

to the imaginary part (and vice versa).

Theorems

Shift theorem
f (t − t0)� F(ω)e− jωt0

Example: for f (t) even, f (t − T
2 )� F(ω)e− jω T

2 , where F(ω) is real.

Modulation theorem
f (t)e jω0t � F(ω −ω0)

Multiplying by a complex exponential causes a shift in the frequency domain.

Similarity theorem

f (at)�
1
|a|

F(
ω

a
)

Convolution This theorem is extensively used in image processing:

f (t) → h(t) → g(t) =
∫ ∞
−∞

g(t′)h(t − t′)dt′ = f (t) ∗ h(t)

� � �

F(ω) H(ω) G(ω)?

What happens in the Fourier domain?

G(ω) =

∫ ∞

−∞

∫ ∞

−∞

f (t′)h(t − t′)dt′e− jωtdt

=

∫ ∞

t′=−∞
f (t′)

{∫ ∞

t=−∞
h(t − t′)e− jωtdt

}
dt′

=

∫ ∞

t′=−∞
f (t′)H(ω)e− jωt′dt′ (shift theorem)

=H(ω)F(ω)

H(ω) is call the transition function (as opposed to impulse response).

Inverse convolution

f (t)h(t)�
1

2π
F(ω) ∗ H(ω)
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H(ω) ideal low−pass filter
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F(ω) spectrum of some signal
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Filtered spectrum: F(ω)H(ω)

Figure 2: Low pass filtering by taking the
product H(ω)F(ω).

Fourier of some interesting functions

1. Recall the absorption property∫ ∞

−∞

δ(t − t0) f (t)dt = f (t0)

Then we have: ∫ ∞

−∞

δ(t)e− jωtdt = 1

We will remember the two following results:

δ(t) � 1
1 � 2πδ(t) (DC-component)

2. Fourier of a harmonic exponential e jω0t:

e jω0t �︸︷︷︸
modulation

2πδ(ω −ω0)

cos(ω0t) � 2π. 1
2 (δ(ω −ω0) + δ(ω+ω0))

sin(ω0t) � 2π. 1
2 j (δ(ω −ω0) − δ(ω+ω0))

Note: using the similarity theorem, we
can derive simpler expressions using the
ordinary frequency s instead of ω, for
example:

cos(2πs0t)�
1
2
δ(s + s0) + δ(s − s0)3. Fourier of the comb function X(t) =

∑∞
n=−∞ δ(t − nT ):

∞∑
n=−∞

δ(t − nT )�
1
|T |

∞∑
n=−∞

δ(s −
n
T
)

(or 2π
|T |

∑∞
n=−∞ δ(ω −

2πn
T ) when using the non-unitary Fourier Trans-

form with angular frequency).

4. Fourier of a 1D Gaussian The 1D Gaussian distribution is defined as
follows:

f (t) =
1

σ
√

2π
e−

t2

2σ2

When trying to integrate an exponential that contains the variable to
the power 2, we will always try to boil it down to the famous Gaussian
integral: ∫ ∞

−∞

e−x2
dx =

√
π
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Here is a loose proof of the Gaussian integral:

I =
∫ ∞

−∞

e−x2
dx

I2 =

∫ ∞

−∞

e−x2
dx

∫ ∞

−∞

e−y2
dy

=

∫ ∞

−∞

∫ ∞

−∞

e−(x2+y2)dxdy

We perform a substitution to use polar coordinates, the integral I2 now

x =r cos θ

y =r sin θ

dxdy =rdrdθ

takes the following form:

I2 =

∫ ∞

r=0

∫ 2π

θ=0
e−r2

rdrdθ

=2π
∫ ∞

r=0
re−r2

dr

=2π
(

1
−2

) [
e−r2

]∞
0

((e−r2
)′ = −2re−r2

)

=π

Now let’s compute the Fourier transform of a Gaussian distribution:

F { f (t)} =
1

σ
√

2π

∫ ∞

−∞

e−
t2

2σ2 e−2πstdt

=
1

σ
√

2π

∫ ∞

−∞

e
− t2

2σ2 −2πs t
σ
√

2
σ
√

2−π2 s2δ22+π2 s22
dt

=
1

σ
√

2π

∫ ∞

−∞

e−(t+ jπσs
√

2)2

=
1

σ
√

2π
e−2π2σ2 s2 √

2π

Therefore the Fourier Transform of a Gaussian is a Gaussian in terms
of s!

Sampling

Definition and problem

Sampling is a multiplication of the signal by the comb function XT (t) =∑∞
n=−∞ δ(t − nT ). T is the sampling interval:

fS (t) = f (t)
∞∑

n=−∞
δ(t − nT )

(S for “sampled”) After sampling, we forget about the T : we just obtain a
sequence of numbers, that we note fs[k].

Examples:
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(a) Video of a rotating wheel. Depending on T , no motion is perceived,
or even worse, a backward motion is perceived. (We will cover this
example in HW2)

(b) Sinusoidal signal: appearant frequency of sampled signal is different

(c) Same for a checker pattern (Sequence of step functions)

Problem: we want to find the lowest possible sampling frequency, such
that the sampled signal is not corrupted. Solution: Let’s use the frequency
domain to analyze the action of the comb (sampling) function.

Sampling in the frequency domain

Let’s compute the Fourier transform of the comb function:

∞∑
n=−∞

δ(t − nT )�
∞∑

n=−∞
δ(ω −

2πn
T

) =
∞∑

n=−∞
δ(s −

n
T
)

Remember we defined the frequency s
where ω = 2πsSampling in the time domain is a multiplication with the comb func-

tion X(t), therefore in the frequency domain it is a convolution with the
Fourier of the comb, which is a sum of impulses δ(ω −ω0).

The convolution with one impulse δ(ω − ω0) corresponds to shifting
the spectrum such that it is centered around w0 instead of 0.

While in the time domain sampling is very simple, in the Fourier do-
main it is a complete mess: it is equivalent to “xeroxing” the signal (mak-
ing several shifted copies of it) in the frequency domain:
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0
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0
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Figure 3: Sampling in the time domain
corresponds to xerozing in the Fourier
domain. Plot 1: spectrum of a rectangle
(sinc function). Plot 2: spectrum and
replicas after convolving with impulses.
Plot3: result of convolution with comb
function (sum of spectrum and replicas).

Fourier transform of a discrete signal To recover the signal, we need to
be able to isolate the spectrum from its replicas: generally this is done by
applying a low-pass filter rect(Ts)(like in figure 2). Even if the signal is
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band-limited, i.e. with maximum frequency ωmax, we need to have:

ωsampling︸    ︷︷    ︸
= 2π

Ts

≥ 2ωmax, i.e. ωmax ≤
π

Ts
This result is known as the sampling
theorem.
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