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Reconstruction from two calibrated views

We want to estimate the transformation between two camera and the 3D
positions of a set of observed points, given 2D-2D correspondences in the
two images: (uj,vy) matched to (up, v2).

Assuming a simple camera model with focal length f, the calibrated rays
are directed by the following vectors:
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The epipolar constraint relates pj, p» and the motion parameters:

pI(TxRpy) =0, )

and it just states that the two calibrated rays are coplanar in a plane that goes
through the baseline 7.

If we fix pj, the constraint defines a line which is simply the projection of
the ray p; in the screen of 2. Such a line is called an epipolar line.

All epipolar lines in 2 go through e», the projection of C; in the screen of
2. e1, ey are called the epipoles.

GEOMETRIC INTERPRETATION: In figure 1, notice that the plane C{C» P in-
tersects screen 1 at the epipolar line e X p1, and it intersects screen 2 at the
epipolar line e X py. Both lines are defined from the epipolar constraint (eq.
1), by fixing p; or p». Using this geometric interpretation, it is easy to derive
e1, ey either from the epipolar constraint:

egr~T, ey~ -RTT

Note on coordinate transforms 1If the axes of camera 2 are translated of
T and rotated of R with respect to the axes of camera 1, the relationship
between the coordinates is the following:

Py, =RP,+T
Therefore we have another way to derive ey, e;:

eg =RO+T,
O0=Rer+T,

ie.er =T

ie.eo=-R'T

Notes and figures by Matthieu Lecce.

Structure from motion, epipolar geometry

Figure 1: R, T transform the axes of 1
into the axes of 2, therefore in terms of
coordinates Py = RP> +T.

Note that 1p» = RAzp> + T, but the
epipolar constraints enables us to get rid of
the depth.

Notice that what happens to the coordinates
is the “opposite” of what happens to the
axes: if C; is translated of 100 along X with
respect to C1, then we need to subtract 100
to the X-coordinate of P to obtain P, if
P, P, describe the same point P



The essential matrix

0 -1, -4
We define the essential matrix eR™ whereT=| 1, 0 —t
-ty tr O

The epipolar constraint can then be reformulated very simply:
PIEpy =0

Naturally, this linear equation involving the parameters of E encourage us
to estimate E using several pairs of matching points (pj, p2). The interest of
estimating the essential matrix is two-fold:

e Once we have E, we can plot epipolar lines: given a point p;, then the
corresponding point in the first image is on the following line:

[x y 1]£12/:O
3x1

e Since E is defined with the help of T and R, we can first estimate E from a
set of correspondences, and then recover the motion parameters from E.

Estimating E  As usual, we want to formulate and solve a linear system

Ae = 0 where A is some matrix containing the point positions and e contains
the parameters of E, to estimate. Given a pair of matching points p1, p2, we
can further rewrite the constraint as follows, writing E in form of a vector:

€1
T T T _
[ P2xPy  P2yP; P2zP ] e |=0 (2
1x9 €3
9x1
el [
whereeg = | e |€R%is just E written as a vector,i.e. E =| e; ey e3
e3 (N
For every correspondence p1, pp we obtain a linear homogeneous equation
€l
w.rt.| ex | = es: we need 8 independent equations, i.e. 8§ matching points.
€3
The 8-point algorithm

By stacking eight independent equations as defined in equation 2, we obtain
a system of form Aes = 0 (A is 8 X 9): e, is in the null-space of A, hence

N N
es =vif A=UZVT isthe SVDofAandV =| vl v, ... vg
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Using the anti-symmetric matrix T enables
us to write the cross-product with 7" as a
matrix-vector product: for any P € R3,
TxP=TP.

P2xP1
P2yP1
P2:p1
Hadamard product of p; and p, and is noted
P1®Pp2.

Therefore equation 2 can be rewritten as
(pl ®P2)T€s =0.

The vector € R? is called the

E can be estimated up to a scale factor



If we recover E with this method, are we sure it will be an “acceptable”

essential matrix? We have to define what it means from a matrix to be es-

sential: concretely it means that is is the product of an antisymmetric and a

special orthogonal matrix. Can any 3 X 3 real matrix E be decomposed into

E=TR?

E-properties

Here are a few properties that will be useful in subsequent derivations:

IN THIS SECTION, we are going to show that an essential matrix can be char-

ET =R'TT
TT=-T,Ta=Txa

ETT =0.

det(E) = det T.detR = 0, therefore o3 = 0 (o3 is the smallest singular

value of E)

acterized by its singular values. Namely if E is an essential matrix (i.e. de-

composable into ?R), its singular values verify ooy = 03, and o3 = 0. We

just proved that o3 = 0.

Remember that the singular values of E are the eigenvalues of ET E or

EET, i.e. the solutions of the following characteristic polynomial:

We want to characterize the singular values without solving the characteristic

detEET — o1 = 0.

polynomial. We exploit the fact that R R = I to find a nice form for EE”:

EET =TT"
=117 -TTTI
2 oty tt
=0 2 . |-ITIPI
0 0 ¢
0
If ||T|| = 1, then there exists a rotation U suchthat UT =| 0 | =T,
1

And we are going to try to express EET as a function of the following

simple matrix:

1 00
01 0
0 00

LemMa: If Q is orthogonal (Q7 Q = I), then

Qa = gaQ’

c18 580 sprRING 2012 - LECTURE 23

We know other examples of decompositions

that work for any 3 X 3 matrix:

e QR factorization: A = QR (Q orthogo-

nal, R upper triangular),

e SVD decompositions, A = UZVT

Is “TR” a valid decomposition for any 3 X 3

matrix?

Remember that the determinant of a matrix
is the product of its eigenvalues, and for any
matrix A, the null-space of A is the same as

the null-space of ATA.

We can always rotate a vector to align it to

the Z-axis.
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PrOOF: Qab = Qax b = Q(ax QTb) = gaQ”b.

I~

We are now able to express T as T.UT = UTTU

EET =7T" =UTT,UU'TIU

U
0
1
0

o o o
<

EET is symmetric hence oy = 1,0, = 1,03 = 0. We can now formulate

conditions that characterize essential matrices.

NECESSARY coNDITION: If E is an essential matrix (i.e. E = TR) then E has
two equal singular values and one singular value equals zero.

SUFFICIENT CONDITION:

o 0 0
E=U|0 o 0|V
0 0 O
1 0 0
=cU| 0 1 0 |V
0 0 O [1 0 0]
N 0 1 0
=oUT, R,V 0 0 o
=0 UT. URV' 0 1 0][0 1 0
——
antisymmetric orthogonal =/ -1 00 “1 0 0]
0O 0 O 0o 0 1
0 :TzTRz,n/Z
Observe UT, = U| 0 |, which is the last column of U
1

We just showed that there is at least one such decomposition, but is it

unique?

NECESSARY AND SUFFICIENT CONDITION: E is essential iff o (E) = 02(E) #
0and o3(E) = 0.

How many ways can we decompose E?. This is important, not just for mathematical
purposes: we need to find all solutions of

the system, in case some of them are not
correct (do not satisfy some constraints)

We showed the following decomposition:

1 00 0 1 0 0 -1 0

01 0|=|-1 00 1 0 O

0 00 0 0 O 0 0 1
77?3 Ron/2

1 00
But we could similarly write | 0 1 0 | = T,R. _/».
000



Pose recovery from the essential matrix

o 0 0
IfE=UXVI =U| 0 o 0 [V, there are two solutions for the pair
0O 0 O

(T,R):

(T1.R) =(UR, 4z /2XU", URzT,+zr/2VT)

(T2,R2) =(UR,_n/pXU" , UR!__ V")
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