
CIS 580 Spring 2012 - Lecture 3
January 25, 2012 Notes and figures by Matthieu Lecce.

Review from last lecture:

• Sampling (or time-sampling) is a multiplication with the comb function
X(t) =

∑∞
n=−∞ δ(t − nT ) (infinite trail of Dirac functions).

• It corresponds to a convolution with
∑∞

n=−∞ δ(ω −
2πn
T ) in the frequency

domain.

• Concretely this means that in the frequency domain, the signal is replicated
(“xeroxed”) at frequencies 2πn

T , n ∈ Z

• Question: Can we recover the original signal? In other words, can we
isolate the original Fourier of f (t) for this convolution (replication).

• Answer: Yes, if 2ωmax ≤ ωsampling = 2π
T , in which case we multiply the

Fourier of the sampled function with a rectangle function (low-pass filter).

Fourier and sampling

Reconstructing a sampled signal

FS (ω) = F(ω) ∗
∞∑

n=−∞
δ(ω −

2πn
T

)

The rectangle function Π(t) is defined as follows:

Π(t) =


1

2π −π ≤ ω ≤ π

0 anywhere else

What signal do we recover by multiplying with Π(ω)?

f (t)
∞∑

n=−∞
δ(t − nT ) ∗ F −1(Π(ω))

Let’s compute the Fourier transform of a box (rect) filter:

Π(t) = rect(t)

1 |t| ≤ 1
2

0 anywhere else

Similarly, the inverse transform is the following (this is the one we need to
understand the effect of low-pass filtering)

F {rect(t)} =
∫ 1/2

−1/2
1e− jωtdt

=
1
− jω

[
e− jωt

]1/2

−1/2

=
1
− jω

[
e− jω/2 − e jω/2

]
=

1
− jω

(
−2 j sin

ω

2

)
=

sin ω
2

ω
2

= sinc
(
ω

2

)
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F −1{rect(ω)} =
1

2π

∫ ∞

−∞

rect(ω)e jωtdt

=
1

2π

∫ 1/2

−1/2
e jωtdt

=
1

2π
1
jω

[
e jωt

]1/2

−1/2

=
1

2π
sinc

( t
2

)
We will remember the following definititions and results: Definitions:

Π(ω) =

 1
2π |ω| ≤ π

0 anywhere else

rect(ω) =

 1
2π |ω| ≤ 1

2

0 anywhere else

1
2π

sinc(t/2)�rect(ω)

2πsinc(πt)�
1

2π
rect

(
ω

2π

)

Remember the scaling theorem:

f (αt)�
1
|α|

F
(
ω

t

)Reconstructed signal:

freconstr(t) = f (t)
∞∑

n=−∞
δ(t − nT ) ∗ 2πsinc(πt)

=
∞∑

n=−∞
f [n]2πsinc(πt)

Discrete Fourier Transform

Definition of the Discrete Fourier Transform, for a discrete signal f [n]:

f [n]�
L−1∑
n=0

f [n]e− j 2πk
L n = F[k]

with finite length: n = 0 . . . L − 1

Note the implicit definition ω = 2πk
L

Important: A discrete signal still has a continuous Fourier transform! The
Discrete Fourier Transform corresponds to a sampling in the (continuous)
frequency domain.

f [n]�
L−1∑
n=0

f [n]e− jωn −2pi −3pi/2 −pi −pi/2 0 pi/2 pi 3pi/2 2pi
0

1

2

3

4

5
Periodic spectrum corresponing to a sampled signal
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The DFT samples L values on one period of the spectrum

Figure 1: The DFT samples L values of one
period of the spectrum by multiplying by the
comb

∑
δ
(
ω − 2πk

L

)

What does sampling in the frequency domain (as in figure 1) correspond to
in the time/space domain? It corresponds to a convolution:

• Frequency domain: multiplication with
∑
δ(ω − 2πk

L )

• Time domain: convolution with with
∑
δ[n − kL], equivalent to replica-

tion of the signal at multiples of its length.
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Fourier and derivation

Exact derivative in the Fourier domain

We are interested in the Fourier of the derivative of a function:

f (t)�F(ω)

d f (t)
dt
�?

Bad idea: ∫ ∞

−∞

d f
dt

e− jωtdt

Smart idea:

f (t) =
1

2π

∫ ∞

−∞

F(ω)e jωtdω

d f (t)
dt

=
1

2π

∫ ∞

−∞

F(ω) jω e jωt

= jω
1

2π

∫ ∞

−∞

f (t)e jωtdω

= jωF(ω)

Therefore, when taking a DFT (spectrum is periodic), the derivation is
equivalent to multiplying the spectrum by the periodic function represented
by figure 2:
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Figure 2: Derivating is equivalent to multi-
plying the spectrum by jω

Approximating the derivation with a filter

In many applications we need the derivative of the signal with respect to
x or t. The goal of this section is to approximate the function in figure 2
(multiplication by jω in the frequency domain) with an LSI filter (we will
call it a derivative filter). More specifically, we want to find a discrete filter of
impulse response h[k], k = 1...K (K small) such that:

1. The DFT of h is close to jω

2. We “dump” high frequencies (DFT also corresponds to box sampling in
frequency domain, so no approximation is needed for high frequencies)

Then, when we are given a discrete signal f [n] represented in figure 3,
all we have to do is to apply the filter to obtain g[n], an approximation of the
derivative of f .

g[n] =
∞∑

l=−∞

f [l]h[n − l],
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Figure 3: Discrete signal f[n]: how to
compute an approximation of the derivative
of f[n]?

Preliminary: The step function is defined such that d
dt u(t) = δ(t)
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The sign function comes handy: sgn(t) = 2u(t) − 1, u(0) = 1/2, or
equivalently u(t) = 1

2 + 1
2 sgn(t).
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Step function

Figure 4: Step function.

We have the following straightforward Fourier transforms:

u(t)�U(ω) =
1
2
δ(ω) +

1
jω

d
dt

sgn(t) = 2δ(t)� jωF (sgn(t)) = 2.

A simple derivative filter Let’s take the example of the following simple
filter designed to approximate the derivative:

g[n] = f [n] − f [n − 1]

h[l] = {1,−1}� H(ω) =
1∑

l=0

h[l]e− jωl

=1 − e− jω

=1 − cosω+ j sinω

=2 sin2 ω

2
+ j2 sin

ω

2
cos

ω

2

=2 sin
ω

2
(cos

ω

2
+ j sin

ω

2
)

Therefore the magnitude of the transform is the following

|H(ω)| =

∣∣∣∣∣2 sin
ω

2

∣∣∣∣∣
(to be continued)
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