
CIS 580 Spring 2012 - Lecture 6
Filters for detection
February 6, 2012 Notes and figures by Matthieu Lecce.

In this section, we are interested in building filters to detect patterns in a
signal. By pattern we mean a portion of the signal with a distinctive behavior:
edge, corner, portion oscillating at a specific frequency.

Gabor functions

Gabor functions can be considered as local band-pass filters: they are de-
signed to detect portions of the signal that oscillate at a specific frequency ω1:
namely the output of the convolution tells us how much each position of the
signal looks locally like a sinusoidal wave of frequency ω1.

Gaussian filter

As an example, let’s first consider a simple Gaussian filter:
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What is the output of this filter for a cosine input? We have:
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Therefore in the Fourier domain the output spectrum is (see figure 1):
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Figure 1: Spectrum of a cosine filtered by a
Gaussian: F(ω)G(ω)

And the output signal is (by taking the inverse transform and noticing that
e−σ

2ω2
0/2 acts as a constant):

cosω0t ∗ g(t) = e−σ
2ω2

0/2 cosω0t

Gabor functions are modulated Gaussians

The Gaussian filter can be seen as a low-pass filter: it eliminates frequencies
too far away from its mean, zero. How to obtain a band-pass filter instead?
We can simply modulate the Gaussian filter, and we obtain what we call a
Gabor function:
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See figure 2 for an example of Gabor filter (real and imaginary parts).
What is the output of this modulated filter for cos(ω0t)? In the Fourier do-
main we obtain (see figure 3):
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Figure 2: Example of Gabor filter: notice
the exponential envelope, and the real and
imaginary part are in quadrature (cos and
sin)

When the Gaussian is relatively narrow in the frequency domain, the small
peak at −ω0 in figure 3 can be neglected, and the output is essentially a com-
plex exponential of frequency ω0, and of magnitude eσ

2(ω1−ω0)
2
. The good

news is that as ω0 gets away from ω1, the magnitude decreases, producing
the desired band-pass effect. The bad news is that the real and imaginary
part of the output depend on t: they are “phase-dependent”, which means
that even when we convolve a sine wave at fixed frequency with a Gabor
filter, the real/imaginary components of the output are not constant but are
waves of same frequency. Because the components are in quadrature (the
phase difference is π/4), we simply take the norm of the output and obtain a
non-oscillating response, as demonstrated in figure 4.

−w_0 0 w_0 w_1
−0.5

0

0.5

1

1.5

2

ω

|F
|

Figure 3: Spectrum of a cosine filtered by a
modulated Gaussian: F(ω)G(ω)0 200 400 600 800 1000
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Figure 4: Convolution of our Gabor
example (fig. 2) with a signal at increasing
frequency: notice that the outputs have same
frequency as the input, only the magnitude
change: it reaches a maximum exactly when
the signal is oscillating at the frequency
of the filter. All these plots are in the time
domain.

The phase-invariance of the norm of the Gabor output is important, since
we want to be able to detect frequency patterns (and potentially edges and
ridges) no matter what their phase is (how much they locally look like a sine
or a cosine, or how they are translated).
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Signal/spectrum spread: time localization VS frequency accuracy

We can use Gabor filters to localize pieces of a signal that oscillate at a cer-
tain frequency: for instance, if we were looking for the character “Waldo”
in a 2D image, we could use the fact that he is wearing a distinctive red-and-
white striped shirt and use a Gabor filter of appropriate frequency on the red
channel of the image.

When using such a filter for detection, we are interested in the spread
of a filter and its spectrum, because:

• a filter of small spread in the time/space domain enables precise localiza-
tion of the pattern (for example in figure 4, the localization of

the desired frequency is rough, as the filter
in figure 4 has quite a large support)• a filter whose spectrum has a narrow spread (think of it as a narrow band-

pass filter) will enable precise detection of a specific frequency.

The spread of a signal of finite support f is the second order moment∫ ∞
−∞

t2 f 2(t)dt and gives a measure of how wide the support is. As we have observed in the past lectures,
signals of small spread tend to have a wide
spectrum.

This is formalized by a result named the “uncertainty principle of signal
processing”:

• For a signal/filter of spread ∆t2 =
∫ ∞
−∞

t2 f 2(t)dt...

• ...whose spectrum has spread ∆ω2 =
∫ ∞
−∞

ω2F2(ω)dω...

• ... we have ∆t∆ω ≥ lower bound.

2D Gabor function

We can derive a 2D version of the Gabor function to detect oscillating patters
in images, at a given frequency ω1 and orientation θ. Let’s start from the
horizontal version of the filter:
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Notice that the Gaussian envelope is 2D, but the harmonic exponential
is along one direction (x-xaxis here). If we want to detect oscillations at a
different orrientation, we need a rotated Gabor:
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Let’s compute the Fourier of the 2D Gabor function:
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Now for the rotated version, notice that:
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and we apply a rotation Rθ to x and y 1: 1
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Since the diagonal matrix commutes and RθRT

θ = I. Intuitively the Fourier
of the rotation is the original Fourier, rotated of the same amount. Indeed,
remember this result from last lecture:
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Edge detection with Gaussian derivative filters

We now look at a different set of filters: Gaussian derivatives. They can also
be seen as band-pass filters, but here instead of modulating a Gaussian, we
look at its derivatives. Intuitively, because of the derivation rule for convolu-
tion, convolving an image with a Gaussian derivative is the same as smooth-
ing the image (applying a Gaussian filter) and then looking at the derivatives
of the output.

1D edge

An ideal edge is a step function u(t). Instead of detecting the ideal edge, we
can detect a smoothed edge. We have the following result from HW1:

d
dt
(u(t) ∗ g(t)) = g(t)

 

 

u(t)

d/dt(u*g(t))=g(t)

Figure 5: Edge detection with a Gaussian
filter: d

dt (u(t) ∗ g(t)) = g(t).

Therefore the location of the edge can be given by maxt
d
dt ( f ∗ g)(t), as

shown in figure 5.

2D edge detection

The 2D version can be see as an image intensity that goes from a low to a
high along a direction θ.
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The isotropic Gaussian is the following:

g(x, y) =
1

σ22π
e−(x2+y2)/2σ2

We have:

gx(x, y) =
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Now again, when we apply a rotation of angle θ > 0
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The function gx(RT (x; y)) takes the following very simple form:

gx(RT (x; y)) = cos θgx + sin θgy = (cos θ sin θ)∇g.

To compute the derivative of an image in direction θ, all we need to do is the
following:

cos θ(gx ∗ I) + sin θ(gy ∗ I) This property is called steerability: we will
cover it more extensively in the next lecture.

Recall that the 1D step edge can be localized as the maximum of d
dt (u(t) ∗

g(t)).
In the 2D case, there is an edge at (x, y) if the first derivative of the convo-

lution with the Gaussian has a maximum in the direction of the gradient.
Remark: the maximum is a non-linear operation. Is there a linear way to

find edges? Yes, by taking the derivative of the above quantity: d2

dt2 (u(t) ∗
g(t)). Therefore an edge corresponds to a zero-crossing of the second
derivative of the smoothed signal.
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