
CIS 580 Spring 2012 - Lecture 9
February 13, 2012 Notes and figures by Matthieu Lecce.

Scale Space and Scale Invariant features

Last time, we introduced the diffusion equation ∂L
∂t =

2D
1
2∇

2L with boundary

conditions L(x, y, t = 0) = I(x, y)︸ ︷︷ ︸
image

, and said that the solution is the image

I(x, y) convolved with a Gaussian (t = σ2):

L(x, y, t) = g(x, y, t = σ2) ∗ I(x, y).
Indeed the necessary condition is ∂g

∂t =
1
2∇

2g, in 1D ∂g
∂t = 1

2
∂2g
∂x2

We introduced the scalability property of the Gaussian. Let I′ be a scaled
version of an image I (I(x) = I′(sx), where s is the size)) and L′(x′, t′) = Do not confuse s with t or σ, s in the

intrinsic scale or “size” of a feature.g(x′, t′) ∗ I′(x′), we have:
We define x′ = sx

L(x, t) = L(x′, t′) for t′ = s2t .

(Last time we showed it two ways: by computing the convolution and by
using Fourier)

We also showed that this is not true for the derivatives of the diffused
image (recall they are equal to the image convolved with the Gaussian deriva-
tive):

∂mL(x, t)
∂xm =

∂mL′(x′, t′)
∂x′m

∂mx′

∂xm

=
∂mL′(x′, t′)

∂x′m
sm

Last time we introduced and explained, with a 1D and a 2D example, the

since x′ = sx

need for a scale normalization to compensate for this shrinkage of the output
amplitude at bigger scales.

We now formalize this concept of normalized derivative by substituting
ξ = x

tγ/2 (“γ-normalized” derivative). We have:

∂mL(x, t)
∂ξm =

∂mL(x, t)
∂xm

∂mx
∂ξm

=sm(1−γ) ∂
mL(x′, t′)
∂x′m

=
∂mL(x′, t′)

∂x′m
for γ = 1

cis 580 spring 2012 - lecture 9 2

We are mostly interested in the second derivative (Laplacian), because of
the diffusion equation. In the non-normalized case, we have:

∂g
∂t

=
1
2
∂2g

∂x2

Normalized case (with γ = 1):

∂2g

∂ξ2 =
∂2g

∂x2
∂2x

∂ξ2 = σ2 ∂
2g

∂x2

ξ =
x

tγ/2
=

x
σ

t = σ2, γ = 1

∂g
∂σ

= σ
1
σ2

∂2g

∂ξ2 =
1
σ

∂2g

∂ξ2

Let’s take a moment to realize how useful this result is:

• Instead of filtering the image with a normalized 2nd-derivative filter w.r.t.

x, we can use ∂g
∂σ

The 2nd-derivative filter is also called
Laplacian of Gaussian (LoG)

• ∂g
∂σ

can be simply approximated as a finite difference

• Therefore we have a simple and efficient way to compute the scale normal-
ized second derivative filtering of an image I: we take a simple difference
of two blurred versions of I.

We saw that scale normalization is critical if
we want responses to be comparable across
scales.

Approximating ∂g
∂σ

∂g
∂σ
≈

g(x,σ+ ∆σ) − g(x,σ)
∆σ

We note σ+ ∆σ = κσ (κ = 1.01 would be a good approximation), and
we have:

∂g
∂σ
≈

g(x, κσ) − g(x,σ)
σ(κ − 1)

= DoG A Difference of Gaussians (DoG) is the
difference of two Gaussians of same center
and different σ.

DoG = (κ − 1)σ ∂g
∂σ

= (κ − 1)
∂2g

∂ξ2︸︷︷︸
normalized LoG

“Every DoG is a LoG” in the normalized case (which is the only case we
care about of course).

We apply this recursively to build a pyramid, starting from original image:

• We convolve it with a Gaussian g(x,σ)

• We subsample it by 2

• We obtain I2(x)� I(ω) ∗
∑∞

n=−∞ δ(ω − nπ)

cis 580 spring 2012 - lecture 9 3

Because of the effect of subsampling in the frequency domain, we should
eliminate all frequency components |ω| > π

2 . A rect-filter is not an option
because it has an infinite impulse response (sinc).

Given that we want to maintain the scale space properties, we have to find
out the effect of a discrete Gaussian filter (e.g. the binomial filter introduced
in lecture 7). Remember that the DTFT of a discrete filter is: the binomial filters also have the nice

property that they sum to powers of 2

(
∑n

k=1

(
n
k

)
= 2n), so they are easily

normalized
H(ω) =

n∑
k=−n

h[k]e− jωk

(Slides)

Scale for feature matching

Scale is important to match features: the window size to compute local fea-
tures (histogram) needs to be right in order to match features correctly.

Many recent algorithms apply scale detection (SIFT) at all positions in the
image, but ideally we are interested in finding interest points, by finding

max
x,y

max
σ

(
σ2 ∂

2g

∂x2 ∗ I(x)
)

Note that some approaches don’t take the
maximum over positions and just compute
the features at optimal scale for every point
on a grid.

Blob detection We will implement a simple multi-scale blob detection sys-
tem in the next homework. We will use the LoG filter because of its appear-
ance similar to a blob. Inside the same octave, we will take simple differences
of Gaussians to approximate the normalized Laplacian. We will not implement octaves, which are

obtained by subsampling.After computing the DOG, we compute maximum at every pixel (wrt. σ),
and then we try to find maximum with respect with position (using derivative
approximation: Taylor expansion, see slides).

Play with Andrea Vedaldi’s VLFeat toolbox for SIFT detection and de-
scriptor computation.

	Scale Space and Scale Invariant features

