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Why estimate motion?

Track objects

Courtesy: Kevin Cannons
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Track objects
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Why estimate motion?

original stabilized

Video stabilization
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Why estimate motion?

Understanding behavior
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Problem definition: 
Motion estimation 

Estimate pixel motion between successive images

I(x, y, t) I(x, y, t+∆t)

Key assumption:  Brightness remains constant
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Problem definition: 
Motion estimation

input sequence
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optical flow estimate

Problem definition: 
Motion estimation
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stabilized sequence

Problem definition: 
Motion estimation

input sequence
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Beyond scope
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Today’s agenda

Motion Field
vs.

Optical Flow
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Motion field

p = Π(P)

When objects move or the 
camera moves the result is 
changes in the images.

Changes can be used to 
capture the relative motions 
as well as the shape of the 
objects.

P

p
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Motion field

v

VDefinition:  Motion field 
assigns a velocity vector to 
each point in the image 
according to how the point 
in 3D moves.

v =

�
dx/dt
dy/dt

�
=

dp

dt
=

dΠ(P)

dt
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Motion field

v

VDefinition:  Motion field 
assigns a velocity vector to 
each point in the image 
according to how the point 
in 3D moves.

v =

�
dx/dt
dy/dt

�
=

dp

dt
=

dΠ(P)

dt

Wednesday, February 22, 2012



Motion field

v

V

v =
dp

dt
=

dΠ(P)

dt

We want the motion field:
• geometric concept
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Motion field

v

V

v =
dp

dt
=

dΠ(P)

dt

We want the motion field:
• geometric concept

We have images:
• photometric concept
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Motion field

v

V

v =
dp

dt
=

dΠ(P)

dt

Definition: Optical flow is 
the apparent motion of the 
brightness pattern.
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Motion Field

Optical Flow
�=
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Optical Flow
�=
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Image brightness of a point 
remains constant over time 
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Brightness constancy: 
Constraint equation

I(x+∆x, y +∆y, t+∆t) = I(x, y, t)

x

I

I(x, t)
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Brightness constancy: 
Constraint equation

I(x+∆x, y +∆y, t+∆t) = I(x, y, t)

x

I

I(x, t)
I(x, t+ 1)

∆x
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Brightness constancy: 
Constraint equation

I(x+∆x, y +∆y, t+∆t) = I(x, y, t)

Wednesday, February 22, 2012



Brightness constancy: 
Constraint equation

I(x+∆x, y +∆y, t+∆t) = I(x, y, t)

LHS: Taylor series expansion

Wednesday, February 22, 2012



I(x, y, t) +
∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t+ h.o.t. = I(x, y, t)

Brightness constancy: 
Constraint equation

I(x+∆x, y +∆y, t+∆t) = I(x, y, t)

LHS: Taylor series expansion
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I(x, y, t) +
∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t+ h.o.t. = I(x, y, t)

Brightness constancy: 
Constraint equation

I(x+∆x, y +∆y, t+∆t) = I(x, y, t)

LHS: Taylor series expansion

cancel
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I(x, y, t) +
∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t+ h.o.t. = I(x, y, t)

Brightness constancy: 
Constraint equation

I(x+∆x, y +∆y, t+∆t) = I(x, y, t)

LHS: Taylor series expansion

∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t+ h.o.t. = 0

cancel
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Brightness constancy: 
Constraint equation

∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t+ h.o.t. = 0

Wednesday, February 22, 2012



Brightness constancy: 
Constraint equation

∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t+ h.o.t. = 0

divide by ∆t
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Brightness constancy: 
Constraint equation

∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t+ h.o.t. = 0

∂I

∂x

∆x

∆t
+

∂I

∂y

∆y

∆t
+

∂I

∂t

∆t

∆t
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divide by ∆t
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Brightness constancy: 
Constraint equation

∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t+ h.o.t. = 0

∂I

∂x
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+
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∂y

∆y

∆t
+

∂I

∂t

∆t

∆t
+ h.o.t. = 0

divide by ∆t
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Brightness constancy: 
Constraint equation

∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t+ h.o.t. = 0

∂I

∂x

∆x

∆t
+

∂I

∂y

∆y

∆t
+

∂I

∂t

∆t

∆t
+ h.o.t. = 0

∆t → 0

divide by ∆t
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Brightness constancy: 
Constraint equation

∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t+ h.o.t. = 0

∂I

∂x

∆x

∆t
+

∂I

∂y

∆y

∆t
+

∂I

∂t

∆t

∆t
+ h.o.t. = 0

∆t → 0

divide by ∆t

∂I

∂x

dx

dt
+

∂I

∂y

dy

dt
+

∂I

∂t
= 0
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Brightness constancy: 
Constraint equation

∂I

∂x

dx

dt
+

∂I

∂y

dy

dt
+

∂I

∂t
= 0
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Brightness constancy: 
Constraint equation

∂I

∂x

dx

dt
+

∂I

∂y

dy

dt
+

∂I

∂t
= 0
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Brightness constancy: 
Constraint equation

∂I

∂x

dx

dt
+

∂I

∂y

dy

dt
+

∂I

∂t
= 0

dx

dt
= u,

dy

dt
= v
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Brightness constancy: 
Constraint equation

∂I

∂x

dx

dt
+

∂I

∂y

dy

dt
+

∂I

∂t
= 0

∂I

∂x
u+

∂I

∂y
v +

∂I

∂t
= 0

dx

dt
= u,

dy

dt
= v
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Brightness constancy: 
Constraint equation

∂I

∂x

dx

dt
+

∂I

∂y

dy

dt
+

∂I

∂t
= 0

∂I

∂x
u+

∂I

∂y
v +

∂I

∂t
= 0

dx

dt
= u,

dy

dt
= v

Ixu+ Iyv + It = 0Brightness 
Constancy Constraint
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Ixu+ Iyv + It = 0Brightness 
Constancy Constraint

How do we recover the velocity?
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Ixu+ Iyv + It = 0Brightness 
Constancy Constraint

v

u

Ixu+ Iyv + It = 0
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Ixu+ Iyv + It = 0Brightness 
Constancy Constraint

v

u

Ixu+ Iyv + It = 0
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Ixu+ Iyv + It = 0Brightness 
Constancy Constraint

vn = − It
�∇I�

∇I

�∇I�

v

u

Ixu+ Iyv + It = 0
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Aperture Problem
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Aperture Problem
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Aperture Problem
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Aperture Problem
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Aperture Problem
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Aperture Problem
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Aperture Problem
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Solution: Impose additional constraints
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Local: Lucas-Kanade
An I terat ive Image Registrat ion Technique 

w i th an Appl icat ion to Stereo Vision 

Bruce D. Lucas 
Takeo Kanade 

Computer Science Department 
Carnegie-Mellon University 

Pittsburgh, Pennsylvania 15213 

Abst rac t 2. The registrat ion prob lem 

Image registration finds a variety of applications in computer 
vision. Unfortunately, traditional image registration techniques 
tend to be costly. We present a new image registration technique 
that makes use of the spatial intensity gradient of the images to 
find a good match using a type of Newton-Raphson iteration. Our 
technique is taster because it examines far fewer potential 
matches between the images than existing techniques 
Furthermore, this registration technique can be generalized to 
handle rotation, scaling and shearing. We show how our 
technique can be adapted tor use in a stereo vision system. 

1 . In t roduct ion 

Image registration finds a variety of applications in computer 
vision, such as image matching for stereo vision, pattern 
recognition, and motion analysis. Unfortunately, existing 
techniques for image registration tend to be costly. Moreover, 
they generally fail to deal with rotation or other distortions of the 
images. 

In this paper we present a new image registration technique that 
uses spatial intensity gradient information to direct the search for 
the position that yields the best match. By taking more 
information about the images into account, this technique is able 
to find the best match between two images with far fewer 
comparisons of images than techniques that examine the possible 
positions of registration in some fixed order. Our technique takes 
advantage of the fact that in many applications the two images are 
already in approximate registration. This technique can be 
generalized to deal with arbitrary linear distortions of the image, 
including rotation. We then describe a stereo vision system that 
uses this registration technique, and suggest some further 
avenues tor research toward making effective use of this method 
in stereo image understanding. 

The translational image registration problem can be 
characterized as follows: We are given functions F(x) and G(x) 
which give the respective pixel values at each location x in two 
images, where x is a vector. We wish to find the disparity vector h 
that minimizes some measure of the difference between F(x + h) 
and G(x), for x in some region of interest R. (See figure 1) 

The views and conclusions contained in this document are 
those of the authors and should not be interpreted as representing 
the official policies, either expressed or implied, of the Defense 
Advanced Research Projects Agency or the US Government. 

3. Existing techniques 

An obvious technique for registering two images is to calculate 
a measure of the difference between the images at all possible 
values of the disparity vector h—that is, to exhaustively search the 
space of possible values of h. This technique is very time 
consuming; if the size of the picture G(x) is NxN, and the region of 

6 7 4 

IJCA 1981
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5632 citations !!!
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Assume velocity is constant within 
pixel’s neighbourhood

N x N
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Lucas-Kanade flow

.





Ix(p1) Iy(p1)
Ix(p2) Iy(p2)

...
...

Ix(pN ) Iy(pN )





�
u
v

�
= −





It(p1)
It(p2)

...
It(pN )




.

AN2×2 v2×1 bN2×1

overdetermined system
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Least-squares

argmin
v

�Av − b�2
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Least-squares

argmin
v

�Av − b�2

A�Av = A�b
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Least-squares

argmin
v

�Av − b�2

A�Av = A�b

.

� �
I2x

�
IxIy�

IxIy
�

I2y

��
u
v

�
= −

��
IxIt�
IyIt

�
.

A�A2×2 v2×1 A�b2×1
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Least-squares

argmin
v

�Av − b�2

A�Av = A�b

v = (A�A)−1A�b

.

� �
I2x

�
IxIy�

IxIy
�

I2y

��
u
v

�
= −

��
IxIt�
IyIt

�
.

A�A2×2 v2×1 A�b2×1
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Least-squares

argmin
v

�Av − b�2

A�Av = A�b

v = (A�A)−1A�b

.

� �
I2x

�
IxIy�

IxIy
�

I2y

��
u
v

�
= −

��
IxIt�
IyIt

�
.

A�A2×2 v2×1 A�b2×1
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Harris detector: 
Derivation

E(∆x,∆y) =
�
∆x ∆y

�
M

�
∆x
∆y

�
.

M =
�

x,y

w(x, y)

�
I2x IxIy
IxIy I2y

�
.

where

 captures the variation of the gradients within the local patchM
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Least-squares

argmin
v

�Av − b�2

A�Av = A�b

v = (A�A)−1A�b
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� �
I2x

�
IxIy�

IxIy
�

I2y

��
u
v

�
= −

��
IxIt�
IyIt

�
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A�A2×2 v2×1 A�b2×1
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Conditions for solvability?

v = (A�A)−1A�b
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Conditions for solvability?

•              is invertibleA�A

v = (A�A)−1A�b
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Conditions for solvability?

•              is invertibleA�A

v = (A�A)−1A�b

•              eigenvalues A�A λ1, λ2 � 0

•              should be well conditionedA�A
λ1/λ2•            not too large
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Conditions for 
solvability

“Flat” “Corner”“Edge”

•              is invertibleA�A

•              eigenvalues A�A λ1, λ2 � 0

•              should be well conditionedA�A
λ1/λ2•            not too large
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Parametric flow

I(x+∆x, y +∆y, t+∆t) = I(x, y, t)
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Parametric flow

I(x+∆x(x;p), y +∆y(x;p), t+∆t) = I(x, y, t)
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Parametric flow

I(x+∆x(x;p), y +∆y(x;p), t+∆t) = I(x, y, t)

similar derivation as constant velocity

www.cse.yorku.ca/~kosta/CompVis_Notes/
optical_affine_flow_computation.pdf

Wednesday, February 22, 2012
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Parametric motion 
examples:
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Parametric motion 
examples:

Translation

.

�
u(x)
v(x)

�
=

�
a1
a2

�
.
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Parametric motion 
examples:

Translation

Similarity

.

�
u(x)
v(x)

�
=

�
a2 −a3
a3 a2

��
x
y

�
+

�
a1
a4

�
.

rotation + scale + translation
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Parametric motion 
examples:

Translation

Similarity
Affine

.

�
u(x)
v(x)

�
=

�
a2 a3
a5 a6

��
x
y

�
+

�
a1
a4

�
.

rotation + scale + shear
+ translation
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Global: Horn-Schunck
ARTIFICIAL INTELLIGENCE 

Determining Optical Flow 

Berthold K.P. Horn and Brian G. Rhunck 
Artificial Intelligence Laboratory, Massachusetts Institute of 
Technology, Cam bridge, M A  02139, U.S.A. 

ABSTRACT 
Optical flow cannot be computed locally, since only one independent measurement is available from 
the image sequence at a point, while the flow wlocify has two components. A second conshaint is 
needed. A method for finding the optical flow pattern is presented which assumes that the apparent 
velocify of the brightness pattern varies smoothly almost everywhere in the image. An iterative 
implementation is shown which successfully computes the optical flow for a number of synthetic image 
sequences. 77te algorithm is robust in that it can handle image sequences that are quantized rather 
coarsely in space and time. It is also insensitive to quantization of brightness levels and additive noise. 
Examples are included where the assumption of smoothness is violated at singular points or along 
lines in the image. 

1. Introduction 

Optical flow is the distribution of apparent velocities of movement of bright- 
ness patterns in an image. Optical flow can arise from relative motion of 
objects and the viewer [6, 71. Consequently. optical flow can give important 
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Sketch: Horn-Schunck Flow
Local motion is inherently ambiguous

No ambiguity

Definite along the normal, 
ambiguous along the tangent

Totally ambiguous
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Sketch: Horn-Schunck Flow
Horn and Schunck’s Solution:

In addition to brightness constancy, impose spatial 
smoothness to the flow field.

1

1
argmin

u,v

� �
(Ixu+ Iyv + It)

2 + α(�∇u�2 + �∇v�2)dxdy

.
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Sketch: Horn-Schunck Flow
Horn and Schunck’s Solution:

In addition to brightness constancy, impose spatial 
smoothness to the flow field.

1

1
argmin

u,v

� �
(Ixu+ Iyv + It)

2 + α(�∇u�2 + �∇v�2)dxdy
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data term smoothness term

�∇u�2 =
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∂u
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y

smoothness coefficient
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when velocity 
between frames is 
too large the input 

is aliased

Wednesday, February 22, 2012



Coarse-to-fine refinement
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