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Why estimate motion?

Track objects
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Why estimate motion?

Track objects

Courtesy: Boris Babenko




Why estimate motion?

Video stabilization




Why estimate motion?

Understanding behavior
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Problem definition:
Motion estimation

Estimate pixel motion between successive images

Key assumption: Brightness remains constant
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Input sequence
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Problem definition:
Motion estimation

Input sequence optical flow estimate
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Problem definition:
Motion estimation

input sequence stabilized sequence
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Optical Flow
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Motion field

When objects move or the
camera moves the result is
changes in the images.

Changes can be used to
capture the relative motions
as well as the shape of the
objects.
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Motion field

. Motion field
assigns a velocity vector to
each point in the image
according to how the point
iIn 3D moves.
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Motion field

We the motion field:
* geometric concept
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Motion field

We the motion field:
* geometric concept

We Images:
* photometric concept
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Motion field

: Optical flow is
the apparent motion of the
brightness pattern.
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MationField Derivation
- of Optical Flow
Ansiot Cl, | Brightness Constancy Estimation
A Constraint
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K Image brightness of a point |
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Brightness constancy:
Constraint equation

I(z + Az, y + Ay, t + At) = I(z,y,t)
1
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Brightness constancy:
Constraint equation
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Brightness constancy:
Constraint equation

I(x + Az,y+ Ay, t + At) = I(z,y,1)




Brightness constancy:
Constraint equation

I(x + Az,y+ Ay, t + At) = I(z,y,1)




Brightness constancy:
Constraint equation

I(x + Az,y+ Ay, t + At) = I(z,y,1)

1
I(z,y,t) a]Ax | aIAy | gt

At +h.o.t. =I(x,y,t)

ox oy




Brightness constancy:
Constraint equation
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Brightness constancy:
Constraint equation
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Brightness constancy:
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Brightness constancy:
Constraint equation
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Brightness constancy:
Constraint equation
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Brightness constancy:
Constraint equation
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Brightness constancy:
Constraint equation
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Brightness constancy:
Constraint equation
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Brightness constancy:
Constraint equation
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Brightness constancy:
Constraint equation
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Brightness
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Brightness
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Brightness

lL.u+ 1, v+ 1; =0
Constancy Constraint ’ t

I, VI
IVIHVI]]

Vy, =

lyu+ 1,0+ 1 =0

Wednesday, February 22, 2012



.

-

Wednesday, February 22, 2012



Aperture Problem
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An lterative Image Registration Technique

with an Application to Stereo Vision

Bruce D. Lucas
Takeo Kanade

Computer Science Department

Carnegie-Mellon

University

Pittsburgh, Pennsylvania 15213

Abstract

Image registration finds a variety of applications in computer
visiol Unfortunately, traditional image registration techniques
tend to be costly. We present a new image registration technique
that makes use of the spatial intensity gradient of the images to
find a good match using a type of Newton-Raphson iteration. Our
technique is taster because it examines far fewer potential
matches  between the images than existing  techniques
Furthermore, this registration technique can be generalized to
handle rotation, scaling and shearing. We show how our
technique can be adapted tor use in a stereo vision system.

1. Introduction

Image registration finds a variety of applications in computer
vision, such as image matching for stereo vision, pattern
recognition, and motion analysis. Unfortunately, existing
techniques for image registration tend to be costly. Moreover,
they generally fail to deal with rotation or other distortions of the
images.

In this paper we present a new image registration technique that
uses spatial intensity gradient information to direct the search for
the position that yields the best match. By taking more
information about the images into account, this technique is able
to find the best match between two images with far fewer
comparisons of images than techniques that examine the possible
positions of registration in some fixed order. Our technique takes
advantage of the fact that in many applications the two images are
already in approximate registration. This technique can be
generalized to deal with arbitrary linear distortions of the image,
including rotation. We then describe a stereo vision system that
uses this registration technique, and suggest some further
avenues tor research toward making effective use of this method
in stereo image understanding.

This AV s Dl Athvanc
Runcsoh Props 1s Y . AHPA Ordur Noo 30,
monilored by the Asr Force Avionics Laboratory Under Contract
F33615 78-C- 1551,

The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the US Government.

2. The registration problem

The translational image registration problem can be
characterized as follows: We are given functions F(x) and G(x)
which give the respective pixel values at each location x in two
images, where x is a vector. We wish to find the disparity vector h
that minimizes some measure of the difference between F(x + h)
and G(x), for x in some region of interest R. (See figure 1)

F(x}

Flgure 1: The image registration problem

Typical measures of the difference between Fix + h) and Gix)
are:

s Lynorm = X o Fixsh) - Gix)|
e Lynomm = {2 1r(xs by - GLaRP 72

* negative ol normalized correlation

Loer Flx+ NIG()
?)If?(E“n G(K)’ 172

We will propdse a more general maasure of image diference, of
which both the L2 norm and the correlation are special cases. The
L, norm is chielly of interest as an inexpensive spproximation to
the L, narm.

3. Existing techniques

An obvious technique for registering two images is to calculate
a measure of the difference between the images at all possible
values of the disparity vector h—that is, to exhaustively search the
space of possible values of h. This technique is very time
consuming; if the size of the picture G(x) is NxN, and the region of
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|l ucas-Kanade flow
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overdetermined system




Least-squares
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Least-squares
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Harris detector:
Derivation

E(Az,Ay) = (Az  Ay) M (Ax>

Ay
where
I{% 1.1
M = Zw(any) (Iazly I§y>
T,y

\Yi| captures the variation of the gradients within the local patch
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Conditions for solvability?

« A" A isinvertible

* A A eigenvalues A, Ao > 0

« A" A should be well conditioned
* A1/A2 not too large
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Conditions for
solvability

« A" A isinvertible
« A'A eigenvalues A, Ao >0

« A" A should be well conditioned
* A1/A2 not too large
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Parametric flow

I(z + Az, y + Ay, t + At) = I(z,y,t)




Parametric flow

I(z + Az(x;p),y + Ay(x;p), t + At) = I(x,y,t)




Parametric flow

I(z + Az(x;p),y + Ay(x;p), t + At) = I(x,y,t)

similar derivation as constant velocity

www.cse.yorku.ca/~kosta/CompVis_Notes/
optical_affine_flow computation.pdf
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Parametric motion
CIES

A
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Parametric motion
CIES

A

Translation
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Parametric motion
CIES

I,

rotation + scale + translation




Parametric motion
CIES
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rotation + scale + shear
. + translation
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Global: Horn-Schunck

Artificial Intelligence 1981

Determining Optical Flow

Berthold K.P. Horn and Brian G. Schunck
Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, Cambridge, MA 02139, U.S.A.

ABSTRACT

Optical flow cannot be computed locally, since only one independent measurement is available from
the image sequence at a point, while the flow velocity has two components. A second constraint is
needed. A method for finding the optical flow pattern is presented which assumes that the apparent
velocity of the brightness pattern varies smoothly almost everywhere in the image. An iterative
implementation is shown which successfully computes the optical flow for a number of synthetic image
sequences. The algorithm is robust in that it can handle image sequences that are quantized rather
coarsely in space and time. It is also insensitive to quantization of brightness levels and additive noise.
Examples are included where the assumption of smoothness is violated at singular points or along
lines in the image.

1. Introduction

Optical flow is the distribution of apparent velocities of movement of bright-
ness patterns in an image. Optical flow can arise from relative motion of
objects and the viewer [6, 7]. Consequently, optical flow can give important
information about the spatial arrangement of the objects viewed and the rate
of change of this arrangement [8]. Discontinuities in the optical flow can help in
segmenting images into regions that correspond to different objects [27].
Attempts have been made to perform such segmentation using differences
between successive image frames [15, 16, 17, 20, 25]. Several papers address the
problem of recovering the motions of objects relative to the viewer from the
optical flow [10, 18, 19, 21, 29]. Some recent papers provide a clear exposition
of this enterprise [30, 31]. The mathematics can be made rather difficult, by the
way, by choosing an inconvenient coordinate system. In some cases in-
formation about the shape of an object may also be recovered [3, 18, 19].
These papers begin by assuming that the optical flow has already been
determined. Although some reference has been made to schemes for comput-
Artificial Intelligence 17 (1981) 185-203
0004-3702/81/0000-0000/$02.50 © North-Holland
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Sketch: Horn-Schunck Flow

Local motion is inherently ambiguous

. No ambiguity

Definite along the normal,
ambiguous along the tangent

Totally ambiguous




Sketch: Horn-Schunck Flow

Horn and Schunck’s Solution:

In addition to brightness constancy, impose spatial
smoothness to the flow field.

argmm// (Iyu + Ly + I)? + a(|Vul|* + ||Vv|]?)dzdy




Sketch: Horn-Schunck Flow

Horn and Schunck’s Solution:

In addition to brightness constancy, impose spatial
smoothness to the flow field.

argmm// (1 u+lyv+lt) + a([|Vul|* + || Vv||*)dzdy

!

data term




Sketch: Horn-Schunck Flow

Horn and Schunck’s Solution:

In addition to brightness constancy, impose spatial
smoothness to the flow field.

argmm// (1 u+lyv+lt) +a(HVuH2+HVvH2)dazdy

1 !

data term smoothness term

ou\®  [ou\’
wulp = (52) +(5r) —u+ad
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Sketch: Horn-Schunck Flow

Horn and Schunck’s Solution:

In addition to brightness constancy, impose spatial
smoothness to the flow field.

smoothness coefficient

!

argmm// (1 u+lyv+lt) +a(HVuH2+HVvH2)dazdy

1 !

data term smoothness term

ou\®  [ou\’
||Vuu2z(a—z> +(a—Z> = uj +u;
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when velocity
between frames is
too large the input
is aliased |




Coarse-to-fine refinement

smooth & downsample

I(x,y,t)
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Coarse-to-fine refinement

smooth & downsample

I[(z,y,1)
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Coarse-to-fine refinement

smooth & downsample
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