Reconstruction from 2 views

Epipolar geometry
Essential matrix
Eight-point algorithm
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‘ General Formulation

Given two views of the scene
recover the unknown camera

displacement and 3D scene
01 structure

02
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Pinhole Camera Model

e 3Dpoints X =[X.V,ZW]T eR* (W=1)
e Image points x = [z,y,2]T e ®R3, (2 =1)

e Perspective Projection Ax = X

)\=sz§ yz%

e Rigid Body Motion I = [R,T] &€ 3 x4

e Rigid Body Motion + Projective projection

Ax =MNX =[R,T]X
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Rigid Body Motion — Two views

X

f A

A1x; = X AoxXo = RA\x1 + T

MXo = RA\xq1 + 1T
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3D Structure and Motion Recovery

Euclidean transformation
AoXo = RA\x1 + T

s I — s R — |

measurements unknowns

S1_q %] =7 (R, T1, X)||? + |35 — 7 (R2, T2, X)||?

Find such Rotation and Translation and Depth that
the reprojection error is minimized

Two views ~ 200 points

6 unknowns - Motion 3 Rotation, 3 Translation
- Structure 200x3 coordinates
- (-) universal scale

Difficult optimization problem
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Epipolar Geometry

MoXo = RA\xq1 + T

correspondences

(R,T)
e Algebraic Elimination of Depth [Longuet-Higgins "81]:

T —
E
e Essential matrix E=TR
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Epipolar Geometry

e Epipolar lineslq, I

e Epipoles eq, €5

correspondences

O]_ el \
€2
l]_ ~J ETX2 lzTXZ p—
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E=TR




Characterization of the Essential Matrix
X%TRXl =0

e Essential matrix & = T'R  Special 3x3 matrix

€1 €2 €2
Xg eq es e | x1 =0
| e7 eg eg

Theorem 1la (Essential Matrix Characterization)
A non-zero matrix E is an essential matrix iff its SVD: E = UX V7T

satisfies: > = diag([o1,02,03]) withoy =02 # 0 ando3z =0
and U,V € SO(3)
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Estimating the Essential Matrix

e Estimate Essential matrix E — TR

e Decompose Essential matrix into R, T
x4 TRx1 =0

e Given n pairs of image correspondences:
e Find such Rotation and Translation that the epipolar error is
minimized
. T .
ming Z?:l X]2 Ele
e Space of all Essential Matrices is 5 dimensional

e 3 Degrees of Freedom - Rotation
e 2 Degrees of Freedom - Translation (up to scale !)
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Pose Recovery from the Essential Matrix

Essential matrix E=TR

Theorem 1la (Pose Recovery)
There are two relative poses (R,T) withT € R3 and R € SO(3)
corresponding to a non-zero matrix essential matrix.

E=UxVv7T

(T1,R1) = (URz(+5)ZUT, URZL(+5)VT)
(I%,R2) = (URyz(-5)=UY, URL(-5)VT)
1o

0
> =diag([1,1,0]) Rz(+35)= 0
1

1 0
_O O -

eTwisted pair ambiguity (Ro, Tb) = (e“" Ry, —T})
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Estimating Essential Matrix

x4 TRx1 =0
e Denotea = X1 ® Xo
a = [z122, T1y2, 122, Y102, Y1Y2, Y122, 2182, 21Y2, 2122]
S = [e1,ea,€7,€2,€5,€e8,€3, €6, 9]
e Rewrite alEs =0
e Collect constraints from all points

XE° =

ming Z?:l X‘%TEX{ ‘ minEsHXESHQ
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Estimating Essential Matrix

ming > j— 1X2 EXl ‘ manSHXESHQ

Solution
o Elgenvector associated with the smallest eigenvalue of X X
e ifrank(x!x) < 8  degenerate configuration =

A

Projection onto Essential Space

\ 4

Theorem 2a (Project to Essential Manifold)

If the SVD of a matrix F € R3%3 is given by F = Udiag(o1,092,03)V"’
then the essential matrix £ which minimizes the

Frobenius distance ||E — F||]20 is given by E = Udiag(o,o,0)V’
witho = &202
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Two view linear algorithm

= {TR|R € SO(2),T € 5%} R
e Solve the LLSE problem

ming Zj 1X2 EXl
xE*® = O followed by projection Z

e Project onto the essential manifold:
SVD: p =pyxy7T
> = diag(1,1,0)
E=Ux'vl

e Recover the unknown pose:

A
7

E is 5 diml. sub. mnfld. in

e 8-point linear algorithm

(1,R) = (URz(£Z)=UT, URL(£Z)VT)
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Pose Recovery

e There are exactly two pairs (R,T") corresponding to each
essential matrix £ .

e There are also two pairs (R,T)corresponding to each
essential matrix —F .

e Positive depth constraint - used to disambiguate the
physically impossible solutions

e Translation has to be non-zero

e Points have to be in general position
- degenerate configurations - planar points
- quadratic surface
e Linear 8-point algorithm
e Nonlinear 5-point algorithms yield up to 10 solutions
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3D structure recovery

AoXo = RA1x1 + T

e Eliminate one of the scales

———

)\31X92RX71 —|—7X32T =0, 9=1,2,....n
e Solve LLSE problem

C— - .S 7
MIN = [XJQRX]l, X‘%T] { A } =0
Y

If the configuration is non-critical, the Euclidean structure of then points
and motion of the camera can be reconstructed up to a universal scale.
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Example- Two views

N

E

‘;.M 9 v

Point Feature Matching
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‘ Example — Epipolar Geometry

Camera Pose
and
Sparse Structure Recovery
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Epipolar Geometry — Planar Case
e Plane in first camera coordinate frame
aX +bY +cZ+d=0
INTX =1

Image
carrespondences

AoXo = RA\xq1 + T

Moxs> = (R + %TNT)Alxl

X HXl

Planar homography

Linear mapping relating two

H=(R+ %TNT) correspc_)nding p_Ianar points
In two views
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Decomposition of H

Algebraic elimination of depth X>Hx1 =0

Hy, can be estimated linearly H; = \H

Normalization of H = Hy, /o3

Decomposition of H into 4 solutions = (B + ITNT)

Ry = WhU{ Rz = Ry Rp = WoUZX Ra = R>
N1 = vouq N3z = —N; No = voup Ng = —N»
%Tl = (H — R{)MNy %T:g = —%T1 %Tz = (H — Ro)N> %TAL = —%TQ

HIH=vZVvT V =[v,vp,v3] X = dzag(al, 02, )
\/1 03vl—|—\/0 —1vsz N \/1 031)1 \/0 —1vsz
Uy = Uy =
0703 \ 0703
Uy = |vg,uy,v2u1], Wi = |Hvp, Huy, HvoHuy];

Us = [vo,up, Uoug], Wa = [Hvo, Hup, HupHus).
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Motion and pose recovery for planar scene
Given at least 4 point correspondences x,Hx)} = 0
Compute an approximation of the homography matrix H;

as the nullspace of X -

xHj = 0 the rows of X are a=x}] ®x)}

Normalize the homography matrix
H = Hp/o3
Decompose the homography matrix
H'H=v>VvT
Select two physically possible solutions imposing
positive depth constraint
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Example

Stefano Soatto (c) 2002

UCLA Vision Lab
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Spectal Rotation Case
Two view related by rotation only x-x-

_ xoRx1; =0
Mapping to a reference view

— R>\1X1
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Motion and Structure Recovery — Two Views

Two views - general motion, general structure
1. Estimate essential matrix

2. Decompose the essential matrix

3. Impose positive depth constraint

4. Recover 3D structure

Two views - general motion, planar structure
1. Estimate planar homography

2. Normalize and decompose H

3. Recover 3D structure and camera pose
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