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Fitting 

•  Choose a parametric 
object/some objects 
to represent a set of 
tokens 

•  Most interesting case 
is when criterion is 
not local 
–  can’t tell whether a 

set of points lies on 
a line by looking 
only at each point 
and the next. 

•  Three main 
questions: 
–  what object 

represents this set 
of tokens best? 

–  which of several 
objects gets which 
token? 

–  how many objects 
are there? 

(you could read line for 
object here, or 
circle, or ellipse 
or...) 
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Hough transform : straight lines 

implementation : 

1. the parameter space is discretised 
2. a counter is incremented at each cell  
    where the lines pass  
3. peaks are detected 

 

yaxb +−=  )(
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Hough transform : straight lines 
problem : unbounded parameter domain 
                vertical lines require infinite a 

ρθθ =  +  sincos yx

Each point will add a cosine function in the  
(θ,ρ) parameter space   

 

alternative representation: 
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tokens

votes
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Hough transform : straight lines 

Square :  Circle :  

 



Computer 
Vision 

7 

Hough transform : straight lines 

 
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Mechanics of the Hough 
transform 

•  Construct an array 
representing θ, d 

•  For each point, render 
the curve (θ, d) into 
this array, adding one 
at each cell 

•  Difficulties 
–  how big should the 

cells be? (too big, and 
we cannot distinguish 
between quite different 
lines; too small, and 
noise causes lines to 
be missed)  

•  How many lines? 
–  count the peaks in the 

Hough array 
•  Who belongs to which 

line? 
–  tag the votes 

•  Hardly ever satisfactory 
in practice, because 
problems with noise 
and cell size defeat it 
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tokens
 votes
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Who came from which line? 

•  Assume we know how many lines there 
are - but which lines are they? 
– easy, if we know who came  from which 

line 
•  Three strategies 

–  Incremental line fitting 
– K-means 
– Probabilistic (later!) 
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Robustness 

•  As we have seen, squared error can be a 
source of bias in the presence of noise 
points 
– One fix is EM  -  we’ll do this shortly 
– Another is an M-estimator 

•  Square nearby, threshold far away 

– A third is RANSAC  
•  Search for good points 
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M-estimators 

•  Generally, minimize  

 where   is the residual 

( )( )σθρ ;,ii
i

xr∑

( )θ,ii xr
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Too small
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Too large
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RANSAC 

•  Choose a small 
subset uniformly at 
random 

•  Fit to that 
•  Anything that is close 

to result is signal; all  
others are noise 

•  Refit 
•  Do this many times 

and choose the best 

•  Issues 
–  How many times? 

•  Often enough that we 
are likely to have a 
good line 

–  How big a subset? 
•  Smallest possible 

–  What does close mean? 
•  Depends on the 

problem 
–  What is a good line? 

•  One where the number 
of nearby points is so 
big it is unlikely to be 
all outliers 
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Distance threshold 

Choose t so probability for inlier is α (e.g. 0.95)  
•  Often empirically 
•  Zero-mean Gaussian noise σ then      follows 

     distribution with m=codimension of model  

2
⊥d2

mχ
(dimension+codimension=dimension space) 

Codimension Model t 2 

1 line,F 3.84σ2 

2 H,P 5.99σ2 

3 T 7.81σ2 
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How many samples? 

 Choose N so that, with probability p, at least one 
random sample is free from outliers. e.g. p=0.99 

( ) ( )( )sepN −−−= 11log/1log

( )( ) pe
Ns −=−− 111

proportion of outliers e 
s 5% 10% 20% 25% 30% 40% 50% 
2 2 3 5 6 7 11 17 
3 3 4 7 9 11 19 35 
4 3 5 9 13 17 34 72 
5 4 6 12 17 26 57 146 
6 4 7 16 24 37 97 293 
7 4 8 20 33 54 163 588 
8 5 9 26 44 78 272 1177 
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Acceptable consensus set? 

•  Typically, terminate when inlier ratio reaches 
expected ratio of inliers 

( )neT −= 1


