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Fitting

e Choose a parametric e Three main

object/some objects questions:
to represent a set of - what object
tokens represents this set
e Most interesting case of tokens best?
is when criterion is — which of several
not local objects gets which
- can’t tell whether a token? _
set of points lies on - how many objects
a line by looking are there?
only at each point
and the next. (you could read line for

object here, or
circle, or ellipse
or...)
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Hough transform : straight lines
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Implementation :

1. the parameter space is discretised

2. a counter is incremented at each cell
where the lines pass

3. peaks are detected



Hough transform : straight lines

problem : unbounded parameter domain
vertical lines require infinite a

alternative representation:
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Each point will add a cosine function in the
(0,p) parameter space
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Hough transform : straight lines

Square : Circle :




Hough transform : straight lines




Mechanics of the Hough
transform

Construct an array
representing 6, d

For each point, render
the curve (6, d) into
this array, adding one
at each cell

Difficulties

- how big should the
cells be? (too big, and
we cannot distinguish
between quite different
lines; too small, and
noise causes lines to
be missed)

e How many lines?
— count the peaks in the
Hough array
e Who belongs to which
line?
- tag the votes

e Hardly ever satisfactory
in practice, because
problems with noise
and cell size defeat it
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Who came from which line?

e Assume we know how many lines there
are - but which lines are they?

— easy, if we know who came from which
line
e Three strategies
— Incremental line fitting
- K-means
— Probabilistic (later!)
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Algorithm 15.1: Incremental line fitting by walking along a curve, fitting a line to
runs of pixels along the curve, and breaking the curve when the residual is too large

Put all points on curve list. in order along the curve
Empty the line point list
Empty the line list
Until there are too few points on the curve

Transfer first few points on the curve to the line point list

Fit line to line point list

While fitted line is good enough

Transfer the next point on the curve
to the line point list and refit the line

end

Transfer last point(s) back to curve

Refit line

Attach line to line list
end




Incremental line fitting




Incremental line fitting
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Incremental line fitting
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Incremental line fitting
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Incremental line fitting
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Algorithm 15.2: K-means line fitting by allocating points to the closest line and
then refitting.

Hypothesize k lines (perhaps uniformly at random)
or
Hypothesize an assignment of lines to points

and then fit lines using this assignment

Until convergence
Allocate each point to the closest line
Refit lines

end




K-means line fitting




K-means line fitting




K-means line fitting
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K-means line fitting




K-means line fitting




K-means line fitting




K-means line fitting
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Robustness

e As we have seen, squared error can be a
source of bias in the presence of noise
points
— One fix is EM - we’ll do this shortly

— Another is an M-estimator
e Square nearby, threshold far away

— A third is RANSAC

e Search for good points
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M-estimators

e Generally, minimize

> pli(x.0)0)

where r7(x.,0) is the residual
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Robust Estimation

A quadratic p function gives too much weight to outliers
Instead, use robust norm:

Influence function
(d/dr of norm):

.

o +r 2ro”

y(r,o)= (O_z +r2)2
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Robust scale
Scale 1s critical!

Popular choice:

(") = 1.4826 median; |?“,§n)($i; pln=1h]
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RANSAC

Choose a small
subset uniformly at
random

Fit to that

Anything that is close
to result is signal; all
others are noise

Refit

Do this many times
and choose the best

e Jssues

How many times?

e Often enough that we
are likely to have a
good line

How big a subset?
e Smallest possible
What does close mean?

e Depends on the
problem

What is a good line?

e One where the number
of nearby points is so
big it is unlikely to be
all outliers



Com pLIter Algorithm 15.4: RANSAC: fitting lines using random sample consensus
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Determine:
n — the smallest number of points required
k — the number of iterations required
t — the threshold used to identify a point that fits well
d — the number of nearby points required
to assert a model fits well
Until & iterations have occurred
Draw a sample of n points from the data
uniformly and at random
Fit to that set of n points
For each data point outside the sample
Test the distance from the point to the line
against t; if the distance from the point to the line
is less than £, the point is close
end
If there are d or more points close to the line
then there is a good fit. Refit the line using all
these points.
end
Use the best fit from this collection. using the
fitting error as a criterion
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Distance threshold

Choose t so probability for inlier is a (e.g. 0.95)

o Often empirically

. Zero mean Gaussian noise o then d follows
delstrlbutlon with m=codimension of model

(dimension+codimension=dimension space)

Codimension Model t 2
1 line,F 3.8402
2 H,P 5.9902

3 T 7.8102




How many samples?

Choose N so that, with probability p, at least one
random sample is free from outliers. e.g. p=0.99

ﬁ—(l—e)g)v =1-p
N=10g(1—p)/10g(1—(1‘e)FJ

proportion of outliers e

5% 10% 20% 25% 30% 40% 50%
2 3 5 6 7 11 17
7 9 11 19 35
9 13 17 34 72
12 17 26 57 146
16 24 37 97 293
20 33 54 163 588
26 44 78 272 1177
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e Typically, terminate when inlier ratio reaches
expected ratio of inliers

T=(1—e)1
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