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Stereo Vision

• Match something
– Feature-based algorithms
– Area-based algorithms

• Apply constraints to help convergence
– Smoothness/Regularization
– Ordering
– Uniqueness
– Visibility

• Optimize something (typically)
– Need energy/objective function that can be optimized
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Binocular Datasets

Middlebury data (www.middlebury.edu/stereo)
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Challenges

• Ill-posed inverse problem
– Recover 3-D structure from 2-D information

• Difficulties
– Uniform regions
– Half-occluded pixels
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Pixel Dissimilarity
• Absolute difference of intensities
• c=|I1(x,y)- I2(x-d,y)|

• Interval matching [Birchfield 98]
– Considers sensor integration
– Represents pixels as intervals
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Alternative Dissimilarity Measures

• Rank and Census transforms [Zabih ECCV94]
• Rank transform:

– Define window containing R pixels around each pixel
– Count the number of pixels with lower intensities than center

pixel in the window
– Replace intensity with rank (0..R-1)
– Compute SAD on rank-transformed images

• Census transform:
– Use bit string, defined by neighbors, instead of scalar rank

• Robust against illumination changes
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Rank and Census Transform Results

• Noise free, random dot stereograms
• Different gain and bias
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Systematic Errors of Area-based Stereo

• Ambiguous matches in textureless regions
• Surface over-extension [Okutomi IJCV02]
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Surface Over-extension
• Expected value of E[(x-y)2]

for x in left and y in right
image is:

• Case A: σF
2+ σB

2+(μF- μB)2

for w/2-λ pixels in each row
• Case B: 2 σB

2 for w/2+λ
pixels in each row

Right image

Left image

Disparity of back surface
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Surface Over-extension
• Discontinuity perpendicular

to epipolar lines

• Discontinuity parallel to
epipolar lines

Right image

Left image

Disparity of back surface
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Over-extension and shrinkage

• Turns out that:

for discontinuities perpendicular to epipolar
lines

• And:

for discontinuities parallel to epipolar lines
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Random Dot Stereogram
Experiments
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Random Dot Stereogram
Experiments



16

Offset Windows

Equivalent to using min
nearby cost
Result: loss of depth 
accuracy
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Discontinuity Detection

• Use offset windows only where appropriate
– Bi-modal distribution of SSD
– Pixel of interest different than mode within

window
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Compact Windows

• [Veksler CVPR03]: Adapt windows size based
on:
– Average matching error per pixel
– Variance of matching error
– Window size (to bias towards larger windows)

• Pick window that minimizes cost
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Integral Image

Sum of shaded part

Compute an integral image for pixel 
dissimilarity at each possible disparity

A C

DB

Shaded area = A+D-B-C
Independent of size
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Results using Compact Windows
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Rod-shaped filters

• Instead of square windows aggregate cost in
rod-shaped shiftable windows [Kim CVPR05]

• Search for one that minimizes the cost
(assume that it is an iso-disparity curve)

• Typically use 36 orientations
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Locally Adaptive Support

   Apply weights to contributions of neighboring
pixels according to similarity and proximity
[Yoon CVPR05]
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Locally Adaptive Support

• Similarity in CIE Lab color space:

• Proximity: Euclidean distance

• Weights:
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Locally Adaptive Support: Results
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Locally Adaptive Support: Results
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Constraints
• Results of un-sophisticated local operators

still noisy
• Optimization required
• Need constraints

– Smoothness
– Ordering
– Uniqueness
– Visibility

• Energy function
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Ordering Constraint

• If A is on the left of B in reference image =>
the match for A has to be on the left of the
match of B in target image

• Violated by thin objects
• But, useful for dynamic programming

Image from Sun et al. CVPR05
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Dynamic Programming

Left image Right image
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Results using Dynamic Programming
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Dynamic Programming without the
Ordering Constraint

• Two Pass Dynamic Programming [Kim CVPR05]
– Use reliable matches found with rod-shaped filters

as “ground control points”
– No ordering
– Second pass along columns to enforce inter-

scanline consistency
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Dynamic Programming without the
Ordering Constraint

• Use GPU [Gong CVPR05]
– Calculate 3-D matrix (x,y,d) of matching costs
– Aggregate using shiftable 3x3 window
– Find reliable matches along horizontal lines
– Find reliable matches along vertical lines
– Fill in holes

• Match reliability =
cost of scanline passing through match – cost
of scanline not passing through match
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Near Real-time Results

10-25 frames per second depending on image
 size and disparity range
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Semi-global optimization

• Optimize: E=Edata+E(|Dp-Dq|=1)+E(|Dp-Dq|>1)
[Hirshmüller CVPR05]
– Use mutual information as cost

• NP-hard using graph cuts or belief
propagation (2-D optimization)

• Instead do dynamic programming along many
directions
– Don’t use visibility or ordering constraints
– Enforce uniqueness
– Add costs
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Results of Semi-global optimization
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Results of Semi-global optimization

No. 1 overall in Middlebury evaluation
(at 0.5 error threshold as of Sep. 2006)



38

2-D Optimization

• Energy: Data Term + Regularization
• Find minimum cost cut that separates source and

target
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Scanline vs.
Multi-scanline optimization
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Dynamic Programming
(single scan line optimization)

s-t Graph Cuts
(multi-scan-line optimization)
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Graph-cuts
• MRF Formulation

– In general suffers from multiple local minima

• Combinatorial optimization: minimize cost
∑i∈S Di(fi) + ∑(i,j)∈N V(fi,fj) over discrete space
of possible labelings f
– Exponential search space O(kn)
– NP hard in most cases for grid graph
– Approximate practical solution [Boykov PAMI01]

DD

DD

V

V

VV



41

Alpha Expansion Technique

• Use min-cut to efficiently solve a special two
label problem
– Labels “stay the same” or “replace with α”

• Iterate over possible values of α
– Each rules out exponentially many labelings

Red
expansion

move from f

Input labeling f
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Results using Graph-Cuts

• Include occlusion term in energy [Kolmogorov
ICCV01]
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Belief Propagation

• Local message passing scheme in graph
– Every site (pixel) in parallel

computes a belief
• pdf of local estimates

of label costs
– Observation: data term (fixed)
– Messages: pdf’s from node to neighbors

• Exact solution for trees, good approximation
for graphs with cycles
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Belief Propagation for Stereo

• Minimize energy that considers matching
cost, depth discontinuities and occlusion [Sun
ECCV02, PAMI03]
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Belief Propagation and
Segmentation
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Uniqueness Constraint

• Each pixel can have exactly one or no match in
the other image
– Used in most of the above methods

• Unfortunately, surfaces do not project to the
same number of pixels in both images [Ogale
CVPR04]
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Continuous Approach

• Treat intervals on scanlines as continuous entities and
not as discrete sets of pixels

• Assign disparity to beginning and end of each interval
• Optimize each scanline

– Would rank 8,7 and 2 for images without horizontal slant
– Ranks 22 for Venus !!!
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Visibility Constraint

• Each pixel is either occluded or can have one
disparity value (possibly subpixel) associated with it
[Sun CVPR05]
– Allows for many-to-one correspondence

• Symmetric treatment of images
– Compute both disparity and occlusion maps
– Left occlusion derived from right disparity and right

occlusion from left disparity
• Optimize using Belief Propagation

– Iterate between disparity and occlusion maps
• Segmentation as a soft constraint
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Results using Symmetric Belief
Propagation

No. 3 in Middlebury evaluation
(No. 1 in New Middlebury 
evaluation) (June 2005)

No. 1 in Middlebury evaluation 
(June 2005)
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Results using Symmetric Belief
Propagation

No. 1 in Middlebury evaluation
(June 2005)

No. 1 in Middlebury evaluation
(June 2005)



51

Results using Symmetric Belief
Propagation
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