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The Fourier Transform { A PrimerHagit ShatkayDepartment of Computer ScienceBrown UniversityProvidence, RI 029121 IntroductionThe Fourier transform is among the most widely used tools for transforming data se-quences and functions (single or multi-dimensional), from what is referred to as the timedomain to the frequency domain. Applications of the transform range from designing�lters for noise reduction in audio-signals (such as music or speech), to fast multiplicationof polynomials.The following document provides a brief introduction to the Fourier transform, for thoseof us who are still aliens in the frequency domain. The topic of the Fourier transform andits applications is covered in numerous, stout books (such as [Bra65, OS75, Wea83, BP85,Jac90]), and this paper can not and does not intend to cover the area in full. Its goal isto introduce the basic terminology and the main concepts of the area, providing commonground for further discussion and study.The rest of the paper is organized as follows: Section 2 introduces the idea of represent-ing sequences and functions through sinusoids. Section 3 shows how complex numbersand exponentials �t into the sinusoids representation framework. Section 4 presents thecontinuous Fourier transform. In Section 5 we discuss sampling, which is the mean forconverting a continuous signal into a discrete sequence. Section 6 presents the discreteFourier transform, and the prominent related topics { convolution and the fast Fouriertransform. Section 7 demonstrates some of the applications of the Fourier transform, andconcludes the paper.2 Functions as Combinations of SinusoidsAny continuous, periodic function can be represented as a linear combination of sines andcosines. A sine is a function of the form: Asin(2�!t+ �), where A is the amplitude, !is the frequency measured in cycles (or periods) per second, and � is the phase, which isused for getting values other than 0 at t = 0. A cosine function has exactly the samecomponents as the sine function, and can be viewed as a shifted sine (or more accurately{ a sine with phase �=2). 1



Thus, given a function f(t), we can usually rewrite it (or at least approximate it), forsome n as: f(t) = nXk=1(Akcos(2�!kt) +Bksin(2�!kt)) (1)Both sines and cosines are combined, rather than only sines, to allow the expression offunctions for which f(0) 6= 0, in a way that is simpler than adding the phase to the sinein order to make it into a cosine.As an example of a linear combination of sinusoids consider the function:f1(t) = 0:5sin�t+ 2sin4�t+ 4cos2�tIts three sinusoidal components and the function f1 itself are depicted in Figure 1, as a,b, c and d respectively. The function f1(t) consists of sines and cosines of 3 frequencies.
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Figure 1: A plot of f1(t), (d), and its components (a; b; c), for t = 0::5Thus, the frequency analysis of f1(t), can be summarized in a table such as Table 1, whichprovides for each frequency of f1 the amplitude of the sine wave and of the cosine wavewith this frequency.k Frequency (!k) Cosine Amplitude (Ak) Sine Amplitude (Bk)1 1=2 0 1=22 2 0 23 1 4 0Table 1: Frequency contents of the function f1(t)The representation of a periodic function (or of a function that is de�ned only on a �niteinterval) as the linear combination of sines and cosines, is known as the Fourier seriesexpansion of the function. The Fourier transform is a tool for obtaining such frequencyand amplitude information for sequences and functions, which are not necessarily periodic.(Note that sequences are just a special case of functions.)2



3 Fitting in Complex Numbers and ExponentialsAnother way of writing sinusoids relies on the following equalities:ei� = cos(�) + isin(�) e�i� = cos(�) � isin(�) (2)where i is the square root of �1. Both are easily derived from the Taylor series expansionof cos, sin, and e�. Through addition and subtraction they can be rewritten as:cos(�) = ei� + e�i�2 sin(�) = ei� � e�i�2i (3)Hence, we can substitute the sin and cos expressions of equation 1 by the respectiveexpressions of equation 3 and get:f(t) = nXk=1[Ak2 (e2�i!kt + e�2�i!kt) + Bk2i (e2�i!kt � e�2�i!kt)] (4)If we denote: Ck = Ak�iBk2 k > 0Ck = Ak+iBk2 k < 0C0 = 0!k = �!�k k < 0 (5)we can again rewrite f(t): f(t) = nXk=�n[Cke2�i!kt] (6)Under this new notation we can rewrite the frequency analysis of Table 1 as shown inTable 2. k Frequency (!k) Ck�3 �1 2�2 �2 2i�1 �1=2 i=40 0 01 1=2 �i=42 2 �2i3 1 �2Table 2: Another form of frequency contents of the function f1(t)Further manipulation of equation 6 is based on using the polar notation for complexnumbers, that is: x+ iy = r(cos(�) + isin(�)) = rei�where r = jx+ iyj = qx2 + y2 and tan(�) = yx3



Using this representation of complex numbers, we get:Cke2�i!kt = rkei�ke2�!kt = rkei(2�!kt+�k) (7)where rk =  A2k +B2k4 !1=2 and tan(�k) =8><>: �BkAk k > 0BkAk k < 0From all the above we obtain: f(t) = nXk=�n rkei(2�!kt+�k) (8)The full details of the above rewriting can be found in [Wea83].Using the terminology introduced in Section 2, wk is the kth frequency, rk is the amplitude,and �k is the phase. In the following sections we will be using this terminology as thebasis for discussing the Fourier transform.4 The Continuous Fourier TransformThe continuous Fourier transform of a function f(t) is de�ned as follows:F (!) = Z 1�1 f(t)e�2�i!tdt (9)f(t) = Z 1�1 F (!)e2�i!td! (10)Equation 10 is the continuous generalization of expressing f(t) as a combination of sinu-soids, as discussed in the previous sections. It is known as the inverse Fourier transform.Equation 9 provides the means for �nding the amplitude for each frequency !, given thatthe integral indeed converges. The result of applying the Fourier transform to a functionis called the frequency spectrum or the power spectrum of the function, or in short thespectrum.Here are examples of several useful functions and their respective Fourier transforms:Example 1 The Pulse function is de�ned as: p1=n(t) = 8><>: n2 jtj � 1n0 otherwiseIts Fourier transform is a sinc function, obtained as follows:P1=n(!) =Z 1�1 p1=n(t)e�2�i!tdt =Z 1n� 1n n2 e�2�i!tdt = n2 e2�i!=n � e�2�i!=n2�i! = sin(2�!=n)2�!=n = sinc(2�!=n)The respective graphs for p1=n(t) and P1=n(!) are shown in Figure 2.4



t

p   (t)
 1/n

w

P   (w)
 1/n

Figure 2: A plot of p1=n(t), and its Fourier transform P1=n(!)Example 2 The � function is de�ned as: �(t) = limn!1 p1=n(t)This function is also known as the Dirac delta function or the unit impulse function. Itis 0 for all t, except for 0, and we can think of �(0) as being 1.The Fourier transform of �(t) is:�(!) = limn!1P (!) = limn!1 sin(2�!=n)2�!=n = 1Example 3 Let f(t) be some simple cosine function: f(t) = cos(2�at)Its Fourier transform is:F (!) = Z 1�1 cos(2�at)e�2�i!tdt = �(! + a) + �(! � a)2The respective graphs for f(t) and F (!) are shown in Figure 3.
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Figure 3: A plot of f(t) = cos(2�at), and its Fourier transform F (t)Table 3 lists some of the Fourier transform properties, which make it so useful in practice.We follow the convention of source functions denoted by small letters, while their Fouriertransform results (which are assumed to exist) are capitalized.5



Property f(t) F (!)1. Linearity af1(t) + bf2(t) aF1(!) + bF2(!)2. Convolution1 Theorem f1(t) � f2(t) F1(!)F2(!)3. Product Theorem f1(t)f2(t) F1(!) � F2(!)4. Time Shifting f(t� t0) F (!)e�2�i!t05. Frequency Shifting f(t)e�2�i!0t F (! � !0)6. Scaling2 f(at) jaj�1F (!=a)7. Parseval's Theorem R1�1 jf(t)j2dt = R1�1 jF (!)j2d!Table 3: Some Basic Properties of the Fourier TransformMost of the above properties can be proved easily from the de�nition of the transformand its inverse. Proofs for the more complicated properties (such as Parseval's theorem),as well as some additional properties can be found in [Wea83, OS89, Jac90].Properties 2 and 3 state, respectively, that convolution in the time domain correspondsto multiplication of coe�cients in the frequency domain, and vice versa. This is one ofthe most useful properties of the transform, and is taken advantage of in �lter design,in reasoning about sequence behavior, as well as in fast multiplication of polynomials, aswill be discussed later on, when discussing the discrete version of the transform.Property 4 above states that shifting of the original function in time corresponds to achange of phase of the sinusoids comprising the function. Similarly, property 5 statesthat a sinusoidal modulation in the function corresponds to a phase shift in frequency.Parseval's theorem states that the total energy of a signal is the same in the time domainas it is in the frequency domain.Since most physical signals, from radio waves to seismic phenomena, are continuous, andhave a continuous range of frequencies, the functions that are used to model them arecontinuous as well, and having continuous transform is desirable. However, in many cases,the function describing a phenomenon is unknown. Data that characterizes it needs to begathered and analyzed. Moreover, measured discrete values at various points in time arerelatively easy to obtain, and computers which process such data are inherently discreteas well. Therefore, we are interested in a transform from the discrete time domain to thediscrete frequency domain, and an inverse discrete transform to take us in the oppositedirection. The rest of this paper discusses various aspects of the discrete signals and theirtransforms.5 SamplingDiscrete sequences most commonly occur as a representation of continuous signals. Theyare obtained through periodic sampling of the signal.A correct choice of sampling intervals is crucial for getting a faithful representation of the1The convolution of the functions f(x) and g(x) is: f(x) � g(x) = R1�1 f(�)g(x � �)d�.2In particular, f(�t) corresponds to F (�!): 6
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Figure 4: Three sinusoids. The black dots mark the sampling points.original signal. Consider for instance the three sinusoids depicted in Figure 4. Suppose wesample them only where the three black dots are in the �gure, that is, at the intersectionpoints of the three sequences. Clearly, these points don't have enough information todistinguish one sinusoid from the others. Therefore, if we were to reconstruct the originalsinusoids from these points, at best one of them would have been recovered correctly. Theother two sinusoids could not have been the same as the recovered one. We will see whata \good" sampling is later on in this section.Given a continuous signal xc(t), we �x a time interval of length T and obtain a discretesignal x[n] = xc(nT ) for �1 < n <1. T is called the sampling period and !s = 1=T iscalled the sampling frequency.At the conceptual level, the discrete sequence x[n] can be viewed as though it is a contin-uous sequence xs(t) with value 0 for all t 6= nT and with value x[n] at t = nT . Putting itmore formally, we de�ne:s(t) = 1Xn=�1 �(t� nT ) and xs(t) = xc(t)s(t)where � is the Dirac delta discussed in Section 4, Example 2. Thus, xs(t) is the resultof multiplying the original continuous signal xc(t) by an impulse train, s(t). (The reasonfor referring to s(t) as \an impulse train" is obvious from looking at its graph, given inFigure 5.)
t0 T 2T 3T-T-2T

(t)sFigure 5: The impulse train s(t)7



Hence, from the Product Theorem of Table 3, we know that the Fourier transform of xs(t)is the same as the convolution of the Fourier transforms of xc(t) and s(t), which we denoteas Xc(!) and S(!), respectively. S(!) is the Fourier transform of an impulse train, whichis an impulse train as well (see [OS89] for further details), and is expressed as:S(!) = 1T 1Xk=�1 �(! � k!s)Therefore, we obtain the following:Xs(!) = 1T 1Xk=�1Xc(! � k!s)Figure 6 shows the relationship between Xc and Xs.Plot (a) in the �gure shows the result of the Fourier transform on the original signal, andplot (b) shows the Fourier transform of the impulse train. The result of their convolution,
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which is the Fourier transform of the sampled signal, is shown in plot (c). We can seethat sampling of a signal xc(t) in the time domain, corresponds in the frequency domainto duplication of the original signal's spectrum, Xc(!), centered around integer multiplesof the sampling frequency !s. Thus, all we need to do in order to recover the originalcontinuous signal from the sampled one, is to \get rid" of the frequencies introduced by thesampling (which correspond to the duplications), and keep only the frequencies centeredaround 0, which are the original frequencies. (In terms of the triangles of Figure 6(c), wewant to erase all triangles except for the one centered around 0, so that we are left withthe spectrum of xc(t)).This can be achieved by �ltering the sampled signal xs(t), using a low-pass �lter. Such a�lter takes a signal x(t), and eliminates from it all frequencies of absolute value greaterthan some threshold !f . Thus, it produces a signal y(t) whose spectrum is the same asthat of x(t) for all frequencies between [�!f ; !f ], but with no frequencies above !f orbelow �!fBy applying such a �lter with !N � !f � (!s � !N ) to the sampled signal (padded with0's on the unsampled intervals), we obtain the original signal, given that precautions weretaken to sample frequently enough, such that !N � (!s � !N ), or equivalently, such that2!N � !s.Figure 6(d) demonstrates what happens if the above requirement is not met. We can see(looking at the dashed lines) that the duplications of xc's spectrum overlap each other,which means that the spectrum of the sampled signal (shown as the solid line) containsfrequency amplitudes that were not there to begin with, while original amplitudes offrequencies are lost. Hence, faithful reconstruction of the original signal from its samplesis not possible. This phenomenon, of having original amplitudes of frequencies replacedby bogus amplitudes is known as aliasing.The fact we have stated above, that if our sampling frequency !s is at least twice thehighest frequency of the original signal, !n, a faithful reconstruction of the signal fromits samples is possible, is exactly the contents of Nyquist's Theorem, and a samplingfrequency !s = 2!N is called the Nyquist frequency.It is important to note that our reasoning about the frequencies of the sampled sequencewith respect to the original sequence is a mental exercise rather than an algorithmicmethod. In order to recover the original sequence from the sampled one, we don't needto apply the Fourier transform to the sampled sequence, cut o� its high frequencies, andperform the inverse Fourier transform. We simply take the sampled sequence and feed itto a low-pass �lter, which processes it and reconstructs the original signal from it. Thefrequency domain reasoning just showed us why a low-pass �lter is a tool for recoveringa continuous signal from its samples.Once a signal is sampled, we have a discrete sequence, which is either a faithful repre-sentation (if the sampling frequency was at least the Nyquist frequency), or an unfaithfulrepresentation of it, (if a lower sampling frequency was used). In any case, a discretesequence can be processed using discrete methods, which facilitate the usage of digitalcomputers. The discrete form of the Fourier transform, (known as the DFT) is discussedin the following sections. 9



6 The Discrete Fourier Transform6.1 De�nition of the DFTThe Discrete Fourier Transform (DFT) maps a discrete periodic sequence f [k] (wherek is an integer, and the period is N), to another discrete sequence F [j], of frequencycoe�cients.It is de�ned as:3 F [j] = N�1Xk=0 f [k]e�2�ikj=N 0 � j � N � 1 (11)f [k] = 1N N�1Xj=0 F [j]e2�ikj=N 0 � k � N � 1 (12)The interpretation of the above equations is that at point k, the sequence value f [k] isa linear combination of the values of N sinusoids, e0; :::; e(2�=N)k(N�1). The coe�cients ofthe sinusoids are F [0]; :::; F [N � 1] respectively, and their frequencies are j=N cycles persample or 2�j=N radians per sample (where 0 � j � (N � 1). We should note that:e�2�ikj=N = e�2�ik(j+N)=NThus the function F [j], like the original f [k], is periodic with period N , and therefore thefrequency range to be considered is 0::2� radians/sample, or 0::N cycles/sample.It is also interesting to note that for any frequency other than the j=N 's, a discretesinusoid is not periodic. For a discrete cosine (or sine) f [k] = Acos(2�!0k) to be periodicwith period N , it must satisfy:Acos(2�!0(k +N)) = Acos(2�!0k)which means: 2�!0N = 2�j, or equivalently, !0N = j, for some integer j. The equalityholds only for the frequencies of the form j=N (in units of cycles/samples).Here are some examples of applying the DFT to discrete sequences:Example 4 Let p[k] be a discrete pulse function, with periodicity 10, de�ned as:p[k] = 8><>: 1 0 + 10m � k � 4 + 10m For some integerm0 otherwiseIts Fourier transform is:P [j] = 9Xk=0 p[k]e�2�ijk=10 = 4Xk=0 e�2�ijk=10 = e�4�ij=10 sin(�j=2)sin(�j=10)The respective graphs for p[k] and P [j] are shown in Figure 7.3The exact formulation of the DFT varies slightly in books. Some have the 1N coe�cient in front ofthe expression for F [j] rather than for f [k], while others have a coe�cient 1pN rather than 1N and use itboth for F [j] and for f [k]. The latter is the form Mathematica uses. All 3 forms are correct as long asthey are used consistently. 10
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Figure 7: A plot of p[k], and the amplitude of its DFT jP [j]j.Example 5 We have de�ned the continuous � function in Example 2, and have used itin the previous section. Its much simpler discrete counterpart, the discrete � function, forN = 10 is de�ned as: �[k] = 8><>: 1 k = 0 + 10m0 otherwiseIts Fourier transform is: �[j] = 9Xk=0 �[k]e�2�ijk=10 = e0 = 1The respective graphs for �[k] and �[j](!) are shown in Figure 8.
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Figure 8: A plot of �[k], and its DFT �[j].To make notation simpler, throughout the rest of this section we denote e2�i=N = WN andobtain: F [j] = N�1Xk=0 f [k](WN)�kj 0 � j � N � 1 (13)f [k] = 1N N�1Xj=0 F [j](WN)kj 0 � k � N � 1 (14)11



WN is called the principal N th root of unity since (WN )N = e2�i = cos(2�)+ isin(2�) = 1.Similarly, (WN )k, where 0 � k � N � 1 are all the N distinct complex roots of unity.6.2 DFT PropertiesBefore providing the properties of the DFT, some subtleties that arise from the periodicityof the sequences, must be addressed.First, we must remember that any sequence we are dealing with in the context of theDFT is periodic, with some integer periodicity N . Given a �nite (non-periodic) discretesequence x[k] of length n, (i.e. 0 � k � n � 1), to which we want to apply the Fouriertransform, we regard it as though it is periodic with periodicity N = n. Thus, wee�ectively de�ne a new sequence, y[m] for all integer m:4y[m] = x[mmod n] where m mod n = m� nbx=ycand apply the DFT to one period of y[m].Hence, if we regard any sequence x[k] (and its DFT X[j]), as periodic with period N , theshift of x[k] by l is interpreted as: x[k + l] = x[(k + l) mod N ] and is called a circularshift. The same convention holds for shifting X[j].Second, when applying the DFT to a combination of two periodic sequences, x1[k] andx2[m], we must account for the periodicity of the combination. Since the DFT is de�nedover a single period, for the DFT of the combination to be well de�ned, it must have asingle periodicity. There are three forms of combinations we have encountered in the con-tinuous case, namely, linear combination (ax1+ bx2), multiplication x1x2, and convolutionx1 � x2. Both linear combination and multiplication for the continuous case, are de�nedsuch that x1(t) is paired with the corresponding x2(t). Similarly, in the discrete case eachx1[i] should be combined with the corresponding x2[i]. Thus x1 and x2 must be of thesame periodicity N , and the resulting sequence is of periodicity N , as well. However,if the two sequences are of two di�erent periodicities, N1; N2, (assume, without loss ofgenerality, N1 < N2), either we disallow their combination, and term it \unde�ned", orwe pad the sequence of the periodicity N1 with 0's at the end of each period, thus practi-cally converting it into a sequence of periodicity N2, and therefore the combination is wellde�ned. Whether the 0 padding is reasonable or not depends mostly on the application.Such padding is used, for instance, for supporting the Fast Fourier Transform.The last kind of combination that needs to be addressed is the convolution. We recallthat one of the important properties of the continuous transform is the duality betweenconvolution in the time domain and multiplication in the frequency domain, and viceversa. We want to retain this property in the discrete case. Thus, given two periodicdiscrete sequences, x1; x2, of periodicity5N , with respective DFTs X1[j];X2[j], we wanttheir convolution result x3 to have DFT X3 = X1X2. By de�ning the circular convolution4See [GKP91] for details on the mod operation.5The period must be the same in order for the (dual) multiplication to be well de�ned.12



of x1; x2 to be: x3[k] = N�1Xm=0 x1[m]x2[(k �m) mod N ] (15)we obtain the desired correspondence [OS75]. As an example of circular convolutionconsider the two periodic sequences, with N = 3:< a0; a1; a2; a0; a1; a2; a0::: > and < b0; b1; b2; b0; b1; b2; b0; ::: >Their circular convolution is the sequence:< a0b0 + a1b2 + a2b1; a0b1 + a1b0 + a2b2; a0b2 + a1b1 + a2b0 >which is also regarded as a discrete periodic sequence with N = 3, by repeatedly dupli-cating these 3 elements, while preserving the above order. Thus, the circular convolutionmaps a pair of sequences of periodicity N to a third sequence of the same periodicity.(We extend the de�nition to non-periodic sequences of the same length N , by regardingthem as periodic, as de�ned earlier in this section).Table 4 lists the discrete counterparts of the properties given in Table 3 for the continuouscase. We assume that we are dealing only with well de�ned combinations.Property f [k] F [j]1. Linearity af1[k] + bf2[k] aF1[j] + bF2[j]2. Convolution6 Theorem f1[k] � f2[k] F1[j]F2[j]3. Product Theorem f1[k]f2[k] F1[j] � F2[j]64. Time Shifting7 f [k � k0] F [j]W�jk0N5. Frequency Shifting7 f [k]W kj0N F [j � j0]7. Parseval's Theorem PN�1k=0 jf [k]j2 = 1N PNj=0 jF [j]j2Table 4: Basic Properties of the Discrete Fourier Transform6.3 The Fast Fourier TransformOne of the most appealing aspects of the DFT is the existence of an e�cient procedurefor calculating it, using O(NlogN) complex operations, rather than O(N2) operationsrequired for the naive algorithm.The algorithm for fast DFT, is known as the FFT (the Fast Fourier Transform). It takesadvantage of symmetry properties of the complex roots of unity (theWN 's we have de�nedearlier), and uses repeated clever partitioning of the input sequence into two equally longsubsequences, each of which can be separately (and quickly) processed. In order to takefull advantage of the repetitive partitioning into equal two parts, the original sequenceneeds to be of length or periodicity which is a power of 2. If it is not originally so, it ispadded with 0's { as mentioned earlier in Section 6.1. The full details of the algorithm arebeyond the scope of this paper. An excellent presentation of it, including the fundamental6Circular convolution7Circular shift 13



mathematical background can be found in [Sav96]. Other good sources for discussion ofthe FFT and its applications are [CLR89, OS75, Wea83].The FFT algorithm gives rise to an e�cient convolution algorithm, due to the dualitybetween convolution in the time domain and multiplication in the frequency domain. Con-volution can be implemented by applying the FFT to the original sequences, multiplyingthe results, and performing the inverse FFT to obtain the results of the convolution. Weshould note that in many real applications which require convolution, (such as polynomialmultiplication or �ltering of signals), the convolution is not circular, it does not regardsequences as periodic, and does not require the sequences to be of the same length. Thisform of convolution is known as linear convolution. Given 2 sequences x1; x2 of lengthM;N respectively, their linear convolution x3 of length M +N � 1 is de�ned as:x3[k] = kXm=0 x1[m]x2[k �m] 0 � k < M +N � 1where x1[m] is taken to be 0 for m > M and x2[m] is taken as 0 for m > N .For example, consider the two sequences, of length 4 and 2, respectively:< a0; a1; a2; a3 > and < b0; b1 >Their linear convolution is:< a0b0; a0b1 + a1b0; a1b1 + a2b0; a2b1 + a3b0; a3b1 >This sort of convolution, does not preserve the duality with multiplication between thetime/frequency domains. In order to bene�t from the duality, the linear convolution needsto be expressed as a circular one. The transformation from linear to circular convolutioncan be achieved through the padding of the two sequences with 0's at their respective ends,thus making them both into sequences of length M +N � 1. The resulting sequences areboth regarded as periodic with periodicity M + N � 1, and their circular convolution isthe same as the linear convolution of the original sequences. More detailed description ofthis method can be found in [OS75, TAL89].7 Some Applications and ConclusionsThe former sections provided an introduction to the Fourier transform. The motivationbehind it, was the wide use of the transform and its properties in various and diverseareas. In what follows we demonstrate several distinct ways in which the transform isapplied. The examples di�er in the use of DFT properties, and in the resulting bene�ts.7.1 Polynomial MultiplicationThe canonical example for using the FFT in computer science, is for fast multiplicationof polynomials [CLR89, AHU74]. The observation underlying the algorithm is that when14



multiplying two polynomials, P1 and P2 of degrees N � 1 and M � 1 respectively, theM + N � 1 coe�cients of the resulting polynomial Q, are the result of convolving thecoe�cients of P1 and P2.Using the convolution theorem of the DFT, one can execute the polynomial multiplication,by treating the coe�cients of P1 and P2 as two discrete sequences of length N and M ,respectively. The sequences are padded with 0's at their ends, to obtain length that isof the smallest power of 2 that is greater than N + M � 1. Then the FFT is appliedto both sequences, and pointwise multiplication of respective results is carried out. Theinverse FFT maps the obtained results to the actual coe�cients of the result polynomial.The whole process takes time which is O((N + M � 1)log(N + M � 1)), rather thanO((N +M � 1)2).We note that in this case, the executions of both the FFT and the inverse FFT are actualsteps of the algorithm.7.2 Sequences RetrievalA very di�erent use of the FFT was recently demonstrated for fast retrieval of an explicitlygiven sequence, from a large database of stored sequences [AFS93, FRM94]. The problemaddressed in this case is the need to compare the whole given query sequence to each ofthe whole stored sequences, retrieving the sequences which are within a certain Euclideandistance from the query.Such comparison over a large database with long sequences, takes too much time, andis not feasible. To avoid it, rather than conducting search over the whole sequences,each sequence in the database is represented by its \�ngerprints" which are the �rst fewcoe�cients of its DFT. The query sequence is also transformed, and its �rst few DFTcoe�cients are compared against the coe�cients stored in the databases.Since most sequential data stored in databases can be well characterized by its lowerfrequencies, such representatives are indeed a reliable criteria for comparing sequences.Parseval's' theorem guarantees that sequences that are almost the same in the time do-main, are also almost the same in the frequency domain. This ensures that if the searchresults in sequences that match the query sequence up to some error tolerance,all thecorrect matches have been retrieved, with the possibility of some false matches, whichcan be discarded later on.The FFT is used here as a preprocessing step before storing a sequence in the database,and for converting the query sequence into a representation compatible with the database,before the search is executed. The inverse FFT is not used.7.3 FilteringThe last example for using the DFT, is for reducing noise from data, as is done in thecontext of constructing a model through delayed coordinate embedding [Sau93]. The al-gorithm presented in the paper constructs a multi-dimensional model for a given sequence15



of 1-dimensional observations. An initial step in obtaining the higher dimensionality isthe use of a sliding window over the observation sequence, which results in vectors ofobservations.To �lter out noise from the observation vectors before further processing them, a trans-formation is applied to each vector, which eliminates the high frequency components ofthe data. (Usually \noise" corresponds to high frequency data, while the actual data ischaracterized by low frequency). The transformation is equivalent to applying the DFT,multiplying the resulting vector by a sequence such that the lower coe�cients (the lowfrequency coe�cients) are multiplied by numbers close to 1 and the higher frequency co-e�cients are multiplied by numbers close to 0. The inverse DFT is applied to the result.The overall e�ect of the three operators, is equivalent to a single transformation (ma-trix) which is a low-pass �lter. Multiplying each vector by this matrix results in a newvector which is the same as the original in its lower frequencies but missing the higherfrequencies, thus it is a less \noisy" vector8.We note that in this case we don't algorithmically apply the FFT and the inverse FFT toeach vector. The Fourier transform calculations were done in order to obtain the low-pass�lter matrix, and multiplying a vector by this matrix has an equivalent e�ect to that ofapplying the FFT, multiplying by a sequence that eliminates high frequency components,and applying the inverse transform.7.4 Concluding RemarksThroughout the paper, we have demonstrated and emphasized that the Fourier transformis a way to represent functions and sequences, as a combination of sinusoids. That is,sequences and functions are spanned using sinusoids as a basis. Sinusoids are a good choiceof basis for smooth \rounded " functions, which are periodic, continuous and di�erentiableat all points. However, for functions and sequences which correspond to square waves,(such as the pulse functions we have seen in the examples), or demonstrate non-periodiclocal phenomena, other forms of bases may prove simpler to use. The Haar wavelets,which are squared-shaped and compactly-supported functions, form a basis which spanssquare functions easily, and can be used conveniently to express local (non-periodic) high-frequency uctuations. The wavelet transform is a generalization of the Fourier transform,and is actually a family of transforms. It allows a wide variety of function forms to serveas basis functions. For a quick introduction on the Wavelet transform and its applicationssee [SDS94]. An extensive discussion on wavelets can be found in [Dau92, Mal89].The Fourier Transform is a broad subject, of which we have covered only a small fraction.We have taken a rather pragmatic approach, presenting the transform from a mathemat-ical point of view, and providing intuition through examples and applications. A lot ofthe mathematical detail was omitted. Moreover, we have not addressed the engineeringapproach to the transform, which uses it to characterize systems. A discussion of what\systems" are, and the status of the Fourier transform with respect to them can be foundin [OS89].8Note that in Sauer's paper, in addition to �ltering out noise, there is also a reduction in the order ofthe vector. The order reduction is equivalent to applying the inverse DFT only to part of the frequencycoe�cients (after eliminating the high frequency coe�cients).16
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