
Incremental Algorithms for the Design Of

C1-Triangular Spline Surfaces

Dianna Xu Jean Gallier
Bryn Mawr College University of Pennsylvania

Bryn Mawr, PA Philadelphia, PA
dxu@brynmawr.edu jean@cis.upenn.edu

April 21, 2006

Abstract

Spline surfaces consisting of triangular patches have a number of advantages over their rect-
angular counterparts, such as the ability to handle surfaces of arbitrary topology. Designing
and interpolating triangular-based spline surfaces has been a research interest in the field
of CAGD for some years. The problem of designing algorithms for triangular splines with
local flexibility was proposed by Ramshaw [Ram87] in 1987. To the best of our knowledge,
although progress has been made, this problem is still open. Many approaches have been
proposed in the following years, but none have quite achieved the elegance and flexibility of
the algorithms for designing rectangular splines surfaces. We present a new de Boor-like
algorithm to design open triangular C1-splines surfaces based on general triangulations of
the parameter plane. Through careful analysis of the continuity constraints based on po-
lar forms, we discovered a way of choosing strategic control points, so that the remaining
control points are computed using a simple propagation scheme. Due to its local nature,
the algorithm can be easily made incremental. The algorithm operates in linear time and
handles holes and sharp corners easily. Preliminary results also suggest that the algorithm
can be extended to C2-splines. As our algorithm leaves quite a bit of freedom around each
vertex region, it is readily extendable to handle interpolation. However fairing methods are
needed to improve the resulting surface quality.

1 Introduction

Modeling smooth curves and surfaces continues to present many challenges and computer
graphics research is still looking for the “ultimate solution”. In general there are three
approaches to shape representation: meshes, splines and subdivision surfaces.
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The use of subdivision surfaces is a technique where polyhedra are subdivided repeat-
edly to approximate spline surfaces. There are rectangular (represented by Doo-Sabin
[Doo78, DS78] and Catmull-Clark [CJ78] methods) as well as triangular (see Loop [Loo87])
subdivision surface algorithms. They adapt well to arbitrary topology and the implemen-
tations are straightforward. However, although it can been shown that the limit surface
of a closed subdivided surface is G1 continuous (see [BD88], [Zor96]), the continuity anal-
ysis is often complicated. But most importantly, there is no easy way to parameterize a
subdivision surface for purposes such as texture-mapping.

Recent advances in the ability to process very dense point sets have led to the increased
popularity of polygonal (triangular) meshes as shape representation. Meshes have no con-
tinuity requirements, and as processor power and memory start to allow dense enough
meshes to closely approximate smooth surfaces, it is natural to see a preference for simple
mesh-representation in many areas such as animation and gaming. In Computer Aided
Geometric Design however, where manufacturability and practicality often require not just
smooth-looking surfaces but surfaces with mathematical continuity and preferablly higher
order continuity, smooth surface representations (mainly spline surfaces) are still very much
present.

Among spline surfaces, tensor product surfaces (NURBS) remain popular because most
of their properties are easy extensions from B-spline curves and well-developed algorithms
that offer built-in continuity, incrementality and local control. However, the rectangular
nature of these surfaces severely limits their ability to model abitrary topology. The alter-
native is triangular-based spline surfaces. Triangular spline surfaces have been the focus
of CAGD research for some years, as they are the natural choice in a number of applica-
tion areas, such as surfaces with arbitrary topology, surface fitting based on laser-scanned
meshes and scatter data interpolation.

Despite the many nice properties of triangular spline surfaces, they have remained largely
a research interest. Because the familiar B-spline curve framework does not carry over, they
lack the simplity of tensor product surfaces. There are many different proposals to construct
triangular Bézier spline surfaces or triangular B-spline surfaces, but while theoretically
sound, they all failed to provide a simple and intuitive way of designing and manipulating the
surface shape. This work was previously presented in Xu’s dissertation thesis [Xu02]. The
most relevant previous attempts are Loop [Loo94], which cannot handle interpolation and
Hahmann et al [HBT00, HBT01, HB03], which extends Loop’s method with a split-domain
approach to achieve interpolation, and then further incorporates hierachical methods to
achieve adaptive fitting. In short, an algorithm in the spirit of the elegant de Boor algorithm
[Far92, Gal00a] for tensor product surfaces does not exist for triangular surfaces.

This work introduces a new algorithm to design smooth open triangular spline surfaces
with quintic Bézier patches. We believe that our approach is simple, geometrically intuitive
and computationally efficient. Our algorithm is designed to satisfy the following goals:
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• Design of complex 3D shapes based on a parametrization of the plane.

• Shapes may have arbitrarily many holes and sharp corners.

• Shape modification by an incremental algorithm.

• Local control so that modifications only affect local neighborhood.

• Reasonable smoothness (C1).

Preliminary results show that the same scheme may be extended to C2, with higher
degree patches. We have also extended this approach to handle closed surfaces with G1

continuity, which will be presented in a separate paper. Our approach can also be extended
to handle interpolation almost immediately, due to the freedom around each vertex region.
However there is a degrading effect in the surface quality without further fairing methods.
Note that the first and foremost aim of this work is to come up with an algorithm for
designing triangular spline surfaces. Because our framework allows enough freedom for
a theoretically easy extension to interpolation, it is always in the back of our mind. In
our research, care has been taken to always take extension to interpolation into account.
However, so far we have not conducted any substantial investigation to make claims for
interpolation results.

2 Related Works

C1 surface fitting methods can be divided into global and local categories. Global methods
always involve solving systems of equations which generally become large and unmanageable
as the data set gets bigger. Thus the majority of the methods are local, although many of
them do resort to global measures for shape fairing.

An extensive survey of local methods for scattered data interpolation has been conducted
by Franke [Fra82]. It is an excellent starting point for literature on this topic. According to
Franke, the methods can be divided into inverse distance weighted methods due to Shepard
[She68], rectangle based methods, triangle based methods and finite element based methods.
We will only look at triangle based methods and finite element based methods because they
are all based on a domain triangulation, and are, therefore, most relevant.

Early triangle based methods were all blending schemes with weight functions, such as
Gold et al [GCR77] and Franke and Nielson [FN83]. There has been no recent literature in
this category to our best knowledge, most likely due to the appearance and popularity of
geometric continuity and G1 surfaces.

Akima’s method [Aki78] belongs to the finite element category, but it is in fact the
closest in spirit to our approach. It fits a C1 surface using quintic finite elements, and
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requires estimation of derivatives. In general estimating derivatives is a common theme
in most finite element approaches, which is very similar to our tangent plane placement
problem (see Section 7.2.3). There are also finite element approaches using split-domain
schemes, such as Lawson [Law77].

Since the work we are presenting here works only on planar triangulations, it does not
produce closed surfaces. However, since extensions to G1 closed surfaces is the eventual
goal, a survey of G1 works will also be briefly presented. The majority of methods for fit-
ting geometric-continuous surfaces differ in the way they simultaneously satisfy smoothness
conditions for many patches around a common corner. This is also known as the “vertex
consistency” or “twist compatibility” problem. There are subdivision methods, such as
Loop [Loo87], Cavaretta et al [CDM91], Hoppe et al [HDD+94] and Peters [Pet95], and
more recently, [BLZ00] and [Kob01] and split-patch methods which are Clough-Tocher like
split-domain schemes. Earlier split-patch approaches including Farin [Far82, Far83], Jensen
[Jen87], Piper [Pip87] and Shirman and Sequin [SS88]. A more recent approach due to Hah-
mann et al [HBT00, HBT01] applies a new 4-split method. Split-domain schemes generally
produce lower degree surfaces. Hahmann et al have also extended the approach to handle
interpolation [HB03] and adaptive fitting [YHB05]. Convex combination schemes such as
Hagen [Hag86] and Hagen and Pottmann [HH89] which construct higher degree triangular
patches with a single patch per parameter triangle.

In addition to the above approaches, there are C2-consistent boundary curve schemes
such as Loop [Loo94] and Peters [Pet91] and variational methods using the theory of man-
ifolds by Sarraga [Sar00] as well as B-patches by Seidel [GS93, PS95]. The surveys by Du
and Schmitt [DS90] and Mann et al [MLM+92] provide more detailed description of the
above methods. It is pointed out in [MLM+92] that most of these methods suffer from
shape defects.

3 Polar Forms and Polynomial Surfaces

Our main results make heavy use of affine geometry and its properties. In particular, the
concept of polar forms. The principle of (affine) “blossoming” was first introduced by de
Casteljau [dC86] and Ramshaw [Ram88]. Blossoming can be viewed as a generalization
of the well-known de Casteljau algorithm. In many cases, it is more convenient to study
curves and surfaces from their polar forms or “blossoms”[Ram89], because it provides a
way of labeling the Bézier or the de Boor control points with symmetric, multivariate labels
which provide excellent geometric intuitions.

Since their introduction, polar forms have gained considerable popularity because of the
geometric insights they provided to Bézier and B-splines related algorithms. The theory of
blossoming has been applied to B-spline knot insertion [Sei88, Sei89], triangular B-spline
surfaces [MS92] and geometrically continuous spline curves [Sei93]. For a more in-depth
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reading on the theory of blossoming, the readers are referred to Ramshaw [Ram87] and
Gallier [Gal00a].

Since polar forms are in fact symmetric multiaffine maps, we first discuss the represen-
tation of polynomial maps in terms of multiaffine maps.

Definition 3.1 A function f : Ad × · · · × A
d︸ ︷︷ ︸

m

→ A
n is a multiaffine map (or an m-affine

map), iff it is affine with respect to each of its argument, that is, for every i, with 1 ≤ i ≤ m,
considering a1, . . . , ai−1, ai+1, . . . , an fixed, for all ai ∈ A

d, the map

ai → f(a0, . . . , ai, . . . , am)

is affine.

Definition 3.2 A symmetric map is a function that is invariant under permutation of its
arguments, that is, the result of the function does not depend on any particular order of its
arguments. In other words, given a map f : Ad × · · · × A

d︸ ︷︷ ︸
m

→ A
n,

f(aπ(1), . . . , aπ(m)) = f(a1, . . . , am),

for all a1, . . . , am, and all permutations π.

We can use multiaffine maps to define generalized polynomial maps between two affine
spaces of arbitrary dimensions. In the special case where the multiaffine map maps from
A

n to A, it is equivalent to the notion of a polynomial function induced by a polynomial in
n variables. In fact, every polynomial curve of degree m has a unique symmetric m-affine
map associated with it. It is called the m-polar form of the curve, or its “blossom”.

For example, consider the parabola F : A → A
2, given by

x(t) = 4t,

y(t) = t2 − 3t + 2.

The polynomial map F : A → A
2 comes from a unique symmetric biaffine map f : A2 →

A
2, where

f1(t1, t2) = 2(t1 + t2),

f2(t1, t2) = t1t2 −
3
2
(t1 + t2) + 2, such that

F (t) = f(t, t), for all t ∈ A.
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3.1 Polynomial Surfaces and Polar Forms

3.1.1 Polarizing polynomial surfaces

A polynomial curve is easily generalized to a polynomial surface by having the polynomials
take two parameters. Thus, we have a polynomial map F (u, v): A2 → A

3.

For example, the following polynomials define a bipolynomial surface of degree (3, 3),
known as Enneper’s Surface:

F1(u, v) = u − u3

3
+ uv2

F2(u, v) = v − v3

3
+ u2v

F3(u, v) = u2 − v2.

Recall that symmetric multi-affine maps can be used to define the notion of a polynomial
function between two affine spaces of arbitrary dimension. We have seen before that poly-
nomial curves have associated polar forms. Similarly, we also have polar forms associated
with polynomial surfaces.

To polarize a polynomial means to find the unique symmetric affine map associated
with the given polynomial. Now, since we have polynomial surfaces, we have two parameter
variables (u, v) involved in the polynomials, and there are two natural ways to polarize a
given polynomial surface F : A2 → A

3.

The first approach is to polarize separately in the two variables, which yields bipolyno-
mial surfaces, also commonly called tensor product surfaces. If p and q are the two degrees
of the bipolynomial surface, then we get a (p + q)-multiaffine map which is symmetric in
its first p arguments, and in its last q arguments, but not symmetric in all its arguments.
This approach basically divides the parameter plane into rectangles.

The second approach treats the two variables (u, v) as a whole, namely, as coordinates
of a point (u, v) in the affine plane. This approach produces total degree surfaces. If m is
the degree of the total degree surface, then we get a m-affine map which is symmetric in all
of its arguments. In this sense, this method is a natural generalization of the Bézier curves,
and in fact, total degree surfaces (or Bézier triangular surfaces) were the first surfaces to
be considered by de Casteljau himself. This approach triangulates the parameter plane.

A polynomial surface F of total degree m is completely specified by a (triangular) control
net, or Bézier net consisting of control points.
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3.1.2 Control points for triangular surfaces

Given an affine frame ∆rst in the plane (where r, s, t ∈ P are affinely independent points),
it turns out that any symmetric multiaffine map f :Pm → E is uniquely determined by a

family N = (bi, j, k)(i,j,k)∈∆m
of

(m + 1)(m + 2)
2

points (where E is any affine space, say R
n),

known other wise as a (triangular) control net, or Bézier net .

For example, with respect to the frame ∆rst = ((1, 0, 0), (0, 1, 0), (0, 0, 1)), we obtain 10
control points for the Enneper surface, as illustrated in Table 1.

f(r, r, r)(
2
3
, 0, 1

)
f(r, r, t)(
2
3
, 0,

1
3

) f(r, r, s)(
2
3
,
2
3
,
1
3

)
f(r, t, t)(
1
3
, 0, 0

) f(r, s, t)(
1
3
,
1
3
, 0

) f(r, s, s)(
2
3
,
2
3
,−1

3

)

f(t, t, t)
(0, 0, 0)

f(s, t, t)(
0,

1
3
, 0

) f(s, s, t)(
0,

2
3
,−1

3

) f(s, s, s)(
0,

2
3
,−1

)

Table 1: Control points for Enneper’s surface

4 Continuity Conditions of Triangular Spline Surfaces

4.1 Continuity conditions on polar forms

The most important issue in joining polynomial surfaces is continuity along the boundaries.
The question of exactly what we mean by “smooth” is of central importance. Today, the
well-accepted standard is to look at parametric continuity. The parametric functions that
define the surfaces are considered smooth if and only if their respective derivatives are
well-defined up to some order.

Definition 4.1 Given two surface patches F and G, for any point a ∈ A
2, F and G are
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said to join with Ck-continuity at a if and only if

F (i)(a) = G(i)(a),

for all i, 0 ≤ i ≤ k. That is, their derivatives at a agree up to kth order.

We shall look at conditions forced on polar forms if two surfaces are to join with Ck-
continuity. We focus our interest on spline surfaces based on a triangulation of the plane.

Definition 4.2 Let A and B be two adjacent convex polygons in the plane, and let (r, s)
be the line segment along which they are adjacent (where r, s ∈ A

2 are distinct vertices of
A and B). Given two polynomial surfaces FA and FB of degree m, FA and FB join with Ck

continuity along the line segment (r, s) iff FA and FB agree to kth order for all a ∈ (r, s).
That is, for any point a along the segment (r, s), all derivatives of FA and FB up to the kth
order must agree at a.

Lemma 4.3 For any a ∈ (r, s), FA and FB agree to kth order at a iff their polar forms
fA: (A2)m → A

d and fB: (A2)m → A
d agree on all multisets of points that contain at least

m − k copies of a, that is, iff

fA(u1, . . . , uk, a, . . . , a︸ ︷︷ ︸
m−k

) = fB(u1, . . . , uk, a, . . . , a︸ ︷︷ ︸
m−k

),

for all u1, . . . , uk ∈ A
2.

Using the above lemma, we can prove the following crucial result:

Lemma 4.4 Let A and B be two adjacent convex polygons in the plane, and let (r, s) be
the line segment along which they are adjacent (where r, s ∈ A

2 are distinct vertices of A
and B). Given two polynomial surface FA and FB of degree m, FA and FB join with Ck

continuity along (r, s) iff their polar forms fA: (A2)m → A
d and fB: (A2)m → A

d agree on
all multisets of points that contain at least m − k points on the line (r, s), that is, iff

fA(u1, . . . , uk, ak+1, . . . , am) = fB(u1, . . . , uk, ak+1, . . . , am),

for all u1, . . . , uk ∈ A
2, and all ak+1, . . . , am ∈ (r, s).

Proof . As Lemma 4.3 states, for every a ∈ (r, s), FA and FB agree to kth order at a iff

fA(u1, . . . , uk, a, . . . , a︸ ︷︷ ︸
m−k

) = fB(u1, . . . , uk, a, . . . , a︸ ︷︷ ︸
m−k

),
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for all u1, . . . , uk ∈ A
2. However, if we consider

a �→ fA(u1, . . . , uk, a, . . . , a︸ ︷︷ ︸
m−k

)

and
a �→ fB(u1, . . . , uk, a, . . . , a︸ ︷︷ ︸

m−k

)

as affine polynomial functions FA(u1, . . . , uk) and FB(u1, . . . , uk), if these functions agree
on all points in (r, s), because of the uniqueness of the polar form associated with a poly-
nomial function, the corresponding polar forms fA(u1, . . . , uk) and fB(u1, . . . , uk) agree for
all points ak+1, . . . , am ∈ (r, s). Since this holds for all u1, . . . , uk ∈ P, we have shown that

fA(u1, . . . , uk, ak+1, . . . , am) = fB(u1, . . . , uk, ak+1, . . . , am),

for all u1, . . . , uk ∈ A
2, and all ak+1, . . . , am ∈ (r, s), as desired.

4.2 Necessary and sufficient polar form conditions for C1 continuity

As a consequence of Lemma 4.4, we obtain the necessary and sufficient conditions on trian-
gular control nets for two surface patches FA and FB of degree m to join with Cn continuity
along (r, s).

Let A = ∆prs and B = ∆qrs be two frames in the plane, sharing the edge (r, s).

��

��

��

��p q

s

r

A B

Figure 1: Two adjacent reference triangles

Then, Lemma 4.4 tells us that FA and FB join with Ck continuity along (r, s) iff

fA(pgqhrisj) = fB(pgqhrisj),
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for all g, h, i, j such that g + h + i + j = m, and i + j ≥ m − k (0 ≤ k ≤ m).

For C0 continuity, we have k = 0. Thus, i+j ≥ m−0 ⇒ i+j ≥ m, since g+h+i+j = m,
we have g = h = 0. Therefore, we just have

fA(rism−i) = fB(rism−i),

with 0 ≤ i ≤ m, which means that the control points of the boundary curves along (r, s)
must agree.

For C1 continuity, we have k = 1. Thus, i + j ≥ m − 1. Since g + h + i + j = m, we
have three cases. Either i + j = m, then g = h = 0, or i + j = m − 1, in which case either
g = 0 and h = 1, or g = 1 and h = 0. Thus, we have the conditions

fA(rism−i) = fB(rism−i), 0 ≤ i ≤ m, (1)
fA(prism−i−1) = fB(prism−i−1), 0 ≤ i ≤ m − 1, (2)
fA(qrism−i−1) = fB(qrism−i−1), 0 ≤ i ≤ m − 1. (3)

This is a total of 3m + 1 conditions. However, we will now show that in general, only
2m + 1 of these conditions are independent. Let q = λp + µr + νs, where λ + µ + ν = 1.
Since we are assuming that A and B are distinct triangles, λ �= 0, and

p =
1
λ

q − µ

λ
r − ν

λ
s,

and Condition 2
fA(prism−i−1) = fB(prism−i−1)

becomes

fA(prism−i−1) = fB

((
1
λ

q − µ

λ
r − ν

λ
s

)
rism−i−1

)
,

and since fB is multiaffine, this yields

fA(prism−i−1) =
1
λ

fB(qrism−i−1) − µ

λ
fB(ri+1sm−i−1) − ν

λ
fB(rism−i),

or equivalently

λfA(prism−i−1) + µfB(ri+1sm−i−1) + νfB(rism−i) = fB(qrism−i−1),

for 0 ≤ i ≤ m − 1.
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Now using Condition 1
fA(rism−i) = fB(rism−i),

we get

(∗) λfA(prism−i−1) + µfA(ri+1sm−i−1) + νfA(rism−i) = fB(qrism−i−1),

for 0 ≤ i ≤ m − 1. Similarly, since q = λp + µr + νs, from Condition 3

fA(qrism−i−1) = fB(qrism−i−1),

we get
fA((λp + µr + νs)rism−i−1) = fB(qrism−i−1),

which yields

λfA(prism−i−1) + µfA(ri+1sm−i−1) + νfA(rism−i) = fB(qrism−i−1),

for 0 ≤ i ≤ m − 1. These are the conditions (∗) that we found earlier, and thus, the
conditions for C1-continuity are indeed the 2m + 1 conditions

fA(rism−i) = fB(rism−i), 0 ≤ i ≤ m, (4)
fB(qrism−i−1) = λfA(prism−i−1) + µfA(ri+1sm−i−1) + νfA(rism−i) (5)
0 ≤ i ≤ m − 1, with q = λp + µr + νs.

These conditions show that the control points fA(prism−i−1), fA(ri+1sm−i−1), fA(rism−i)
and fB(qrism−i−1) satisfy the same affine relation that p, r, s, q satisfy, i.e., the diamond
formed by these control points is an affine image of the diamond (p, r, s, q) under some
unique affine map h.

��

��

��

��fA(prism−i−1) fB(qrism−i−1)

fA(rism−i)

fA(ri+1sm−i−1)

h(A) h(B)

Figure 2: C1-continuity conditions
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In the special case where q = r + s− p, or equivalently p + q = r + s, which means that
the line segments (p, q) and (r, s) have the same midpoint, the above Conditions 5 become

1
2
(fA(prism−i−1) + fB(qrism−i−1)) =

1
2
(fA(ri+1sm−i−1) + fA(rism−i)), (6)

0 ≤ i ≤ m − 1.

Now we will look at C1 continuity constraints in more detail. We start from the special
case where adjacent triangles form a parallelogram. This is true if the all triangles in the
parameter plane are equilateral.

4.3 Around a vertex

Assume that we have a (finite) triangulation of the parameter plane A
2 consisting of equi-

lateral triangles. We know that to achieve C1 continuity, the line segment between the
apexes of any two triangular patches sharing an edge must have the same midpoint as the
edge itself, as stated by equation 6. Let us take a closer look at what this means when
three or more adjacent triangular patches have a common vertex. First of all, we introduce
a definition that will simplify our notations somewhat.

Definition 4.5 Given n ≥ 2 triangular patches of degree m that share a common vertex
v1, let T1, . . . , Tn be the n triangles in the planar domain and f1, . . . , fn be the n polar forms
associated with the patches. Let v1, . . . , vn+2 denote the vertices of the domain triangles,
so that Ti = (v1, vi+1, vi+2), with 1 ≤ i ≤ n. Let z1 = fi(v1

m), then the control points
zi+1 = fi(v1

m−1, vi+1), with 1 ≤ i ≤ n + 1, are called the star of control points around z1,
or simply, the star of z1 (See Figure 3).

We call the set {z2, . . . , zn+2} a complete star if z1 is completely surrounded by patches.
A complete star has n control points. An incomplete star has n + 1 control points.

Notice that vertex vn+2 coincides with v2 if the star is complete.

We should also point out the vi are in the planar domain and the zi are control points
in space. However, the corner point and its star, i.e. the zi, are indeed coplanar and their
convex hull is an affine image of the convex hull given by the vi. One can think of Figure 3
as having the zi superimposed onto the domain triangulation given by the vi. Also, recall
that the notation fi(vj

m) indicates that there are m copies of vj in fi’s arguments, that is:

fi(vj
m) = fi(vj , . . . , vj︸ ︷︷ ︸

m

).
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����

����

��

��

��

v2(v8)

v3 v4

v5

v6v7

z2(z8)

z3 z4

z5

z6
z7

z1(v1)

Figure 3: z2, . . . , z7 is the complete star of z1

The star completely determines the continuity conditions around a vertex, and therefore
we will look at it closely. The necessary and sufficient polar form Conditions 6 given in 4.2
for C1 continuity apply, as we have an equilateral template triangulation.

To simplify the notation for the equations given by Conditions 6, we would like to drop
1
2

. It turns out that it is all right to do so, because there is a contruction that will embed

an affine space in a vector space. Thus, affine points can be turned into vectors, and then
back to points. For more information on such a “homogenizing” construction, please refer
to Chapter 4 of Gallier [Gal00b], or Berger [Ber90]. We begin with three patches sharing a
common vertex.

4.3.1 Case 1: Three triangular patches.

�� ����

����

z2

z3 z4

z5
z1

Figure 4: Three adjacent triangular patches
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The two C1-equations are

z1 + z3 = z2 + z4,

z3 + z5 = z1 + z4.

Subtracting the second equation from the first, we get z1 − z5 = z2 − z1, or

z2 + z5 = 2z1.

Thus, z1 is the middle of the line segment (z2, z5). There are three degrees of freedom, for
example, z1, z3, z4.

To avoid redundancy, we will skip over the next two cases, e.g. four and five triangular
patches, and go straight to six patches.

4.3.2 Case 2: Six triangular patches.

�� ����

����

����

z2

z3 z4

z5

z6z7

z1

Figure 5: Six adjacent triangular patches

There are two more equations, and the six C1-equations are

z1 + z3 = z2 + z4,

z3 + z5 = z1 + z4,

z1 + z5 = z4 + z6,

z5 + z7 = z1 + z6,

z2 + z1 = z3 + z7,

z2 + z6 = z1 + z7.
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Remarkably, the last two equations follow from the first four. Indeed, as in the previous
case, we get

z2 + z5 = 2z1,

z3 + z6 = 2z1,

z4 + z7 = 2z1,

and by adding the two equations

z1 + z3 = z2 + z4,

z4 + z7 = 2z1,

we get
z1 + z3 + z4 + z7 = 2z1 + z2 + z4

which reduces to
z3 + z7 = z1 + z2,

that is,
z2 + z1 = z3 + z7.

Similarly, by adding the two equations

z2 + z1 = z3 + z7,

z3 + z6 = 2z1,

we get
z2 + z1 + z3 + z6 = 2z1 + z3 + z7

which reduces to
z2 + z6 = z1 + z7.

Thus, the rank of the system is four, and it is easily seen that the equations

z2 + z5 = 2z1,

z3 + z6 = 2z1,

z4 + z7 = 2z1,

z2 + z4 + z6 = 3z1,

are linearly independent. There are three degrees of freedom, for example, z2, z4, z6 (or
z3, z5, z7).

In all cases, there are three degrees of freedom among the vertex and its star, that is, any
three control points that are not collinear completely determine the continuity condition
around that vertex.
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4.3.3 Along an edge

When two degree m patches meet, the C1 continuity constraints along the common edge
are completely determined by the parallelograms formed by the control points across the
common edge. Figure 6 shows two patches of degree four, which contains three such par-
allelograms. In general, there are m − 1 such parallelograms for any two degree m patches
that share an edge.
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A B

Figure 6: Two cubic patches that share an edge

We must have
vk
A = vk

B

along the common edge (r, s) and every diamond (vk
p , vk, vk

q , vk+1) must be the image of
(p, s, q, r) under a bijective affine map, as shown in Figure 2. We can pick any three non-
collinear points among (p, q, r, s). Assuming (p, r, q) are not collinear and s = λp + µr + νq,
we get

vk = λvk
p + µvk+1 + νvk

q .

as shown in Conditions 5 in Chapter 4.

Similarly, in the special case where (p, s, q, r) is a parallelogram, Conditions 5 become
Conditions 6, that is, the line segments (p, q) and (r, s) have the same midpoint, and we get

1
2
(vk + vk+1) =

1
2
(vk

p + vk
q ),

written simply as:
vk + vk+1 = vk

p + vk
q .

Thus, any three non-collinear control points among the four control points that make up a
parallelogram will determine the fourth.
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4.3.4 Arbitrary triangulation

So far, we have seen that with a equilateral triangulation, there are three degrees of freedom
around a vertex control point and its star, and also in any parallelogram across any shared
edge. This is a nice result, but in obtaining the result, we relied on diagonals of the
parallelograms having the same midpoint. This is no longer true when we have an arbitrary
triangulation.

Much to our delight, the case of an arbitrary triangulation is not much more difficult.
It turns out that we still have three degrees of freedom among the vertex and its star,
regardless of how many patches come together at that vertex.

Recall Conditions 5 given in 4.2 for the general case:

fB(qrism−i−1) = λfA(prism−i−1) + µfA(ri+1sm−i−1) + νfA(rism−i),

where λ + µ + ν = 1.

These conditions show that the control points fA(prism−i−1), fA(ri+1sm−i−1), fA(rism−i),
and fB(qrism−i−1), satisfy the same affine relation that p, r, s, q satisfy, i.e., the diamond
formed by these control points is an affine image of the diamond (p, r, s, q) under some affine
map h.

Lemma 4.6 Given n ≥ 2 triangular patches that share a common vertex, let T1, . . . , Tn be
the n ≥ 2 triangles in the planar domain associated with the patches, with Ti = (vi+1, v1, vi+2),
so that Ti and Ti+1 share the vertex v1 and are adjacent along the edge (v1, vi) (3 ≤ i ≤ n+1).
Let z1 be the control point associated to v1, and z2, . . . , zn+2 the star of control points of
z1 (note that vn+2 = v2 and zn+2 = z2 if the star is complete). Also let F1, . . . , Fn be the
polynomial maps associated with the patches. If the patches Fi(Ti) and Fi+1(Ti+1) meet with
C1 continuity, for all 1 ≤ i ≤ n, then there is a unique affine map h: A2 → A

3 such that

h(vi) = zi,

with 1 ≤ i ≤ n + 2.

As a consequence, if (vi, vj , vk) are any three affinely independent points, for any vl with
l �= i, j, k, if vl = λvi + µvj + νvk, we also have the equation

zl = λzi + µzj + νzk,

where λ + µ + ν = 1.

Proof . We proceed with induction on n. Base case: n = 2. There are two triangles,
T1 = (v2, v1, v3), and T2 = (v3, v1, v4) that meet with C1 continuity. According to Conditions
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5 obtained in Chapter 4, the points z4, z1, z2 and z3 are an image of v4, v1, v2 and v3 under
a unique affine map.

Assume that Lemma 4.6 holds for n. Now, we prove it for n + 1. According to the
induction hypothesis, patches Fi(Ti) and Fi+1(Ti+1) meet with C1 continuity for all 1 ≤
i ≤ n, thus there is an unique affine map h such that

h(vi) = zi,

with 1 ≤ i ≤ n + 2. Now, we have a new patch Fn+1(Tn+1) that meets with patch Fn(Tn)
with C1 along (v1, vn+2). According to Conditions 5, there is also an unique affine map g
such that g(vi) = zi, with i ∈ [1, n + 1, n + 2, n + 3]. Thus we have the affine maps h and g
overlap on the triangle Tn = (v1, vn+1, vn+2). Because the triangle Tn is a proper triangle
with three affinely independent vertices which form an affine frame, this forces h and g to
be the same affine map.

Since any three affinely independent points form an affine basis, any other point is com-
pletely determined by a unique affine combination of these three points. When any three
non-collinear control points among z1 and its star are determined, to compute any other
control point in the star, we can immediately find the corresponding vertices of the four
control points involved, compute the barycentric coefficients for the unique affine combina-
tion between the vertices, and use the same coefficients to compute the fourth control point.
Thus, regardless of how many patches come together, any three non-collinear control points
among z1 and its star determine the continuity conditions around a vertex completely. The
same also holds for similar quadrilaterals along the edges.

5 An Algorithm for Designing C1 Triangular Spline Surfaces

5.1 Algorithm to choose prescribed (free) control points based on equi-
lateral triangulations

The challenge is to come up with a way to systematically prescribe a certain set of control
points, so that the rest of the control points can be computed efficiently, and the resulting
surface has guaranteed C1 continuity. We restrict ourselves for now to the special case
where all triangles in the template triangulation are equilateral. This guarantees that the
two lines formed by the opposite apexes of any two adjacent triangles (line segments (p, q)
and (r, s)) have the same midpoint. Notice that restricting all triangles to be isosceles, with
the third, non-equilateral edge as the shared common edge between two triangles achieves
the same effect, but the condition makes the template triangulation a lot less regular, and
harder to draw.
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5.1.1 Degree 5 patches

It is generally impossible to construct a triangular spline surface of degree m with Ck

continuity, if 2m ≤ 3k + 1. The proof of this is quite involved, and a detailed account
can be found on pages 317 − 320 in Gallier’s Curves and Surfaces in Geometric Modeling
[Gal00b].

Thus, we must have 2m ≥ 3k + 2. For C1 continuity, we have k = 1, and therefore
m must be at least three. Because there are three degrees of freedom in all cases where
adjacent triangles share some common vertex, the systems of equations to solve for control
points are over-determined for m ≤ 4. It turns out that in order to have local flexibility
and a reasonably symmetric method, m = 5 is the smallest possible degree to allow enough
freedom. Therefore we turn our attention to quintic patches.

Since we have degree five, each patch has 21 control points. We divide these control
points into corner points, edge points and inner points. Recall that the control points

bi,j,k = f(r, . . . , r︸ ︷︷ ︸
i

, s, . . . , s︸ ︷︷ ︸
j

, t, . . . , t︸ ︷︷ ︸
t

)

where i + j + k = m can be viewed as an image of the triangular grid ∆m defined by

∆m = {(i, j, k) ∈ N3 |i + j + k = m}.

The 21 control points of a quintic patch forms a triangular grid:

500

401 410

302 311 320

203 211 221 230

104 113 122 131 140

005 014 023 032 041 050

Table 2: Control points grid for a quintic triangular patch

Definition 5.1 Given a triangular control net of degree m,

1. Corner points are control points whose corresponding polar values have either i = m,
j = m or k = m, which means any two of i, j, k are 0.
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2. Edge points are control points whose corresponding polar values have either i+j = m,
j + k = m or i + k = m, which means any one of i, j, k is 0.

3. Inner points are control points whose corresponding polar values have i + j + k = m
with i �= 0, j �= 0, k �= 0.

When m = 5, the corner points are b0,0,5, b5,0,5 and b5,0,0, the edge points are b4,0,1,
b3,0,2, b2,0,3, b1,0,4, b0,1,4, b0,2,3, b0,3,2, b0,4,1, b1,4,0, b2,3,0, b3,2,0 and b4,1,0 and the inner points
are b3,1,1, b1,3,1, b1,1,3, b2,1,2, b2,2,1, b1,2,2. It is clear that the corner points correspond to
points on the three corners of the triangular surface patch, the edge points correspond to
points on the three edges of the triangular surface patch, and the inner points correspond
to points not on the boundary of the triangular surface patch.

5.1.2 Corner point region

First of all, we need to specify a uniform way to prescribe the corner points. As we have seen
earlier in Chapter 4, the continuity conditions around a corner point depends on the number
of patches (or the number of edges) coming together at that particular point, although there
are three degrees of freedom in all cases.

In fact, a corner point that is adjacent to exactly two edges is common to only one
face, and therefore does not contribute to or constrain the continuity conditions of the
patch. Such points and its two edges are commonly called an “ear” in many literatures
on triangulation, and we will refer to such corner points and edge points on the two edges
associated as ear points.

Because we are dealing with equilateral triangles, there can be at most six patches
coming together at a corner point. Thus, we need only to specify prescription methods for
corner points adjacent to two to six patches. They are shown in Figure 7, where a square
represents a corner point, a circle represents an edge point and a green square or circle
indicates that particular control point is prescribed.

In theory, there are three degrees of freedom in all of the above cases, and therefore
we can pick any three control points that are not collinear. We chose the above schemes
simply because they are more symmetric, and therefore are less likely to cause undesired
compensation effect due to excessive tilting of the affine reference frame. In the case of a
corner point adjacent to six faces, either of the two schemes is permitted. We simply pick
any three alternate points out of the six adjacent to the corner point.

Once a corner point region is prescribed, propagation will determine the corner point
and its star completely. Corner point region propagations are computed based on the fact
that the midpoints of the two diagonals of the parallelograms must agree. Because of the
regularity of the equilateral triangles, the corner point is the midpoint of three pairs of star
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Figure 7: Prescribing corner points

points (in the case of six patches), and the center of gravity of any three alternate star
points. These special properties simplify propagation somewhat and we take advantage of
that. Propagation computations are simple. They consist of only one addition and one
subtraction in most cases, and are instantaneous.

As shown in Figure 8, where a corner point region consisting of z1 and its complete star
z2, . . . , z7 is given. We notice that z2, z4 and z6 are prescribed. We first compute z1. Since
it is the center of gravity of z2, z4 and z6,

z1 =
z2 + z4 + z6

3
.

Once z1 is obtained, z3, z5 and z7 follow immediately:

z3 = 2z1 − z6,

z5 = 2z1 − z2

z7 = 2z1 − z4,

z1 is obtained with two additions and one division, and the rest one addition (2z1 = z1 +z1)
and one subtraction.
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Z 2
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Z 5

Z 6Z 7

Figure 8: Prescribing corner points, example

5.1.3 Along the edges

What remains are continuity conditions along an edge, which are controlled by the paral-
lelograms formed by inner points and edge points across that edge. Clearly all edge points
directly affect the continuity conditions across that particular edge, but for every patch,
only some of its inner points affect its C1 continuity conditions. These are the inner points
that form the aforementioned parallelograms.

For every two patches that share an edge, once the two corner point regions of the shared
edge are computed, we need only to prescribe two inner points per patch, plus one inner
point per shared edge to determine all the edge points.
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Figure 9: Prescriptions and propagations along the edges

Edge propagations are computed the same way as corner point region propagations.
We force propagations along the shared edge from both ends to the center as shown in
step 1 − 2. Step 1 shows an edge whose two endpoint corner-point-region propagations
(z1, z2, z3 → z4), (z5, z6, z7 → z8) are already completed. We adopt the convention of
drawing prescribed control points in green, and propagated control points in red.

Next, following the directions of propagation as indicated by the two arrows, we prescribe
two inner points at each side of the edge, namely, (z9, z10) and (z11, z12). Edge points z13

and z14 are then immediately computed via propagation in the following way:

z13 = z9 + z10 − z4,

z14 = z11 + z12 − z8

At this stage we have z15 and z16 still to be propagated. It’s clear that one of them needs
to be prescribed, and the other propagated. Step 3a and 3b are both legal moves allowed
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by the algorithm. Prescribing either one of the inner points will lock the other in. We
therefore call them flip points. The flip point is propagated either as z15 = z13 + z14 − z16,
or z16 = z13 + z14 − z15, depending on which one we choose to prescribe. The two directions
of propagations are caught and stopped by the flip points in the middle of the shared edge.
All control points remaining (only inner and ear points) are free and they do not constrain
continuity conditions.

5.1.4 Six patches

When we have a large surface with many patches, the case where six patches share a common
corner point is typical except on the boundaries. In this case, three inner points per patch
plus one flip point every two adjacent patches will suffice to determine continuity conditions
across the patches. We require that corner point region propagations always precede edge
propagations. All propagations are computed based on diagonal mid-point agreement of
affected parallelograms.
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1. Prescription 2. Corner-point region propagation

3. Edge propagation: edge points4. Edge propagation: flip points

Figure 10: When six patches come together

5.2 Irregular triangulations

So far, we have based our algorithm on equilateral triangulations, which are quite restric-
tive. The kind of surfaces they can represent tend to be geometrically regular and are not
very realistic. We started with equilateral triangulations due to the nice properties brought
by their regularity, but as we shall see, the properties of the equilateral triangles are not nec-
essary, and our algorithm needs minimal modifications to adapt to irregular triangulations.
In fact, equilateral triangulation is just a special case of irregular triangulation.
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First, let’s look at corner point region. From Lemma 4.6, we know that around the
corner point region, there are always three degrees of freedom regardless how many patches
come together. Therefore any three non-collinear control points among the corner point
and its star can be prescribed. The three prescribed control points then form an affine
frame. Therefore, propagation for any fourth point in this corner region is computed based
on affine relations with respect to that particular frame.

Along the edges, we have similar quadrilaterals instead of parallelograms because the
triangulation is no longer regular. Propagations still proceed in the same manner and
directions, and involve control points with the same positions (or polar values) in their
respective patches. The only thing that is different is in the actual computation. Just
like in the corner point region, instead of mid-point calculations, we compute using affine
relations.

The complexity of our algorithm stays the same, because the only thing that is different
in the irregular case is the actual computation step of the propagation. The exact same sets
of control points are prescribed and propagated, respectively. The computation based on
affine relations is only slightly more complicated, which requires the computation of 2 × 2
determinants.

In Figure 11, following our convention, all the colored points, some labeled zi, are
control points in space, and the vi belong to the domain triangulation, and are therefore in
the plane.

z1
z2

z3

z4

z5
z6 z7

z8
z9

z10

z11

z12

v1

v2

v3

v4

v5

v6

Figure 11: Irregular triangulation
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In general, it is easily shown that given three affinely independent point (a, b, c) in A
2,

for any point x ∈ A
2, if x = λa + µb + νc, where λ, µ, ν are the barycentric coordinates of

x with respect to (a, b, c),

λ =
det(−→xb,

−→
bc)

det(−→ab,−→ac)
, µ =

det(−→ax,−→ac)

det(−→ab,−→ac)
, ν =

det(−→ab,−→ax)

det(−→ab,−→ac)
.

As shown in the above example, the corner point region of z1 and its star z2, . . . , z6 has
the three points (z2, z4, z5) chosen as the affine frame. Computations for the rest of the
control points in the corner point region is given as follows:

z1 =
det(−−→v1v4,−−→v4v5)
det(−−→v2v4,−−→v2v5)

z2 +
det(−−→v2v1,−−→v2v5)
det(−−→v2v4,−−→v2v5)

z4 +
det(−−→v2v4,−−→v2v1)
det(−−→v2v4,−−→v2v5)

z5,

z3 =
det(−−→v3v4,−−→v4v5)
det(−−→v2v4,−−→v2v5)

z2 +
det(−−→v2v3,−−→v2v5)
det(−−→v2v4,−−→v2v5)

z4 +
det(−−→v2v4,−−→v2v3)
det(−−→v2v4,−−→v2v5)

z5,

z6 =
det(−−→v6v4,−−→v4v5)
det(−−→v2v4,−−→v2v5)

z2 +
det(−−→v2v6,−−→v2v5)
det(−−→v2v4,−−→v2v5)

z4 +
det(−−→v2v4,−−→v2v6)
det(−−→v2v4,−−→v2v5)

z5,

Along the edge, (z5, z7, z8) will be the affine frame used to compute z9, and similarly,
(z9, z10, z11) will give us the flip point z12.

We can handle most irregular triangulations, but not arbitrary triangulations. We are
limited by one case. We will discuss that in some detail in 7.

5.3 Local control

Locality is an important property for interactive design systems. The patches affected by
the modification of a single control vertex, the less recomputation is needed, and therefore
the faster the rendering speed. When it comes to locality, complete locality is highly desired,
which means modification of a control vertex only affects patches that are incident to it.

Our algorithm generates propagations that are completely local. Local control is achieved
because propagations always end at the flip points. Modification of any control point on
any patch F will affect at most those control points associated with the patches that are
adjacent to F . Only some of the control points of these incident patches are affected at all
times, and furthermore, not all incident patches are affected under most circumstances.

Depending on the nature of the modified control point (corner, inner or flip), more or
less repropagation is needed. Only control points that were prescribed in the original design
are allowed to be modified.
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5.3.1 Corner point region

Modification of a corner point or any of its star will result in repropagations of the entire
corner point region and along all of its affected adjacent edges.

z1z1 z2z2

z3 z3z4 z4

z5z5

z6z6 z7z7

Figure 12: Local propagation in corner point region

In Figure 12, control point z5 is modified. We adopt the convention of drawing modified
control points in magenta. Since z5 was one of the three points that formed the affine
frame in that particular corner point region, once the affine frame changed, all the other
control points in the same corner point region that do not belong to the affine frame, namely
z1, z2, z4 and z6 need to be recomputed with respect to the new frame.

Notice that the example shows only one modified control point. All three control points
that make up the frame are allowed to be modified. The changes made to z2, z4, z6 and also
the original z5 will in turn affect the edges associated to them, e2, e4, e6 and e5 respectively.
Edges e3 and e7 are not affected, as z3 and z7 are not modified.

Repropagation along any of the above edges is in fact only propagated through half of
the edge. We know that there are two directions of propagation along any edge, but from
any one corner point region, only one side of an edge is affected. Either direction is stopped
by the flip point, and cannot proceed further.

Repropagation of any one corner region and its adjacent edges does not affect any other
corner regions, as the flip points stops the propagation before it can reach any other corner
region. This means that all corner point region propagations can be carried out in parallel,
or when programmed sequentially, in any arbitrary order.
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5.3.2 Inner points

Modification of an inner point (not a flip point) will result in repropagations along its two
incident edges, as illustrated in Figure 13.

z1z1

z2z2

z3z3

z4z4

z5z5

e1 e1

e2 e2

Figure 13: Local propagation along the edges

In Figure 13, inner point z1 is modified. As a result, on edge e1, the affine frame
(z1, z2, z3) has changed, and therefore z4 needs to be recomputed. The changes to z4 in
turn affect the affine frame used to compute flip point z5, therefore z5 has to be recomputed
as well. No other changes occurred on e1. Similarly on edge e2, one edge point and one flip
point need to be recomputed.

Repropagation along an edge will not affect any other edges or corner point regions,
again because the flip points “sinks” the propagations from both ends of the edge. All edge
propagations can also be carried out in parallel, or in any arbitrary order.

5.3.3 Flip points

Modification of a flip point will result in repropagation of the other flip point across the
edge, as illustrated in Figure 14.

In Figure 14 flip point z1 is modified. As a result, the affine frame (z1, z2, z3) is changed,
and therefore z4 needs to be recomputed with respect to the new frame. No other control
points are affected.
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z1z1

z2z2 z3z3

z4z4

Figure 14: Local propagation of flip points

Repropagation of a flip point does not affect any corner point regions or any edges.
Therefore, when a set of control points is modified, first repropagate all affected corner
regions in any order, then along the affected edges in any order, finally recompute affected
flip points in any order. This order (corner first, edge second, flip last) assures that all
modifications take effect as they should.

6 Results

Software is written in C and OpenGL to fully implement the algorithm. Tests are conducted
on with hand-built triangulations and some randomly chosen initial values for the control
points that need to be prescribed. Often the choices are simply a weighted interpolation
of the corner points based on their individual polar coordinates. The constrained control
points are then propagated according to the algorithm outlined in the previous section.

If testing on a given mesh then the control points that need prescription will take on
the coordinates from the original mesh. It is difficult to find open meshes that are freely
available to test on. Most of the public repositories contain only closed meshes. Thus most
of the testing were done with hand-built examples and they are therefore small. However
we believe that the effectiveness of the algorithm can nevertheless be demonstrated and
the care we have take to minimize the computation time for control point modification and
propagation assures that the method will work readily on larger models.
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6.1 Six patches

Show in the following figures (Figure 15) is a sample modification process of six equilateral
triangular patches. In the original configuration, control points shown in green are free
and can be modified. Those shown in yellow are constrained. In the second figure, control
points modified are shown in magenta, those that are propagated are show in red.

Figure 15: 6 patches modified

All modifications are done in real time and require very little computation time. Patches
are rendered with two levels of subdivision iteration. This coarse resolution is used to facil-
itate on-screen real-time modification of large surface models. Once changes are finalized,
more levels of iteration can be introduced to produce a final smooth model.

6.2 Six irregular patches

Show in the Figures 16 and 17 is an irregular triangulation with six patches. The smooth
models are rendered with four iteration levels of subdivision.
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Figure 16: 6 irregular patches modified

Figure 17: Smooth rendering of these patches
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6.3 Nine patches with a hole

Figure 18: Smooth rendering of nine patches with a hole

7 Summary and future work

We believe that our algorithm provides a simple, fast way to design surfaces with built-in
C1 continuity. Since our method is based on triangular patches, there is no restriction on
how many patches may come together at a control point, and thus it offers more freedom in
terms of modeling capability. Furthermore, there are enough free (manipulatable) control
points per patch (typically about 5 − 6) such that very local changes might be made.

The triangular control net the algorithm generates lends very well to the subdivision
version of the de Casteljau algorithm for evaluation. Given the minimum degree we require,
5, usually two iterations are enough to generate a good approximation of the surface. To
manipulate and modify surface splines, it suffices to locally move control points. Recom-
putation of control points is limited to the local vicinity, and is therefore simple and easily
implemented.

Complex topologies involving holes or sharp corners are automatically handled by the
algorithm without extra work, because they do not arise as special cases. As long as the
template triangulation reflects the existence of such topologies, they are handled properly.
All the computations involved in the algorithm are just the propagations of the control
points, which in most cases consist of just one addition and one subtraction.

Bellow are some directions we are taking to extend this work.

7.1 C2

Preliminary experiment results have shown that our algorithm can likely be extended to
construct C2 triangular surfaces. The extension is in theory straight-forward, but working
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out an actual local incremental algorithm analogous to what we have shown so far is not
trivial.

It turns out that at least degree 8 patches are needed everywhere for C2, and in fact we
need to move to degree 9 to have enough freedom locally to design a propagation scheme.
Here, in addition to prescribing the first row cross-boundary control points, some second row
cross-boundary control points will need to be prescribed as well. A balanced prescription
scheme needs to be worked out to avoid shape defects.

7.2 Interpolation

The extension of our scheme to interpolate instead of approximate is almost instantaneous.
Because we have three degrees of freedom around any corner-point region, including the
corner point itself, we have enough freedom to simply force the corner point to pass through
desired coordinates.

However, this does have the potential to lead to shape defects due to the problem
mentioned in the last subsection, tilting of local affine frame, that is, if the choice of the
corner-point’s placement is unfortunate, it will result in undesired undulations in that corner
point region. We will discuss this more in Subsection 7.2.3.

Also, recall that our C1 algorithm requires the existence of a parameterization in the
plane. If we assume that such a parameterization has been given, the extension to handle
interpolation is indeed just as described above. We have also run some successful tests
based on this assumption. However, in most cases, it is unrealistic to assume a given
parameterization for interpolation purposes. The input will be a collection of data points
given in space, although it is probably reasonable to assume that it is already meshed. We
will need to come up with a reasonable parameterizaion of this mesh in the plane.

This is a non-trivial problem. A simple projection to a plane is not enough. Even with
planes that are reasonably fitted to the data points, such as a least-squares fitting, it is still
not good enough to generate a parameterizaion with no self-intersection. The problem arises
when the mesh describe a surface that has folds (but no self-intersection). Any projection
will not deal with the folds correctly. A reasonable parameterization in the plane will need
to stretch out the folds in the mesh.

Gu, Gortler and Hoppe [GGH02] worked on remeshing irregular triangular meshes with
meshes with (semi)-regular connectivity. In their work of representing surfaces with geom-
etry images, they have worked on methods of cutting a mesh to open it into a topological
disk, which then gives a parameterization of that mesh within this disk. This is quite
possibly exactly what we can use to find a parameterization of our input mesh. Closer
examination of Gu et al’s methods is needed.

Of course, we are also aware of some restrictions of our method, some of which we are
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working on to resolve in the near future.

7.2.1 Shape parameters and automated shape control

Our algorithm is highly local and leaves quite a bit of freedom in the interior of the patches
and the boundaries. The disadvantage of this is that, in general, a fair number of control
points need to be modified before a change to a single patch will be uniformly distributed.
This is definitely not a task a user should handle. An automatic method is needed to
prescribe a set of appropriate control points, given a request for shape change. That is,
some type of shape parameter needs to be set up.

A related issue is to develop an automatic method to prescribe all the control points
needed for propagation when given large sets of data to approximate. In this case, it is
important to set good initial values for optimal first approximation so that less modification
is needed from the user. It is still current research to set the initial free parameters to
incorporate as much of the known discrete surface geometry as possible.

7.2.2 Degenerate frames along the edges

First, we mentioned in Section 5.2 that we cannot handle just any arbitrary triangulation,
we are limited by one case. Recall that all propagations need the existence of at least three
affinely independent points. Around a corner point region, this is guaranteed. But along
the edges, because we have fixed directions of propagation, we do not have the freedom to
choose which three points from the four control points that form the similar quadrilaterals
will be our affine frame. They are fixed. In the unfortunate cases when these three points
are collinear, the algorithm breaks down.

As shown in Figure 19, the points v2, v1, v4 and v3, v1 v5 are respectively collinear in the
domain triangulation. The corner point region of z1 and its star z2, . . . , z5 is not affected,
and in the example, z3, z4, z5 are chosen as the affine frame, and z1 and z2 are then obtained
through propagation. But then, the edge propagations immediately present a problem. For
example, along e1, the algorithm dictates that z6, z2, z9 shall form an affine frame, resulting
in z10’s propagation. However, z6, z2, z9 are given by the same affine relations as v3, v1, v5,
which are collinear. So are frames (z6, z3, z7), (z7, z4, z8), (z8, z5, z9) along edges e2, e3 and
e4, respectively. Thus, control points z10, z11, z12 and z13 cannot be computed. In this
case, we have two straight lines going through v1/z1. In general, any straight line that goes
through a corner point will cause similar problem for two edge propagations adjacent to
that particular corner point.

There are two possible fixes for this problem. We can detect it and then change the
direction of propagations locally where such degenerate frames exist. Notice that because
our domain is a triangulation, there is always at least one direction along an edge that does
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Figure 19: Frames along the edges are collinear

not contain degenerate frames.

Another approach is to leave the algorithm alone, but preprocess to remove the degen-
erate frames. We simply need to move v1 slightly off to the side, to disrupt the straight
lines. The move is therefore a small one, and will not cause noticeable difference in the final
surface generated. Any irregular triangulation will need to be preprocessed to remove such
degenerate cases.

7.2.3 Excessive tilting of the affine frames

This is the most serious problem that we have encountered so far. Recall that both around
the corner point region and across the edges, propagation places control points on a plane
determined by the affine frame formed by the three affinely independent control points that
we prescribed. This means that the placement of this plane relative to the normals of the
surface in that region is extremely important to the final shape of the surface.

In general, we want this plane to be tangent to the surface as much as possible. That is
why in the G1 literature it is often called the “cross-boundary tangent plane”. If by some
unfortunate choice (most likely due to interpolation), the affine frame is tilted towards the
normal of the surface, then the resulting surface will contain severe undulations.

Fortunately, even in the case of interpolation, we still have two other control points
which we can prescribe to mitigate the tilt, if it occurs. The best method of fairing is
currently being researched.
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