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Abstract

This paper presents ROCI, a framework for devel-
oping applications for multi-robot teams. In ROCI,
each robot is considered a node which contains sev-
eral modules and may export different types of ser-
vices and capabilities to other nodes. Each node runs
a kernel that mediates the interactions of the robots
in a team. This kernel keeps an updated database
of all nodes and the functionalities that they export.
Multi-robot applications can be built and changed dy-
namically, connecting modules that may be running in
different nodes over the network. As an example, we
present an obstacle avoidance task implemented using
our framework and also discuss the use of ROCI in a
multi-robot scenario.

1 Introduction

As sensors, actuators, microprocessors and wireless
networks become cheaper and more ubiquitous it has
become increasingly attractive to consider employing
teams of small robots to tackle various sensing and
manipulation tasks. In order to exploit the full ca-
pabilities of these teams, we need to develop effective
models and methods for programming distributed en-
sembles of sensors and actuators.

Applications for distributed dynamic robotic teams
require a different programming model than the one
employed for most traditional robotic applications. In
the traditional model, the programmer is faced with
the task of developing software for a single processor
interacting with a prescribed set of sensors and actu-
ators. He or she can typically assume that the con-
figuration of the target system is completely specified
before the first line of code is written. On the other
hand, when developing code for multi-robot dynamic
teams, we must account for the fact that the num-
ber and type of robots available at runtime cannot be
predicted. We expect to operate in an environment
where robots will be added and removed continuously
and unpredictably. Further, we must expect an en-
vironment where the robots will have heterogeneous
capabilities; for example, some may be equipped with

camera systems, others with range sensors or special-
ized actuators, some agents may be stationary while
others may offer specialized computational resources.
This implies that the program must be able to iden-
tify and marshal all of the resources required to carry
out the specified task automatically.

This paper presents ROCI (Remote Objects Con-
trol Interface), a self-describing, objected oriented,
strongly typed programming framework that allows
the development of robust applications for dynamic
multi-robot teams. The building blocks of ROCI ap-
plications are self-contained, reusable modules. Ba-
sically, a module encapsulates a process which acts
on data available on the module’s inputs and presents
its results as outputs. Thus, complex tasks can be
built connecting inputs and outputs of specific mod-
ules. These connections are made through a pin archi-
tecture that provide a strongly typed, network trans-
parent communication framework. A good analogy is
to consider each of these modules as an integrated cir-
cuit (IC), that has inputs and outputs and does some
processing. Complex circuits can be built wiring sev-
eral ICs, and individual ICs can be reused in different
circuits.

The core control element in the ROCI architecture
is the ROCI kernel. There is a copy of the kernel run-
ning in every entity that is part of the ROCI network
(robots, remote sensors, etc.). These entities are con-
sidered ROCI nodes and any information acquired or
processed in a certain node can be exposed to others.
The kernel is responsible for managing network and
maintaining an updated database of all the nodes and
services in the ROCI network. The kernel is also re-
sponsible for handling module and task allocation and
injection. It allows applications to be specified and ex-
ecuted dynamically, by connecting available pins and
transferring code libraries to the nodes.

ROCI incorporates some features that are already
present in modern distributed software environments
such as the Open Agent Architecture [7] and the Grid
Computing [4]. Some frameworks for cooperative
robotics have already included advances such as hier-



archical and reusable objects [1], distributed sensing
and actuation capabilities [5], abstraction and modu-
larity [8], and task decomposition [9]. Also, the use
of modern programming languages [2] and graphical
interfaces for task specification [6] are important ad-
vances. But, in spite of that, most of the programming
architectures for distributed robots still rely on tradi-
tional programming models and are specific for cer-
tain types of robots and control architectures. Thus,
we believe that ROCI will certainly be a valuable con-
tribution to the multi-robot programming field.

This paper is organized as follows: the next section
describes the ROCI framework, giving details about
its structure and its main features. Section 3 shows
the implementation of an obstacle avoidance task us-
ing ROCI and Section 4 describes the use of ROCI
in a multi-robot scenario. Finally, in Section 5 we
conclude the paper and discuss the next steps in this
work.

2 ROCI Architecture

2.1 Introduction

ROCI is a dynamic, self-describing, object-oriented,
strongly typed programming framework for dis-
tributed sensors and actuators. It provides pro-
grammers with a network transparent framework of
strongly typed modules - assemblies of metadata, byte
code, and machine code that can consume, process
and produce information. ROCI modules are in-
jectable (they can be automatically downloaded and
started on a remote machine), reusable, browseable,
support automatic configuration via XML, and pro-
vide strongly typed pin based communications. These
features, coupled with a dynamic database of available
nodes and network services, allows a programmer to
write code that utilizes networks of robots as resources
instead of independent machines.

ROCI is developed in C# using the Microsoft .NET
platform. Modules are not limited to this language
however, and several of our own modules are written
in mixtures of C# and C++. The system makes use
of XML to provide basic configuration options, and
object reflection to enforce type safety and autodis-
covery.

2.2 Modules and Tasks

The building blocks of a ROCI application are
ROCI modules. A module is a computational block
that encapsulates a process, taking an input, perform-
ing some operation on it, and making the result of that
operation available as an output. There is no speci-
fication in the code relating to where input should
come from or where output should go; the only spec-
ification is the type of data this computational block

deals with. To create a new module, the application
developer has to decide on the types of data to be in-
put and output and then inherit from the ROCI mod-
ule parent class, implementing a few virtual functions
related to the allocation and de-allocation of resources
required by the new module. Since the modules are
designed with no knowledge of their runtime environ-
ment, they can be wired into the ROCI network with
a great deal of flexibility.

ROCI modules are further organized into tasks. A
ROCI task is a way of describing an instance of a col-
lection of ROCI modules to be run on a single node
and how they interact at runtime. Tasks represent a
family of modules that work together to accomplish
some end goal – a chain of building blocks that trans-
forms input data through intermediate forms and into
a useful output. A task can be defined in an XML file
which outlines the modules that are needed to achieve
the goal, and the connectivity between these modules.
Tasks can also be defined and changed dynamically,
by starting new modules and connecting them with
the outputs and inputs of other modules. As will be
explained in the next section, the connection between
modules is made using pins. Pins can connect modules
within the same task on the same computer, between
tasks on the same computer, or between two tasks on
different computers. Figure 1 shows an example of
this architecture.
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Figure 1: Roci architecture: tasks are composed of mod-
ules and run inside nodes. Communication through pins
can be seamlessly done between modules within the same
task, modules in different tasks, or in different nodes.

2.3 Pin Based Communication

The wiring that connects ROCI modules is the pin
communications architecture. Pin communications in
ROCI are designed to be network transparent yet high
performance. Basically, a pin provides the developer
with an abstract communications endpoint. These
endpoints can either represent a data producer or a
data consumer. Pins in the system are nothing more
than strongly typed fields of a module class, and thus



connecting a producer pin to a consumer pin is as
simple as setting a reference to the producer in the
consumer’s field. Modules’ pins are automatically ex-
posed and discovered by the ROCI kernel through re-
flection – an important feature when programming dy-
namic networks.

Whenever a consumer pin registers itself to a pro-
ducer pin, the ROCI subsystem determines whether
the modules are within the same task domain. If they
are, the consumer pin is assigned a reference to the
producer pin. If not, ROCI creates a Remote Proce-
dure Call channel and assigns a proxy reference to the
consumer.

As the producer generates data it assigns it’s pin an
updated reference to the latest data. This assignment
causes the pin to fire messages to all of the registered
consumers in the network, alerting them to the avail-
ability of fresh data. A typical usage of this system
is for a module to make a blocking call to one of its
input pins which returns once the input pin has got-
ten new data from the output pin it is registered to.
Alternatively, a module can ask its input pin to copy
over whatever data is available immediately, whether
it is new or not. Pin data is time stamped, allowing
the consumers to determine how current their data
is. Once all the consumers have completed processing
their data, the managed environment in which ROCI
runs automatically marks the data for garbage collec-
tion, freeing the programmer from any memory man-
agement issues which may arise with complex pro-
ducer/consumer interconnections.

One can set a pin’s input in two distinct ways that
are each useful in different situations. On a lower
level, pins can be connected dynamically during pro-
gram execution. This can be accomplished by query-
ing nodes on the ROCI network for available pins –
usually with some type constraint – and may involve
dynamically creating local pins to bind to the discov-
ered remote pins. However, the simpler way of binding
pins together is via the XML descriptions that define
ROCI tasks.

Strongly typed pins enforce that only pins of the
same type are connected to each other. The exchange
of strongly typed objects instead of raw data elimi-
nates potential software bugs increasing the robust-
ness of the system. Robustness is also a consequence
of the self-describing nature of pins. Since we can find
out the exact type of a pin instance, we can dynam-
ically guarantee that it will only be connected to a
compatible pin.

2.4 ROCI Kernel

The kernel is the core control element of ROCI. The
kernel manages the Remote Procedure Call (RPC)

system, the real-time network database, module and
task allocation and injection, and a Web Services like
interface for remote monitoring and control. There
is a copy of the kernel running in every entity that
is part of the ROCI network (robots, remote sensors,
etc.).

The RPC system provides interfaces for module
management, injection and communication, as well as
providing a web-based interface to the current status
of the network. The real time database contains infor-
mation on all of the modules, tasks and communica-
tions channels within the network. ROCI’s database
can be used to locate an appropriate sensor or actua-
tor to solve a problem, find software modules that are
needed in local computation, and identify computer
utilization and congestion across the network. The
database provides modules with a bird’s eye view of
the environment, allowing them to locate and utilize
each and every hardware and software resource on the
network.

It is important to mention that ROCI’s kernel ex-
poses its interfaces through Simple Object Access Pro-
tocol (SOAP), a cross-platform RPC standard. This
standard allows non-ROCI programs and utilities to
easily interoperate with and utilize the resources of
the ROCI network.

2.5 ROCI Browser

The job of presenting this network of functional-
ity to the user falls upon the ROCI Browser. The
browser’s job is to give a human user command and
control over the network as well as the situational
awareness necessary to make informed decisions about
network operations. The ROCI network is presented
hierarchically: the human operator can browse nodes
on the network, tasks running on each node, the mod-
ules that make up each task, and even certain pins
within those modules. The browser can be used to
monitor the status of running tasks or even to tap
into and display the outputs of pins for which display
routines exist.

Using the browser, the user can also decide to start
or stop a task running on any node on the network.
When the user requests a task be started on a given
node, the kernel running locally on that node first as-
certains whether or not the proper versions of compo-
nent modules are available locally (strong versioning
is a useful feature of the .NET Framework). If they
are not, it queries the network for a node that does
have the modules in question and downloads them au-
tomatically. Once the byte code of the modules that
comprise the task all exists locally, the task is loaded.

One of the important features of the ROCI archi-
tecture is that modules and pins are self-describing



entities. Thus, when the user browses through the
tasks, he or she can immediately have a complete de-
scription of the modules and pins in use. Given this
information, the browser can automatically start ap-
propriate modules locally to tap into the remote data
for visualization or processing purposes. This can be
very useful for debugging purposes during develop-
ment and for situational awareness during deployed
execution.

3 Simple Obstacle Avoider in ROCI

As mentioned, an application in ROCI may be com-
posed of multiple tasks. Tasks can be specified con-
necting several building blocks (modules), each one
offering a specific service. The connections determine
the data flow from one block’s outputs to another
block’s inputs. In fact, these connections can be made
seamlessly between modules in different tasks, even if
they are running on different nodes.

To demonstrate this, we have developed and suc-
cessfully executed a simple obstacle avoidance task
using one of our ClodBuster robots equipped with
an omnidirectional camera and IEEE 802.11b wire-
less network [1]. In this task, the robot’s heading is
computed based on a range map constructed from an
omnidirectional edge image of the environment (Fig-
ure 2). The edge image and the heading direction can
be displayed simultaneously by another task running
on a remote computer.

Figure 2: A Clodbuster robot and an image captured by
the omnicam, before and after the edge extraction.

A diagram of the present application implemented
in ROCI can be seen in Figure 3. It is composed of
three tasks, two running in the robot and one run-
ning in a remote computer. The main task is the
Obstacle Avoider that is comprised of 5 modules: the
OmniCam captures an image and exports it to other

modules through a video pin. The Edge Detector pro-
cesses this image and makes it available for the Range
Mapper that computes a desired bearing for the robot.
The Range Mapper also receives calibration parame-
ters from the OmniCam and exports a video pin con-
taining the input image with the heading direction
highlighted. The bearing is exported and used by the
Robot Controller module which generates inputs to
the Grasp Board that is the interface to the servo mo-
tors. Running in the same node, there is also a task
that reduces the resolution and subsamples the video
stream exported by the Range Mapper so it can be
better transmitted over the network. Finally, there is
a Video Preview running on another computer that
allows a remote operator to observe the video broad-
cast by the robot.
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Figure 3: Diagram of the tasks and modules for the ob-
stacle avoider implemented in ROCI.

We need to reinforce that each one of these mod-
ules is self-contained and can run independently of
the others. Consequently, different applications can
be specified and performed reusing some of these mod-
ules and adding new ones. For example, the Omnicam
module could be used in a tracking task connected to
some feature extractor module or the Edge Detector
could receive input from a regular camera in a differ-
ent task specification. The idea is to have a library
of modules that can be executed by robots according
to their capabilities. Also, during execution, connec-



tions between modules can be dynamically made or
changed allowing modules to receive different inputs
from different sources. For example, in the applica-
tion described above, a remote operator could repin
the input of the Lower Resolution module to any one
of the modules that output a video pin. The operator
has this information, since modules and pins are self-
describing and the network database is continuously
updated. Consequently, the operator could observe
images directly from the Omnicam module or from
any other module that is exporting a video pin at the
moment.

As will be discussed in the next section, these ca-
pabilities are especially important in multi-robot ap-
plications in which the number of robots, communica-
tion and sensor constraints may change dynamically
during execution.

4 Multi-Robot Scenario

Let us consider a multi-robot task in which n robots
must perform a visual reconnaissance of a certain area.
Each robot i is equipped with a GPS and an omnidi-
rectional camera and its objective is to send its posi-
tion xi and an image captured from that position to
a base station. In ROCI, this task could be specified
by three modules, as shown in Figure 4. The Cam-
era captures images and exports them as a video pin.
It also outputs the camera parameters which are not
being used by any module at this moment. There is
another module to get the robot’s GPS coordinates
and a third one that simply processes the video and
the robot’s position and sends it to the base station.
Initially, each robot can act independently from its
teammates (it is a loosely coupled task), but the ROCI
kernel running in each robot continuously updates its
database, keeping track of the other network nodes.

Camera

Send Info

Video

GPS
xi

Info

Camera
Parameters

Figure 4: Diagram of a reconnaissance task running in
each robot.

Now, suppose that one of the robots (for exam-
ple, robot k) loses its GPS information. In order to
continue performing its task, it should find a way of
replacing that information source. Since the other

robots in the team may still be able to compute their
positions, robot k can rely on a cooperative localiza-
tion scheme to localize itself [3]. The cooperative lo-
calization works as follows: each robot j in the neigh-
borhood of k computes the position of the other robots
in its field of view based on its GPS and camera im-
age and exports this information. Then, based on the
position estimates received from its neighbors, robot
k will be able to localize itself.

Using the ROCI framework, it is easy for robot k to
start the cooperative localization dynamically. First
of all, it has an updated list of the other robots in the
network that can perform localization since the ROCI
kernel maintains this information. So, robot k will
be able to inject a new localizer module in some of
its teammates and dynamically pin it to the modules
that are already running to get the information that it
needs (Figure 5a). The localizer will receive informa-
tion from the camera (image and calibration parame-
ters) and the GPS and export the estimated position
of all the robots that are visible (xj1, xj2, . . . , xjk).
Robot k will also start running a local module called
Position Estimation to get the position estimates from
its neighbors and compute its position, automatically
repinning the input of the Send Info module to the
output of this new module, as shown in Figure 5b.
Thus, this dynamic reconfiguration allows the robot
that lost its GPS to continue executing its task.
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Figure 5: Scenario if robot k loses its GPS: a) robot k

injects a new localizer module on its neighbors and b)
robot k starts a local module and dynamically repins its
other modules to use the new information.

It is important to note that some aspects of the



cooperative task were not detailed in the description
above. For example, we did not define exactly the
concept of neighborhood in terms of sensing and com-
munication in this paper. Also, we did not give any
details about the cooperative localization or about the
controllers and coordination techniques that should be
used in this task. These points should be specified in
the implementation of the task, but our main objec-
tive here is to present the ROCI framework, showing
how it allows multi-robot teams to adapt to dynamic
changes that typically occur during the execution of
cooperative tasks.

5 Conclusion

In this paper we presented ROCI, a programming
framework for distributed ensembles of sensors and ac-
tuators. Applications in ROCI are composed of tasks
and can be built dynamically by connecting several
modules, which gives a great flexibility to the pro-
grammer. Each module encapsulates a process that
consumes data from its input and produces data on
its output. Modules are completely self-contained and
can be reused in different tasks and applications. A
pin architecture is used to connect modules. These
connections can be made seamlessly between modules
in different tasks, even if they are running on different
nodes, creating a network transparent programming
environment. The ROCI framework is strongly typed,
allowing the development of more robust yet high per-
formance applications. Two of the ROCI’s main fea-
tures are the ROCI kernel and the self-describing na-
ture of modules and pins. Together, they allow the
creation of an updated view of network nodes, ser-
vices, and data, providing situational awareness for
users and applications. This is a key requirement for
programming dynamic distributed multi-robot teams.

Our present and future work is direct towards
implementing several multi-robot applications using
the ROCI framework. Under the DARPA’s MARS
project, we are developing a new team of robots (both
aerial and terrestrial) that will be fully programmed
and controlled using ROCI. Several multi-robot ca-
pabilities are being developed for this team, such as
outdoors navigation, cooperative localization, stereo
obstacle avoidance and communication sensitive be-
haviors. Also, our multi-robot team will have to inter-
act with other robots programmed in different frame-
works, more specifically Player [5] and MissionLab [6].
We are working on a common interface between ROCI
and these systems that will use SOAP and XML to ex-
change data between different platforms. This project
will provide an excellent test bed for the ROCI frame-
work, and we expect to have some multi-robot appli-
cations running very soon.

Acknowledgment

This work was in part supported by: DARPA
MARS NBCH1020012 and NSF ITR (ANTIDOTE)
CCR02-05336.

References

[1] R. Alur, A. Das, J. Esposito, R. Fierro, G. Grudic,
Y. Hur, V. Kumar, I. Lee, J. Ostrowski, G. Pap-
pas, B. Southall, J. Spletzer, and C. Taylor. A
framework and architecture for multirobot coordi-
nation. In D. Rus and S. Singh, editors, Experi-
mental Robotics VII, LNCIS 271. Springer Verlag,
2001.

[2] T. Balch. Behavioral Diversity in Learning Robot
Teams. PhD thesis, College of Computing - Geor-
gia Institute of Technology, 1998.

[3] A. Das, J. Spletzer, V. Kumar, and C. J. Taylor.
Ad hoc networks for localization and control. In
Proceedings of the IEEE Conference on Decision
and Control, 2002.

[4] I. Foster, C. Kesselman, and S. Tuecke. The
anatomy of the grid: Enabling scalable virtual or-
ganizations. International Journal of Supercom-
puter Applications, 15(3), 2001.

[5] B. Gerkey, R. Vaughan, K. Stoy, A. Howard,
G. Sukhatme, and M. Mataric. Most valuable
player: A robot device server for distributed con-
trol. In Proceedings of the IEEE/RJS Interna-
tional Conference on Intelligent Robots and Sys-
tems, pages 1226–1231, 2001.

[6] D. MacKenzie, R. Arkin, and J. Cameron. Mul-
tiagent mission specification and execution. Au-
tonomous Robots, 4(1):29–52, 1997.

[7] D. Martin, A. Cheyer, and D. Moran. The open
agent architecture: a framework for building dis-
tributed software systems. Applied Artificial In-
telligence, 13(1/2):91–128, 1999.

[8] J. Peterson, G. Hager, and P. Hudak. A language
for declarative robotic programming. In Proceed-
ings of 1999 IEEE International Conference on
Robotics and Automation, pages 1144–1151, 1999.

[9] R. Simmons and D. Apfelbaum. A task description
language for robot control. In Proceedings of the
1998 IEEE/RJS International Conference on In-
telligent Robotics and Systems, pages 1931–1937,
1998.


