
Opening the Dialog: Robotics and the Internet
Anthony Cowley

GRASP Lab
University of Pennsylvania

Philadelphia, PA 19104-6228
Email: acowley@seas.upenn.edu

Hwa-chow Oliver Hsu
GRASP Lab

University of Pennsylvania
Philadelphia, PA 19104-6228

Email: hwahsu@grasp.cis.upenn.edu

C.J. Taylor
GRASP Lab

University of Pennsylvania
Philadelphia, PA 19104-6228
Email: cjtaylor@cis.upenn.edu

Abstract— Inter-component communication has received con-
siderable attention by robotic software architects as various
frameworks and toolkits have matured. While the resulting
software platforms have proven useful for abstracting hardware
interfaces and the complex networking issues that are often
present in robot deployment scenarios, they typically present
users with arduous paths for integrating new hardware and
software, while making no allowance for humans as peers on
the network. We explore how mature standards and protocols
born of the Internet community can be leveraged to empower
software designed for robots and sensor networks. Here we
present software approaches that facilitate the integration of new
hardware devices, software platforms, and humans in ways that
are natural and intuitive for each.

I. INTRODUCTION

Open standards, formats, and protocols are changing the
way software developers work. The greater software commu-
nity has come to understand that there is a network effect
related to the success of a particular library, component, or
program: the value of a piece of code rises exponentially with
the number of other pieces of code with which it can interoper-
ate. In fact, ease of interoperability is often as important, if not
more so, than the specific functionality of the component. Yet
time and time again, the same functionality is re-engineered
because it is simply easier to do so than to wrestle with
a systems integration scenario unconsidered by the original
developer. This is not only a waste of development time, but
also a futile strategy for future growth as the scope of a
large software project becomes limited not by the development
team’s imagination, but by their ability to recreate existing
functionality found on other platforms.

The limiting factor addressed in this paper is the context
within which a robotics software package is developed. By
avoiding the trap of too narrow a focus on the needs of
real-time control and the boundaries of a single development
team, we have been able to produce an accessible software
framework built around adapting to the user, rather than the
user adapting to the framework. Robots, sensor networks, and
automated systems become significantly more valuable when
they become players in the global pool of the Internet, rather
than an isolated branch of engineering, and cater to their
consumers be they electronic or biological.

II. BACKGROUND

Software for automated systems, in particular mobile
robotics, has thus far concentrated on identifying the key

levels of abstraction necessary for efficient development [1]
[2]. A general trend is the abstraction of hardware interface
so as to minimize entanglement with higher-level behavior
development. Typically, sensors and actuators are given soft-
ware interfaces designed to be comprehensible and appropriate
for behavior development. This abstraction serves to create
flexibility in the underlying hardware implementation, to the
extent that the hardware can be considered a service provider,
easily replaced by alternative hardware solutions or software
simulations. The goal is not necessarily to encourage hardware
ignorance in software developers, but to encourage the reuse
of tested, reliable software components [3] [4]. Using the
same component in multiple scenarios provides a breadth
of experience that allows developers to gain familiarity with
commonly used components. This familiarity makes correct
usage more likely, and encourages experimentation since the
developer already has confidence in basic functionality.

The software framework discussed and extended in this
paper, the Remote Objects Control Interface (ROCI), was
originally designed with a focus on component design and
communication abstraction built atop a strong type system
with robust reflection capabilities [5]. The component design
aspect of ROCI is based on the notion of creating irreducible
translation components. In the ROCI context, a self-contained
component is one which translates data from an input form into
an output form. Such a component can accomplish its stated
functionality with complete independence from context, and is
therefore more likely to be used by other developers in novel
application settings.

Once component functionality has been reduced to the
notion of translation, the data structures that the translator
operates over become the defining characteristics of the com-
ponent itself. Many such components, referred to as Modules
in ROCI terminology, have been constructed to interface with
hardware devices, or implement particular algorithms. The
resulting collection of self-describing components thus define
a language with which to program a robot, or, more generally,
any sensing and computing platform. The final programming
of the target device takes place at a very high level where
previously constructed, context-independent components are
connected in order to accomplish some multi-stage task. For
example, one component may interface with a camera at a
device driver level, and output more general purpose video
frames. These frames can be translated by another, purely

Proceedings of the 2006 IEEE International Conference on Robotics and Automation
Orlando, Florida - May 2006

0-7803-9505-0/06/$20.00 ©2006 IEEE 2775

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 2, 2009 at 17:39 from IEEE Xplore.  Restrictions apply. 



algorithmic component into connected areas matching a pre-
defined color range. The resultant blobs can then be translated
into motor commands, which are finally translated into device
commands that cause a pan mount to track a particular color.
This entire process can be centralized on a single machine, or
distributed across a network without any change to component
code. Furthermore, the components that accomplish this high-
level task may be started as a unit, or dynamically discovered
over the ROCI network.

A. Communication Primitives

The ROCI framework pays particular attention to com-
munication abstraction as a consequence of the desire to
describe functionality using input and output types [6]. The
notion that a functional block can be classified by the data
structures it operates over requires that some care is taken in
designing said data structures. While it may sound a burden,
encouraging developers to consider input and output data
structures before writing functional code has the benefit of
making explicit the gross structure the functional code should
follow. The data structures, in this design paradigm, establish
the boundaries of the functional code; if there is functionality
that does not map directly onto the input or output data
structures, then refactoring is most likely needed to ensure that
the component is truly singular in purpose. This progressive
design review process, where data structure is compared to
functional structure, encourages the creation of self-contained
components that can be used across multiple projects.

Interface definitions in hand, the ROCI system then supplies
each of these interfaces, defined by the aforementioned data
structures and referred to as Pins in the ROCI nomenclature,
with rich networking functionality. The result is that compo-
nents can be connected locally in a single process, between
processes on a single machine, or between multiple machines
across a network. The ROCI Pin machinery guarantees that
only compatible interfaces are connected, manages network-
transparent polymorphism, automatically creates the most ef-
ficient connection between interfaces, and handles network
balancing, throttling, buffering, and error handling.

B. User Interfaces: Software

Typical user interfaces (UIs) for robotic systems reflect both
the state of robotics and the applications to which they have
thus far been employed [7]. Most interfaces have, on some
level, been created with the idea of integrating a human as
another controller in a robot behavior; a controller that is
relied upon to make complex, or critical, decisions. This role of
human as just another real-time controller has spawned many
UIs centered around the user keenly monitoring continuous
data feeds, such as video, in order to maintain situational
awareness so that when a decision needs making, the human
operator is mentally prepared to do so. Such a role also fits
in well with many robotic systems that have required regular
human intervention to function correctly. In other words, the
ostensible need to have a human always ready to step in when
an emergency occurs somewhat lessens the sting of requiring

a human operator to ensure any level of correct behavior; the
operator is ready and capable, they may as well be utilized.

Of course, autonomous systems have become much more
capable over time, and there is little doubt that this trend
will continue at a rapid pace. Thus the role of today’s human
operator can fairly be stated as monitoring continuous data
streams in order to infrequently step in when autonomous
controllers are not capable of making certain critical deci-
sions. The continuous attention of the human operator is
therefore only truly necessary if such critical decisions are
particularly time sensitive. As it happens, a large portion of
the robotics community has focused on deployment scenarios
such as military maneuvers, search and rescue, bio-terrorism,
and other scenarios where response time is indeed of the
utmost importance. The urgency and specific goals of these
types of applications naturally necessitate constant human
supervision, so, once again, the constant availability of a
human operator is accepted as a requirement even for relatively
robust autonomous systems.

An area that naturally demands an effort to minimize human
involvement is the fielding of teams of robots. Such efforts
have shown that an effective data filter is necessary to limit the
volume of data presented to the human operator. While contin-
uous diagnostic data can help the operator maintain situational
awareness, automated systems that recognize critical events
and present these to the user as compact events have proven
effective [7] [8]. Such systems often work similarly to instant
messaging desktop software applications: the user is presented
with a visual alert designed to attract attention without causing
undue disruption whenever there are unhandled messages.
Such systems allow a multitude of agents to message a single
operator while giving the operator some control over how, at
what pace, and in what order, alerts are dealt with.

The development of such alert management systems, having
so much in common with existing instant messaging appli-
cations present on many computers, prompts a closer look
at the operator requirements of modern robotic systems. It
is clear that while there are many critical applications for
robotics and sensor networks that may require immediate
human intervention, there are an increasing number of broad-
appeal robotics efforts that can not reasonably require that a
human monitor anything continuously. Given this relaxation,
different models of interaction may be appropriate.

C. User Interfaces: Hardware
User interface issues are not limited to software; the choice

of input device often characterizes how a system is used. A
large display screen implies a base station that either does not
move, or is mounted in a vehicle. Complex keyboard inputs
imply that the user will be seated, or at least stationary, to
make typing practical. Alternatively, small devices such as
PDAs, mobile phones, or wearable computers often suggest
operator mobility at the expense of interaction efficiency.
Unfortunately, each of these platforms brings with it wildly
different hardware capabilities, and thus necessitate different
software approaches. Many off-the-shelf hardware platforms

2776

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 2, 2009 at 17:39 from IEEE Xplore.  Restrictions apply. 



have a native software platform and associated API that may
differ significantly from the core platform used to develop
software for other devices.

Rather than wait for devices that support one’s favorite
development environment, we believe it far more prudent to
embrace the differences between platforms. These differences
often bring with them advantages along with the expected
inconveniences. Rather than force a preferred development
paradigm on the new platform, thus necessitating significant
development effort to support each new device, and perhaps
inadvertently advocating an overly homogenous future for
software development, software frameworks can instead be
constructed with unsupported devices in mind.

III. INTEGRATION STRATEGIES

The view presented here is that there are a number of
distinct integration problems that may be colloquially, yet
accurately, viewed as problems in establishing meaningful
conversations between entities in a system populated by
robotic and human agents. Current software frameworks, as
described above, have been primarily concerned with facilitat-
ing the development and execution of autonomous, or semi-
autonomous, behaviors. As the reliability of these behaviors
and the range of problems robots are applied to, increases,
collaboration becomes the most critical element in the success
or failure of any autonomous system initiative. Importantly,
collaboration here is used to refer to interaction between
disparate software platforms, hardware platforms, and agents,
be they human or electronic. Success in these endeavors
requires that all conversations between systems or agents are
conducted in languages understandable to, and appropriate for,
each entity.

Fortunately, the entire software community has been in-
volved in the same work for many years. Many protocols,
file formats, and standards have come and gone as software
developers have attempted to benefit from each other’s work,
but one meta-platform has emerged as the ultimate success
story of systems integration in the twentieth century: the
Internet. The Internet and, specifically, the World Wide Web
are concrete proof of the viability of protocols such as TCP/IP
and HyperText Transfer Protocol (HTTP), as well as the asso-
ciated markup languages and tools such as HyperText Markup
Language (HTML), Extensible Markup Language (XML),
Cascading Style Sheets (CSS), and Extensible Stylesheet Lan-
guage (XSL). These standards are defining what a computer is
more than any particular hardware feature or software package.
The most sensible course for robotics, therefore, is to take
practical advantage of the incredibly rich ecosystem these
standards have created, and to take design guidance from the
mores and values that led to their creation.

A. Platform Heterogeneity
Any assumption of a constant hardware or software platform

is an artificial limit on the potential utility of a project.
The incalculable value of the Internet as a mechanism for
computation, expression, and commerce arises purely from

the way that it openly embraces new members. In the field
of robotics, integrating hardware and software platforms has
implications for both systems-level collaboration and user
interface modalities.

Ultimately, the issue is one of determining where in the soft-
ware stack compatibility is required. If the requirement is to
run existing, internally developed software, then the difficulty
of porting that software becomes the bottleneck in integrating
new hardware platforms, and collaboration with alternative
software platforms remains an unanswered question. Simply
put, the compatibility requirement should be the most broadly
available standard that still meets the application needs of
the development team. Today, the protocols associated with
the Internet are being built into electronic components at
an ever-accelerating rate, and clearly represent some of the
most broadly adopted standards across platforms. Moreover,
the Internet is home to a bewildering variety of software,
thus demonstrating the viability of its common protocols as
the foundation of many types of applications, in particular
applications that benefit from interoperation and collaboration.
The World Wide Web itself is a collaborative creation; one that
encourages participation by its ease of use and flexibility of
purpose.

Following this lead, ROCI directly addresses three principal
network node classes: other ROCI nodes, non-ROCI systems,
and humans. At the core of each communication transaction
is some data that one node wishes to share with another. This
core data is invariant; it is the truth of the transaction, and the
technique necessary to effectively make this core accessible to
all parties is translation. When built on a strong type system,
each piece of core data is not a raw stream of bytes, but
instead a structured manifest of information documenting the
ancestors of the data type, hierarchical organization created by
the designer, names for each field, and type information that
imposes limits on the range of each field.

Using this information, ROCI provides static type compat-
ibility checking across network connections, efficient serial-
ization, available universal logging, and a distributed database
system for all ROCI-to-ROCI communications. This type of
connection is the most highly optimized, and is used for
critical real-time controls. While some of the type-dependent
features listed above are relatively unique to ROCI, this mode
of data transport is roughly equivalent to a custom network
protocol implemented by any system.

Efficient in many ways, such a system is also completely
opaque to non-ROCI nodes. To address this, ROCI provides a
simple web interface based on Representational State Transfer
(REST) [9]. This interface is completely data driven, with
XML as the data representation language. All data transactions
on the ROCI network can be serialized as self-describing XML
documents and are accessible through descriptive URLs and
the basic verbs defined in HTTP. These documents, along
with simple HTTP transactions, allow any platform capable
of browsing the web to fully collaborate with ROCI nodes.

Finally, humans are only partially served by the availability
of XML documents. While readable, these documents are

2777

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 2, 2009 at 17:39 from IEEE Xplore.  Restrictions apply. 



clearly designed for parsing by a machine. To address this,
each XML document returned by the web interface references
XSL and CSS documents that, together, convert data-driven
XML to presentation-ready HTML with flexible CSS styling.
Thus a human using a web browser sees familiar web inter-
action widgets and formatting, while a machine sees easily
parsed structured language. The same core data everywhere
in the system is automatically serialized as an efficient byte
stream, a structured language document, or a visually-pleasing
website depending on who, or what, is consuming the data.

B. Human to Computer Communication

Integration between human users and automated systems,
be they mobile robots or static sensor networks, involves
considering how each naturally interacts with other members
if its own class. That is, how humans interact with each
other, and how computers most efficiently interact among
themselves. While joysticks and control panels are excellent
for real-time human interaction, the user experience of creating
scripts, or programs, for the system is typically far less
intuitive. Many robotic software frameworks do not address
scripting specifically, or, if they do, suggest the application
of a general purpose programming language to the problem
of robot scripting. This model extends the design techniques
used in creating the framework and associated components
themselves to the domain of high-level task programming,
and while it has the benefit of presenting the technical user
with a familiar development environment, it does not reflect
the target platform. General purpose programming languages
are designed for programming general purpose computing
machines, and thus reflect that generality and flexibility. This
flexibility has made languages such as C, Fortran, and Java
extremely successful, but that success is due to the fact that the
tool matches the problem. Modern robots and sensor networks,
however, represent a more specific high level problem domain.
In general, no fixed-vocabulary scripting language captures the
specialization built into today’s robots and sensor networks.

Consider the situation of one human giving another driving
directions. The director specifies steps that are at the highest
level reasonably expected to be understood by the recipient.
That is, the director does not confuse the issue by specifying
how the traveler should contract his muscles, or operate his
vehicle. In fact, the entire vocabularies related to those tasks
will not appear in the final directions. The vocabulary of
the directions will instead consist entirely of a small set of
parameterized verbs that are all related to high-level interme-
diary goals involved in driving an automobile between two
places. The low-level activities necessary to accomplish each
of these intermediate goals are implied, but not stated. Equally
important is that the director does not include instructions
that the recipient can not reasonably be expected to execute.
Driving directions do not include instructions that assume the
recipient can fly, for example. Similarly, the same directive
is typically referred to by the same symbolic representation,
i.e. word, each time it occurs in the instructions. Variety in
language makes for pleasant prose, but confusing directions.

Fig. 1. Commands implemented by the mobile robot program being scripted
here are shown in a toolbox area on the right of the script creation tool.
These commands can be dragged into the script area on the left. Parameters
for each command are automatically extracted, and type inspection is used
to generate appropriate UI elements such as drop-down boxes, or list boxes.
The script creation utility also supports a plug-in architecture for generating
more complicated parameters, such as selecting waypoint locations from a
map interface.

Note here that instructions given at too low a level will often
include unwanted variety as there are usually many ways to
construct a high level concept from low level components.
Thus the vocabulary used in tasking a human is chosen such
that it is capable of expressing all necessary functionality while
simultaneously minimizing the instruction set and the number
of instruction instances necessary to accomplish the goal.

The scripting of automated systems must be done with the
same semantic mapping between instructions and behavioral
capabilities. With this in mind, we have created a scripting
component, ROCIScript, that manages dynamic script block
injection and synchronization between scripted agents. More
importantly, the scripting model is based on the creation of an
application-specific scripting domain language gleaned from
the components that make up the robot software, Fig. 1. The
code that will run on the robot is inspected to ascertain what
script commands are implemented, and these commands are
presented to the script author as parametric verbs to be serially
listed in a simple script structure. There is no large, fixed
script vocabulary that might include elements not supported by
the system being scripted [10]. Instead, the only two always
available script instructions enable synchronization between
agents and script flow control via label-based jumps, while
the working instruction set consists entirely of instructions
relevant to the scripted system’s designed capabilities. In this
fashion, an appropriate language for scripting each system is
automatically constructed, thus establishing a contract between
the script author and the system being scripted that specifies
what constitutes a syntactically valid script.

Once a piece of ROCIScript has been created, it is serialized
into an XML file. This file lists the components that implement

2778

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 2, 2009 at 17:39 from IEEE Xplore.  Restrictions apply. 



the instructions used in the script, so that the script can be
used across a variety of systems that make use of the same
components, and the script instructions themselves. Using
XML as a storage format allows any software with access
to an XML processing library to re-parameterize the script
with basic DOM manipulation. In conjunction with the ROCI
web interface, high-level behavioral scripting of ROCI nodes is
made available to any platform capable of XML manipulation
and HTTP transactions. These requirements are easily met
by many robust, well-documented libraries available in any
modern development environment.

C. Computer to Human Communication

The scripting system above describes a mechanism to guide
script authors, be they human or automated, in the creation
of scripts that can always be understood by their recipients,
express goals in as high a level as is supported by the specific
target system, and are communicable via widely-supported
protocols. This activity can be seen as making the script
writing capabilities of the script author accessible to, and
consumable by, the system to be scripted. Of course, it would
also be advantageous to have data and services flow in the
other direction in a manner as natural to the recipient as
ROCIScripts are to ROCI nodes.

Typically, data collected by sensor networks or mobile
robots has been delivered for human consumption through the
use of custom applications. While these applications provide
an opportunity for exploring new interface methods, they are
also an inconvenience to many users and hinder integration at
the desktop level. First, while custom applications offering new
ways to interact with data streams may offer some benefits to
the user willing to learn a new way of consuming data, those
benefits must be weighed against the cost of inconvenience
for the user. Many of today’s systems prove to be systems
designed by engineers for engineers, a situation well-suited to
research activities, but one that ignores the many potential
users of robotics. Most computer users have data acquisi-
tion, perusal, and dissemination habits that they have slowly
developed over time as they have become comfortable with
some mechanisms and rejected others. The most successful,
and familiar, methods of interaction today are the World Wide
Web, and the epistolary ease of email. People have become
comfortable with these methods of acquiring information from
friends, colleagues, and corporations; they have established
these channels into their personal data-sphere. To require a
new, unfamiliar, custom application is to burden the user
unnecessarily.

The second way in which custom data interfaces hinder
adoption is their segregation of the new data streams from
the ones the user is accustomed to. The user familiar with
reading and writing email, subscribing to RSS feeds of favorite
web sites, and general web forms interaction is inadvertently
being forced to acknowledge that data generated by robots is
in some way different since it can only be consumed by a new
application. This fencing off of certain data by virtue of the

way it was collected and published discourages use and makes
it far more difficult to combine with existing data channels.

The solution we have implemented in the ROCI software
framework is an architecture for formatting and dissemination
extensions. These Pin Exporter extensions, or plug-ins, can
inspect any interface data structure—i.e. ROCI Pin—to trans-
late or format the actual data in a way that is appropriate for a
given export mechanism. Exporters now exist for maintaining
RSS feeds for outputs, or for emailing the output data to any
number of recipients, Fig. 2. The philosophy being espoused
here is that, to the automated system, a human is just another
service like any other software component, but the human
works best when data is delivered in familiar ways. In this
way, data efficiently consumed and acted upon by automated
systems can also be efficiently consumed and acted upon by
humans on the network. For example, a security system may
have a component that recognizes individuals. The output of
this recognizer will be used as an input to other components,
ultimately opening a door, running a program, or taking
some automated response. This output may also be of some
interest to humans not actively monitoring the output. While
the automated system may respond immediately, it may be
more useful to allow a human user to consume data in the
manner of his or her own choosing. Thus the availability of
an RSS feed that embeds a picture of each recognized user,
along with contextual information such as time, length of visit,
etc. offers a convenient way to keep tabs on system usage
without requiring any step out of the ordinary for someone
who already monitors website updates via RSS. Similarly, a
domestic aid robot, perhaps a vacuum cleaner, may encounter
an unfamiliar obstacle while performing its daily tasks. This
encounter should trigger some automated responses, such as
stopping motors, but the data associated with the encounter can
also be emailed to the owner. This type of operator notification
represents a usage scenario quite apart from military or emer-
gency response situations where immediate action is required.
In the case of ROCI, a simple, structured response can be
emailed back to the robot, perhaps to instruct it to resume
its duties 1. Or maybe the user just wants a weekly email
from the house-cleaning robot confirming that everything is
working properly. In any scenario, the goal is to provide the
desired data to the human so as to be most easily consumed.
If the user needs to install and use a new application, or, more
generally, step out of their usual, comfortable data channels
to check on robot status, the experience suffers.

The exporter system discussed here is not simply another
interface mechanism that every component author needs to
support. Instead, the human is consuming the exact same data
as other system components are. The data is simply being
formatted and delivered in a way designed to maximize user
comfort and convenience. For ROCI-to-ROCI communication,
data is formatted and delivered via the most efficient means
possible, binary encoding and lean network packets. For part-

1Email responses are made possible by running an email server application
modified to route emails to the ROCI web interface.

2779

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 2, 2009 at 17:39 from IEEE Xplore.  Restrictions apply. 



Fig. 2. ROCI Pins—the abstraction used to communicate data between
components—can export their data to plain XML available over a RESTful
Web interface, Email, or RSS (shown).

ner platforms, the very same data is always accessible as XML.
Finally, for humans, that same data is available through a web
browser, or formatted and delivered in a manner as natural for
the receiver as possible. The sum of the parts described here is
a loosely-coupled MVC (Model-View-Controller) architecture
in which every interface data structure is automatically—free
to the developer—available as a data source, the ROCI Kernel
acts as access controller, and Pin Exporter extensions provide
custom views of the data source.

IV. CONCLUSION

A key aspect of ROCI’s design has always been the re-
duction of redundancy. Sometimes referred to as the DRY
(Don’t Repeat Yourself) principle in programming, ROCI’s
original design applied this methodology to the classification
of translation components by virtue of their input and output
types. The notion that data structures are related to the
functionality of the components implies that the programmer
encodes some descriptive content of the functional code in
the process of data structure definition. This content can be
extracted by a reflective type system and used to automatically
classify components without requiring any additional effort on
the part of the programmer. It became clear that manually-
created component descriptions, be they structured or not,
restate at least some of what is already stated in code. The
extensive use of type information throughout ROCI, and many
components designed for it, have allowed ROCI developers to
extract more value from their code than is generally expected.

The addition of scripting services built upon the same type
definitions, and the robust accessibility offered via the web
interface and Pin Exporter mechanism, further increase this
value. These simplifying technologies combine to make pos-
sible a new level of focus on the user.

User experience is not just a marketing term; it is instead
an important indicator of how well any user, be they human
or computer, can make use of a service. A good experience
indicates useful software that is more likely to be used.
Thus effort spent determining how best to serve each end
user is repaid by the contributions of those users. It is this
focus on helping each node on the network do what it does
best that makes the network itself far more effective. The
emphasis on interoperation and communication permits us
to quickly experiment with and integrate novel methods of
user-robot interactions without spending time porting code or
training users. Like the Web itself, robotics can be a powerful
collaborative technology when designed with usability and
interoperability in mind.

REFERENCES

[1] R. Vaughan, B. Gerkey, and A. Howard, “On Device Abstractions
For Portable, Reusable Robot Code,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robot Systems, 2003, pp. 2121–
2427.

[2] B. Gerkey, R. Vaughan, K. Stoy, A. Howard, G. Sukhatme, and
M. Mataric, “Most Valuable Player: A Robot Device Server for Dis-
tributed Control,” in Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 2001, pp. 1226–1231.

[3] N. Nesnas, A. Wright, M. Bajracharya, R. Simmons, T. Estlin, and
W. Kim, “CLARAty: An Architecture for Reusable Robotic Software,”
in Proceedings of SPIE Aerosense Conference, 2003.

[4] M. Montemerlo, N. Roy, and S. Thrun, “Perspectives on Standardization
in Mobile Robot Programming: The Carnegie Mellon Navigation (CAR-
MEN) Toolkit,” in Proceedings of the 2003 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2003, pp. 2436–2441.

[5] A. Cowley, H. Hsu, and C. Taylor, “Modular Programming Techniques
for Distributed Computing Tasks,” in Proceedings of the 2004 Perfor-
mance Metrics for Intelligent Systems (PerMIS) Workshop, 2004.

[6] ——, “Software Design for Distributed Sensing and Computing Tasks,”
in Proceedings of SPIE Vol. 5609 Mobile Robots XVII, 2004, pp. 135–
144.

[7] L. Chaimowicz, et al, “Deploying Air-Ground Multi-Robot Teams in Ur-
ban Environments,” in Proceedings of the 2005 International Workshop
on Multi-Robot Systems, 2005.

[8] B. Satterfield, S. Jameson, H. Choxi, and J. Franke, “A Role-Based
Approach to Unmanned Team Operations,” in Association for Unmanned
Vehicle Systems International conference, Baltimore, MD, June 2005.

[9] R. Fielding, “Architectural Styles and the Design of Network-based
Software Architectures,” Ph.D. dissertation, University of California,
Irvine, 2000.

[10] T. Berners-Lee. Principle of Least Power. [Online]. Available:
http://www.w3.org/DesignIssues/Principles.html#PLP

2780

Authorized licensed use limited to: University of Pennsylvania. Downloaded on December 2, 2009 at 17:39 from IEEE Xplore.  Restrictions apply. 


