

International Journal of Advanced Robotic Systems, Vol. 3, No. 1 (2006)
ISSN 1729-8806, pp. 031-036 031

Design Minimalism in Robotics
Programming

Anthony Cowley1; Luiz Chaimowicz2 & Camillo J. Taylor1
1GRASP Laboratory - University of Pennsylvania, Philadelphia, PA, USA.
2VeRLab - DCC - Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
{acowley, cjtaylor}@grasp.cis.upenn.edu, luizch@dcc.ufmg.br.

Abstract: With the increasing use of general robotic platforms in different application scenarios, modularity and
reusability have become key issues in effective robotics programming. In this paper, we present a minimalist
approach for designing robot software, in which very simple modules, with well designed interfaces and very little
redundancy can be connected through a strongly typed framework to specify and execute different robotics tasks.
Keywords: robotics programming, modularity, reusability

1. Introduction

The evolution of robotics in terms of hardware and
software design resembles the evolution of computer
science in general. In the 60’s, computer science was
mostly focused on the hardware, and programs were
developed for specific computer architectures, with little
chance of reuse. In the last couple of decades, computer
architectures, instruction sets and operating systems have
become more stable and the focus has shifted from the
hardware side to the software side. The development of
efficient, modular and reusable code is now mandatory,
and the use of modern software engineering is required
in any system. This same process is happening now in
robotics with the widening availability of stable robotic
platforms.

At the GRASP Lab. – University of Pennsylvania, we
have been developing ROCI – Remote Objects Control
Interface (Chaimowicz et al. 2003; Cowley et al. 2004a,
2004b). ROCI is a software platform that provides
numerous features to support distributed software
design, and a programming model for creating reusable
components called ROCI modules. Basically, a ROCI
module encapsulates a process which acts on data
available on the module's inputs and presents its results
as outputs. They are self-contained and reusable, thus,
complex tasks can be built by connecting inputs and
outputs of specific modules.

One of the key design principles of ROCI is to keep the
individual processing units (modules) simple, with well
designed interfaces and no feature overlap. This
minimalist approach allows modules to be easily tested,
composed and reused in different scenarios. The main
objectives of this paper are to discuss the genesis of this
approach, its advantages in robotics programming and to
describe its implementation in ROCI.

It is important to mention that in the last few years
several different platforms have been proposed aiming to
facilitate robotics programming. Some of these platforms,
such as the Player/Stage/Gazebo framework (Gerkey, B., et
al. 2001), are very general, allowing the simulation and
execution of several applications using different robotic
platforms. Others are more application specific such as
JPL’s CLARAty (Nesnas, N., et al. 2003) or CMU’s Carmen
(Montemerlo, M., et al. 2003) to mention a few. An
overview of some of those platforms can be found in the
eletronic proceedings of the workshop "Principles and
Practice of Software Development in Robotics” (Brugali,
D. & Reggiani, M., 2005).

We believe that the ideas presented in this paper can
contribute to, and interoperate with, other platforms on
the path to building more efficient and reusable robotic
software. Specifically, ROCI provides an architecture
built around a reflective type system that maintains
pervasive object metadata. Using this foundation, ROCI
components are capable of a level of automation, in the
form of tools such as universal object serializers,
formatters, and converters that require significantly less
custom programming than they would with a less
descriptive object model. This benefit is felt throughout
component development because it leads to a
minimization of repetition in code, and a distilling of
component functionality free of the typical utility code
necessary to fit the component into the platform.

2. ROCI Overview

ROCI is a self-describing, objected oriented, strongly
typed programming framework that facilitates the
development of robust applications for dynamic multi-
robot teams. In ROCI, each robot is considered a node
which contains several processing and sensing modules
and may export different types of services and data to

International Journal of Advanced Robotic Systems, Vol.3, No.1 (2006)

032

other nodes. Each node runs a kernel that can be
considered a high level OS. It mediates the interactions of
the robots in a team, handling task allocation and
execution, managing the network and maintaining an
updated database of other nodes in the ROCI network.

A ROCI task is a way of describing an instance of a
collection of ROCI modules to be run on a single node,
and how they interact at runtime. It is defined in an XML
file which specifies the modules that are needed to
achieve the goal, any necessary module-specific
parameters, and the connections between these modules.
At runtime, the kernel downloads any components not
stored locally, loads the necessary libraries into memory
in a separate system process, and creates the inter-
module connections through a Pin architecture that
provides a strongly typed, network transparent
communication framework. No extra compilation step is
necessary to link several objects, which is common in
frameworks that deal with several source code libraries.
A new task in ROCI can be “built on-the-fly”,
dynamically connecting independent modules on a single
node, and over a network. A good analogy is to view
each of these modules as an integrated circuit (IC), which
has inputs and outputs and does some processing.
Complex circuits can be built by wiring several ICs
together, and individual ICs can be reused in different
circuits. Fig. 1 shows a diagram of this architecture.

The main interface between a human operator and the
robot team is the ROCI Browser. The browser displays
the multi-robot network hierarchically: the operator can
browse nodes on the network, tasks running on each
node, the modules that make up each task, and Pins
within those modules. The browser’s main job is to give a
user command and control over the network as well the
ability to retrieve and visualize information from any one
of the distributed nodes. Specifically, using the browser,
the user can start, stop and monitor the execution of tasks
in the robots remotely, change task parameters, send
relevant control information for the robots and display
the outputs of Pins for which visualization routines exist.
Also, elaborate missions can be constructed within the
browser using scripts. Mission scripts can be generated
online or offline, and specify a sequence of actions that
should be performed by a team member.

Node Node

Task

Module

Pin

Task

Task

Fig. 1. ROCI Architecture: tasks are composed of modules
and run inside nodes. Communication through Pins can
be seamlessly done between modules within the same
task, modules in different tasks, or in different nodes.

ROCI is still under development and one of its current
limitations is the lack of support for a real time OS.
Nevertheless, as shown in this paper, ROCI has been
successfully used for programming different robots in
several applications.

3. Modularity and Reusability

3.1. Component Design
The reuse of components has been a central issue in
software design for many years. In the interest of
furthering the cause of modular, plug-and-play style
software reuse, many paradigms, methodologies, toolkits
and best practices have been proposed, with each
successive generation of engineers building on the work
of their predecessors. Therefore, the ideas that we present
here should at once feel both familiar and refreshing to
the experienced computer user frustrated with the state
of software engineering in the field of robotics.

As described earlier, the building blocks of the ROCI
system are ROCI modules. These elements, written by
users, create the language of the ROCI network. That is,
we do not view a node on the network as being
programmed in a system language, but rather in a high-
level, domain-specific language defined by a collection of
modules. This language is to be specified and built by the
users themselves through the creation of a working set of
modules. Without user-generated content, the entire
burden of language primitive creation lies with the
platform designers, which would either limit the effective
domain of the language to the areas where the architects
chose to focus, or inflate algorithm expression by relying
on a generic vocabulary. However, extensibility,
especially when treated as an essential element of the
system, places a significant burden on the extension
author. In the ROCI setting, where all functionality is
pushed into the modules, née extensions, it is essential
that strong conventions and guidelines be provided to aid
the user in creating interoperable, reusable components.

3.2. Designing to an Interface Specification
A popular method for managing development teams is to
jointly, or dictatorially, establish the interfaces through
which each component of the system should interact.
With such a specification in hand, responsibility for
developing the individual components of the system can
be distributed among the team with some hope that when
everyone is done, all the parts will work well together.
Eliding the difficulties of system integration for the time
being, there is promise in this managerial tactic as it
establishes boundaries for each component; boundaries
that not only help delineate functionality, but also
provide natural latches to use for building tests. Also, the
process of interface design offers an opportunity for
system architects to reason about the system at a very
high level. During this stage of development, where large

Anthony Cowley; Luiz Chaimowicz & Camillo J. Taylor / Design Minimalism in Robotics Programming

033

pieces of the system exist as nothing more than elements
in a block diagram, the entire system can be taken in at
once, and re-organized if needed.

The danger with designing to an interface is that what
happens behind the interface, which is ostensibly of no
interest to potential customers of the interface, can lead to
situations where the internal system only meets the
requirements of the interface by coincidence. That is, the
component may not correctly capture, model, or reflect
the desired logic, but happen to produce the desired
output where it intersects with a limited interface. This
situation may occur in a component that functions
absolutely correctly for its originally specified range of
inputs, so it will not be caught in testing.

A lack of fidelity in the manifestation of an abstract
concept in the form of software may not matter if the
specified interfaces are completely verified over the entire
possible input range. However, should a component have
a large number of interfaces, the decision to allow one
more is often an easy one to make. This new window into
the logic encapsulated by the component may allow some
part of the hidden, and heretofore irrelevant,
shortcomings of the software implementation to spill out.
Alternatively, a component with multiple interfaces may
become a target for refactoring into smaller sub-
components. Here again, the split may reveal
implementation problems that weren’t visible in the
originally tested component. The problem is not one of
engineering, and can fairly be restated as trying to use
something in a way that it was not designed for. If a
component was designed to evaluate a particular
function at two different points, asking it to evaluate the
function at an unconsidered third point can be seen as
unfair by the engineer who implemented the component
or entirely reasonable by an architect who asked for an
implementation of a particular function. The breakdown
occurs when the consumer of the component, in this case
the architect seeking to extend the system's functionality,
does not respect the interface contract adhered to by the
implementer because that limited interface is not related
to the canonical concept the component was intended to
capture. At its root, the problem is due to inconsistencies
between the architect's ontology and the engineer's
reification pragmatism. Note that the two parties may
find themselves with different priorities: the architect is
more productive when she can work with a clean domain
ontology, while the engineer can make the component
function most efficiently when it meets a detailed set of
specifications exactly. The development of specifications
then bears the burden of responsibility for making it
possible for the architect to work at a high level while still
keeping component design as efficient as possible.

Clearly, trouble may be avoided if component refactoring
is kept to a minimum. What is needed is a working set

whose each component is generally applicable, yet
individually inviolate. While freezing component
interface design is a straightforward policy to implement,
it leads to functional overlap, and the associated interface
divergence, if components are found to be inadequate in
and of themselves as well as in combination. Thus, the
language used to specify the system must be built upon
primitives that fully cover their stated operating domain.
One logical response to this position is to design a
reduced instruction set, with a mind for great efficiency at
the instruction, i.e. component, level and functional
efficacy achieved through complex component
composition. This is arguably the safest strategy to take,
but it represents a complete departure from the drive to
define a high-level domain language. Instead, we have
settled on a primitive design that is powerful enough to
clearly and succinctly express complex, decentralized
robot behaviors while still retaining the qualities of
efficient, irreducible components.

3.3. ROCI Module Design
The basic granularity of the language we have chosen to
consider is found in the transformation of one type of
data into another. Components that follow this pattern
typically have the favorable quality of being context-free:
they can fully describe their own functionality, and are
idempotent with regard to usage scenario. Put simply, a
data translator always translates a specific input data
type to a specific output type, no matter where the input
comes from or where the output goes to. This has the
further benefit of letting us reason about component
usage solely by the intrinsic properties of input and
output types. Properties of the high-level system itself are
expressed through the chaining together of multiple
translator components. Finally, and most importantly, the
prototypical translator component only needs to know
about its own state, two types of data and those
algorithms related to translating between those two
types.

Small scale component design is an important part of the
attitude we wish to foster in our developers. We want
developers to focus on creating small, stand-alone
processing loops that do one thing and do it well. This is
a similar philosophy to the traditional UNIX shell design,
where small, focused utilities are glued together in an ad
hoc fashion through the use of pipes. The benefits of such
a design are many, but primarily we wish to avoid
feature overlap and component complexity.

Feature overlap occurs when multiple components are
capable of doing the same thing. The danger here is not
only confusion when overlapping components appear in
the same project, but also a duplication of development
effort and a greater chance for the aforementioned
interface divergence. Redundant component functionality
is an obvious inefficiency, but interface divergence is

International Journal of Advanced Robotic Systems, Vol.3, No.1 (2006)

034

often the more dangerous of the two problems. This
phenomenon occurs as basic functionality is expanded
upon in different places in parallel. The end result is that
there exist multiple ways of doing very similar things, but
the different methods are not entirely compatible. This
leads to correct usage patterns being applied incorrectly
due to a change in which component provides the
service; a change which can go unnoticed due to the
overall similarity in functionality.

Component complexity rises when a developer continues
adding functionality to a single module in order to
supposedly accomplish a near-term goal more rapidly.
The result is that the component often becomes brittle
and difficult to test. The brittleness comes from
unchecked intra-component dependency growth,
wherein each part of the component is dependent upon
one or more other parts; a problem typical of monolithic
designs. Testing difficulty is related to the number of unit
tests required to adequately confirm a component's
correctness, a number that rises combinatorially as
functionality is added. The watchwords here are,
predictably, “keep it simple” (Berners-Lee, 1998). Nobody
wants to use a component that includes unnecessary
features that may adversely affect the stability of the
system under construction.

3.4. Interface Specification as Type Definition
The difficulty with an essentially untyped interface, as
with UNIX shell pipes, is that the system architect has
less to work with when figuring out how to put
components together than the design-by-interface
scenario we have considered up to this point. For this
reason, and the way interface specification can come to
dominate the description of translator component
functionality, we make extensive use of the strong static
type system of the .NET CLR. This platform lets us
inspect a compiled module to ascertain all necessary
information about input and output types to be able to
design at the system level relying primarily on type
matching. A typical program, or task in the parlance of
ROCI, is designed by connecting the interfaces of existing
modules and hypothetical modules such that sensor-
derived, raw data is transformed into forms that can be
consumed by high-level modules that implement a
particular algorithm, and then transformed back into
hardware platform-specific forms. The important part of
this development process is that the hypothetical
modules have their interfaces, defined by the required
data type translation, specified once the system schematic
is drawn. The module now has its boundaries, and can be
developed and tested in isolation from the system it will
ultimately find itself a part of. Most importantly, the
definition of the relevant data structures should greatly
inform the design of the module that uses them. We
believe that the structure of the functional part of a
component should mirror the structure of the data model.

While we still have to take care in defining interfaces that
satisfy both system architects and component engineers,
by focusing on the notion of type translation we can
isolate the component from any context it may appear in.
Furthermore, the difficulty of exhaustively covering the
input domain, so as to avoid future refactoring, is
simplified through the use of object oriented
programming techniques such as interface inheritance.

3.5. ROCI Pins
The statically typed interfaces that glue ROCI modules
together are ROCI Pins. Creating a Pin involves declaring
a data structure separate from any module; all
functionality is provided by base classes. Making these
data structures first class entities in the system serves a
number of purposes. First, the Pin base class provides a
wealth of functionality that encourages their adoption;
features such as network transparency, connection
optimization, data buffering, throughput monitoring,
subscription-based data flow, and automatic, network-
safe, polymorphism make Pins a powerful interface
mechanism. Second, declaring these interfaces as
separate, re-usable components encourages their re-use.
This not only saves development effort, but also provides
a common interface toolbox for component authors to
work from so that their modules may be used in concert.
Third, the need to explicitly declare the structure of an
interface forces the component designer to consider the
data model his component operates upon.

The data structures embodied by ROCI Pins can
represent the native data structure that an algorithm
operates over, the data generated by a sensor, or the data
understood by a hardware device. Time spent on
clarifying this data structure is time well spent, as it
should inform the structure of the functional parts of the
modules that produce or consume the data. In addition to
encouraging functional structure to mirror data
persistence structure, the explicit construction of Pins
discourages the unchecked interface addition common to
standard class design. When designing a class to be
consumed locally, or remotely via remote procedure call /
remote method invocation, developers tend to add public
interfaces in an ad hoc fashion as the need arises. The
organization of these interfaces is not related to any
underlying data model, but is instead mediated by a
particular usage scenario. Since we wish to develop
reusable components, the most sensible interface
organization is one that is patterned on the component's
data model, a property intrinsic to the component and
independent of any usage scenario.

3.6. The ROCI Development Process
Developing a ROCI task involves determining the desired
behavior, and constructing a block diagram of the
necessary components. This will include modules that
generate data, either by interfacing with sensors or

Anthony Cowley; Luiz Chaimowicz & Camillo J. Taylor / Design Minimalism in Robotics Programming

035

through some procedural method, modules that
implement an abstract behavioral algorithm or controller,
and modules whose output passes back into hardware or
a simulation layer. At this point, the interfaces between
these modules may well not match up, and the system
architect will need to specify the additional translations
necessary to match input types to output types.

Each module in this graph should represent a one-to-one
translation of input to output, or an interface composition
of multiple simple types into a more complex type.
Importantly, multiple inputs or outputs should always
represent a data structure composition or decomposition,
respectively, and not the presence of varied, disparate
functionality encapsulated in a single Module. The
specification of this graph, much like a circuit diagram,
will usually involve the reuse of many existing modules.
In fact, one can evaluate this initial design by ensuring
that module reuse increases as one reads the design from
high level to low. That is, a specific robot behavior may
need to be written for the task under construction, but
most of the mid-level translators should be existing
modules, and nearly all the hardware-interface modules
should be pre-written for a stable hardware platform.

We refer to the job of ROCI task specification as
architectural, and the job of implementing ROCI modules
as engineering. The distinction is not meant as one of
personnel (indeed the typical roboticist will act as both
system architect and low-level engineer), but is instead
used to delineate the level of programming being
applied. ROCI tasks are compositions of modules, and are
written in a high-level declarative language. The modules
themselves are written in system languages such as
C/C++, C#, Java, VB, etc. We especially encourage team
cooperation and discussion during the architectural
design phase of system development. The notions of
modules and Pins provide a guideline for this discussion,
and offer a natural point of departure for the team to split
up and start writing code.

4. Example

The ROCI task that implements the robot behavior of
following a colored blob provides a good demonstration
of ROCI design. This task has been successfully executed
with different robots as part of the DARPA MARS2020
project (Chaimowicz et al. 2005) Each of the following
sections briefly describes a component module used in
the task and how it has been constructed with generality
in mind. A diagram of the module connections is shown
in Fig. 2. It is important to note that some of these
modules have also been used in other tasks, which
demonstrates the benefits of the component design. For
example, the “Blob Extractor” was used for identifying
targets in a surveillance task and the “Stereo Cam” as a
sensor for obstacle avoidance.

Clodbuster

v, w
Calibration

Blob
Extractor

Stereo
Cam

Blob
Extractor

Blob
Localizer

Blob
Follower d, ψ

Left Image

Right Image x, y, area

x, y, area
Schedule
Monitor

Fig. 2. Diagram of a ROCI task that implements a blob
following behavior. The modular design allows
individual components to be easily reused in other tasks.

4.1. Stereo Camera Driver
A module was written that interfaces with the system-
level APIs for a stereo color camera. This module reads
the camera's intrinsic parameters from a proprietary API,
and captures images once the camera has started. The
module is controlled through a number of startup and
runtime parameters that govern properties such as color
processing, capture resolution, and capture rate. The
primary function of the module is to capture images and
export them in a general video frame data structure that
captures information related to image capture in a format
independent from the particular camera being used. This
module is used in any situation where the particular
camera is installed, and its output can be processed by
any module that consumes the video frame interface.

4.2. Blob Extractor
A mid-level data translator related to this task is the
module class that extracts color blobs from video frames,
and exports 2D blob information. This module translates
raw video frames into blob content information, and is
used in any situation where blob extraction is useful,
independent of the hardware platform, be it a UGV,
UAV, or fixed camera installation. The module works by
comparing the image pixels with a pre-computed lookup
table in order to segment the regions that match the
specific colors and compute the blob information.

4.3. Stereo Blob Localizer
This mid-level data translator was written specifically for
this task. It consumes the outputs from a pair of blob
extractors and generates a 3D localization of each blob in
a camera coordinate frame. The one-to-one translation
performed by this module is from a data structure
containing a pair of blob content information structures to
a single data structure that contains 3D blob localization
information. In this case, the composition of two 2D blob
structures into a single structure is collapsed into the
module that also generates the 3D record. This collapse is
allowed because the structure composition is trivial and
the resultant data type, a pair of epipolar 2D blob
structures, is somewhat unusual. Importantly, the
presence of multiple inputs does not imply that the stereo
blob localizer could be refactored to split its functional
structure.

International Journal of Advanced Robotic Systems, Vol.3, No.1 (2006)

036

4.4. Blob Follower
Another module written specifically for this task, this
component implements the original desired behavior.
We implemented a distributed leader-follower controller
that tries to keep the follower within a desired distance
(both in x and y) from the leader, as shown in Fig. 3. The
controller generates linear and angular velocities for the
follower based on its distance and bearing to the leader.
Thus, this module can accurately be viewed as converting
stereo blob localizations into robot motion commands. At
this point in the design hierarchy, both input and output
types are completely independent of target platform or
usage scenario, thus leaving the component’s
functionality completely portable.

Fig. 3. Two Clodbusters in a Leader-Follower formation.
The robot on the left is tele-operated while the robot on
the right is executing the blob follower behavior.

4.5. Clodbuster
A low-level module that is involved in one version of this
task contains physical characteristics and mappings for a
particular experimental UGV platform known as the
Clodbuster. This module is responsible for converting
motion commands given in real-world units into the unit-
less servo commands that actuate the robotic platform.
Another version of this task replaces this module with
one that interfaces with a Segway RMP. This module
substitution is the only change necessary to retarget the
task between the two platforms. Since the task itself is
built in a high-level domain language whose elements are
the modules listed here, no system level programming
needs to be done to change hardware platforms. Instead,
the high-level program needs to have one declaration
type changed.

4.6. Schedule Monitor
As a demonstration of ROCI's reactive scheduling
capabilities, a custom performance monitor was added to
this task long after its original design. This monitor
consumed the output of the blob extractors to determine
when a target was spotted. Upon target identification, the
schedule monitor would instruct ROCI to apply a task
schedule that prioritized the vision-related modules over
other sensing modules. The addition of this, a high-level,
very context-specific module required no system-level
programming outside this module's development; all the
existing pieces could be reused without change.

5. Conclusion

This paper presented a minimalist approach for
designing software in robotics. The key idea can be
summarized by the watchwords “keep it simple”.
Basically, we develop modules with well designed
interfaces that perform very specific functions, with no
feature overlap with other modules. Module developers
are free to concentrate solely on the new functionality
offered by their modules as basic interconnection
functionality – i.e. Object serialization, formatting, and
type coercion – is handled by system-level type-aware
translation components that can process arbitrary data
types. These modules are connected in a high-level
fashion through a strongly typed framework, providing
the desired functionality for each scenario. We have been
applying this design paradigm in the development of
ROCI, a programming framework that has been used in
the implementation of a variety of robotic applications.
We believe that this type of approach is strongly
recommended in order to have modular, reusable code
that can be efficiently developed and easily tested.

6. References

Berners-Lee, T., (1998). Principles of Design.

http://www.w3.org/DesignIssues/Principles.html.
Brugali, D. & Reggiani, M., (2005). Principles and Practice

of Software Development in Robotics. ICRA2005
Workshop. http://robotics.unibg.it/icra05ws/

Chaimowicz, L., Cowley, A., Sabella, V., and Taylor, C.,
(2003). ROCI: A distributed framework for multi-
robot perception and Control. In: Proc. of the 2003
IEEE/RJS IROS, pp 266-271.

Chaimowicz, L., Cowley, A., Gomez-Ibanez, D.,
Grocholsky, B., Hsieh, M., Hsu, H., Keller, J., Kumar,
V., Swaminathan, R., and Taylor, C. (2005) Deploying
Air-Ground Multi-Robot Teams in Urban
Environments In: Proc. of the 2005 International
Workshop on Multi-Robot Systems.

Cowley, A., Hsu, H., and Taylor, C., (2004a). Distributed
sensor databases for multi-robot teams. In: Proc. of the
2004 IEEE ICRA.

Cowley, A., Hsu, H., and Taylor, C., (2004b). Modular
programming techniques for distributed computing
tasks. In: Proc. of the 2004 Performance Metrics for
Intelligent Systems (PerMIS) Workshop.

Gerkey, B., Vaughan, R., Støy, K., Howard, A., Sukhatme,
G., and Mataric, M. (2001). Most Valuable Player: A
Robot Device Server for Distributed Control. In: Proc.
of the 2001 IEEE/RSJ IROS, pp. 1226-1231.

Montemerlo, M., Roy, N., and Thrun, S. (2003).
Perspectives on Standardization in Mobile Robot
Programming: The Carnegie Mellon Navigation
(CARMEN) Toolkit''. In: Proc. of the 2003 IEEE/RSJ
IROS. pp 2436-2441.

Nesnas, N., Wright, M., Simmons, R., Estlin, T., and Kim,
W. (2003). CLARAty: An Architecture for Reusable
Robotic Software," Proc. of SPIE Aerosense Conference.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

