
Towards Language-Based Verification of Robot Behaviors

Anthony Cowley and Camillo J. Taylor

Abstract— The management of finite resources is central to
many robot behaviors. Some robotic systems must maintain
invariants regarding the disposition of feet for balancing, others
have grippers for manipulating their environments, while yet
others must respect strict rules governing the usage of objects in
the environment. Yet the specifics of such resource management
responsibilities are almost universally locked behind opaque
controllers whose lack of type information greatly impedes
rigorous static analysis. We present an application of dependent
type theory and linear logic for the static analysis of robot
behavior programs that manage both robot and environment
state, with a worked assembly task example. This approach
offers static, formal guarantees with respect to safety require-
ments attached to primitive actions, as well as introspection
of expected state at each step of a scripted sequence of actions
allowing for the automatic generation of dynamic, sensor-based,
runtime verification of successful execution.

I. INTRODUCTION

A mobile manipulator such as that shown in Figure 1
requires an array of software to successfully function. Sensor
data must be filtered and integrated, controllers must be
tuned, and plans must be computed. As the primary per-
ception and control components of the system come on-line,
one is able to construct an abstraction layer exposing the
capabilities of the system in semantically meaningful units
that build upon motion primitives guided by sensor feedback.
For instance, the platform shown is capable of actuation to
open, close, and position its gripper in 3D space (X and Y
axes define the work surface, or table, with the positive Z
axis extending upwards).

A combination of perception and workspace design –
including a cache from which new blocks may be retrieved
– enable the robot to work with notched building blocks
designed to fit together to facilitate the assembly of small
structures. A high-level programming interface for the robot
in a C-like language looks like this,

void get_from_cache(void);
void move_arm(int x, int y, int z);
void open_gripper(void);

These primitive actions may be sequenced to effect an
assembly operation,

get_from_cache();
move_arm(1,2,3);
open_gripper();
get_from_cache();
move_arm(4,2,0);
get_from_cache();

This work was not supported by any organization.
Anthony Cowley and Camillo J. Taylor are with the GRASP Labo-

ratory at the University of Pennsylvania, Philadelphia, PA 19104, USA
{acowley,cjtaylor}@@seas.upenn.edu

Fig. 1. Mobile manipulator platform stacking blocks.

This program is unfortunate: it type checks but is riddled
with bugs.

II. RICHER TYPES

The above assembly script starts out with a bug: what is
the behavior if the gripper is holding something when the
robot is told to get a new block from the cache? The first
block is placed at coordinates (1, 2, 3), 3 units above the
table. Is there anything below that location to support the
new block? Is there already something at that location that
the new block will collide with? Moving on, the next bug
is another non-empty-gripper bug, because the programmer
failed to call open_gripper() after moving the arm to
the second location before going back to the cache for a new
block.

These potential errors are due to underspecification of the
primitive actions. The get_from_cache action is defined
as being valid for all states the world might be in, and is
silent regarding how it might change the state of the world.
Intuitively, the reality of this function is that, even though it
does not compute anything of interest, this primitive action
has associated pre- and post-conditions:

gripperIsEmpty ⇒ get_from_cache⇒ gripperHolds

Turning this inside out, we can say that,

get_from_cache : gripperIsEmpty → gripperHolds

meaning that get_from_cache converts a gripperIsEmpty
(abbreviated empty from now on) to a gripperHolds (abbre-
viated holds). However, empty is not a number, or some
infinitely copyable abstraction, it is a finite resource of
the system, and ceases to exist when acted upon by the
get_from_cache function. We may view empty as a kind

of certificate that may be used just once. In the case of
get_from_cache, it is exchanged for another single-use
certificate, holds. These certificates may be used to ensure
that we do not attempt to pick up a block while already
holding one.

Functions that change the world rather than just the robot
state, by placing a block on the table for example, should
similarly reflect that change in their types. If the original
state of the world is Γ (a set of blocks), and the robot is
to place a block at coordinates (x, y, z), then we wish for a
place_block function whose type is something like,

blockxyz /∈ Γ→ holds → (Γ ∪ blockxyz)⊗ empty

where ⊗ is a kind of product, or conjunction.
This function type requires a witness that the target block

is not already in the environment Γ, consumes a certificate
that the robot is currently holding a block, and produces a
new environment with the block added on to Γ along with
a certificate that the gripper is empty. The linearity of the
certificate premises of this type may be reflected by positing
an axiom for this primitive action that makes use of a linear
logic provability relation, −,

let B := blockxyz in

B /∈ Γ→ (Γ⊗ holds − (Γ ∪ {B})⊗ empty)

This form of reasoning allows us to ascribe a rich propo-
sitional language to simple imperative programs. The appeal
lies in the fact that writing down a full logical specification
for a complicated structure assembly, including all the in-
termediate states of its construction, is unwieldy. Even for
the simple cases considered here, dozens of propositions are
needed to describe what we believe to be true about simple
assembly scripts. We thus aim to view the language in which
our actions are written as an encoding of a rigorous formal
proof. This is accomplished by attaching highly expressive
types to the basic actions our system can perform in order
to produce an axiomatization of the system. Critically, the
types of the end-product programs are inferred so that
the programmer is not required to leave the familiarity of
imperative scripting.

III. LINEAR LOGIC

To formalize these intuitive notions of finite resource man-
agement, we present a fragment of linear logic as introduced
by Girard [1]. To emphasize a computational interpretation
of the logic, we work with intuitionistic linear logic in a
natural deduction style, similar to the presentations found
in [2], [3], [4], to give readers a taste of the features most
useful for the verification of robot behaviors. As a point of
departure, the central feature of linear logic as it applies
here is that while the following proof is valid in classical
and constructive logics, it is not valid in linear logic.

[A]1

` A

[A]2 [A→ B]3

` B

` A×B
[1,2,3]

A,A,A→ B ` A×B
contraction

A,A→ B ` A×B

Following tradition, premises are written above a line
separating them from derived conclusions, square brackets
are used to indicate assumptions, and superscripts are used to
track the discharge of those assumptions. The entailment, or
provability, relation, denoted `, here corresponds to either the
classical or constructive provability relations. The examples
here serve to contrast linear logic with both classical and
constructive logics, so the reader unfamiliar with constructive
logics may consider ` as the provability relation of classical
logic.

The contraction rule available in classical and constructive
logics may be interpreted as stipulating that a single premise,
A, may be used to conclude both A, by identity, and B, by
the implication A→ B.

In contrast, the linear logic provability relation, denoted
−, allows neither contraction nor weakening (essentially, a
statement that additional hypotheses may always be added
to a derivation). If we distinguish linear implication from
classical implication by using the notation A (B to
denote an implication that consumes its argument, then the
linear provability relation enforces that the hypotheses A and
A (B may either be used to conclude A or B, but not
both. An example of this style of reasoning is that, with an
empty-gripper certificate in hand, we may pick up a block,
which will result in a certificate verifying that we now hold
a block, but the original empty-gripper certificate will have
been consumed.

This notion of a virtual, one-time-use safety certificate
has many familiar analogs in the average person’s day-to-
day life. Consider the predicament of the vending machine
user: he must choose to either retain his dollar, or exchange
it for a soda. We may represent the dollar as A, the soda
as B, and the vending machine as a function with type
A → B. Thinking of the function as an implication, both
classical and constructive logics permit use of the hypothesis
A any number of times, enabling us to keep the dollar in our
pocket and feed it to the vending machine to obtain a soda.
Linear logic, on the other hand, forces us to reason somewhat
differently.

The vending machine itself is logically defined by,

A − B
(-I

∅ − A (B

which states that since an A may be consumed to produce a
B, we have a linear implication A (B (with ∅ indicating
that there are no assumptions for the conclusion of this
proof). Note that derivations like this are not the same
as setting a boolean flag. If we have two derivations, we
may freely combine them to build a new derivation. The
distinction is that resources are tracked through composition:
if two derivations each consume an A, then the composition

of those derivations will require the availability of two A
propositions.

The vending machine logic is actually a special case of
the linear implication introduction rule, denoted (-I when
used in proofs. This rule describes how linear implications
may be formed in a general context, or list of hypotheses,
represented as either Γ or ∆ in the following.

∆, A − B
(-I

∆ − A (B

The linear implication implemented by the vending ma-
chine results in a customer-vending machine system (with Γ
standing in for the customer) described by,

Γ − A

Γ − A ∅ − A (B
(-E

Γ − B
&-I

Γ − A & B

The linear implication elimination rule, (-E, is used to
produce a B which is combined with A to form the propo-
sition A & B using the with introduction rule, denoted &-I.
This introduction rule requires that one be able to conclude
both A and B from the context Γ, but not necessarily at the
same time. This is reflected in the availability of the two
elimination rules,

∆ − A & B
&-E1

∆ − A

∆ − A & B
&-E2

∆ − B

These two rules mean that if we have a with, also known
as an additive conjunction, then we may choose which
component to use.

Contrast this with the multiplicative conjunction, denoted
⊗, corresponding to the standard and logical connective. The
elimination rule for this connective, ⊗-E, requires that we be
able to derive our conclusion, C, from a context extended
by both components of the product. Formally,

Γ − A⊗B ∆, A,B − C
⊗-E

Γ,∆ − C

In the application presented here, the linear logic prov-
ability relation is used to work with single-use certificates
denoting facts of a fleeting nature (e.g. “block A is on block
B”), and to keep track of blocks placed in the environment
in order to statically detect collisions. These properties of
the system are produced and consumed over the course of
execution, enabling one to reason about sequences of actions
by interpreting those actions as steps in a proof built from
the above inference rules.

IV. FORMALIZATION IN COQ

The Coq proof assistant [5], based on a core calculus
known as the Calculus of Inductive Constructions (CIC)
[6], is a tool for developing formal mathematical proofs,
specifications, and certified programs. Since everything is
formalized in Coq using CIC, all logic and proof develop-
ment is actually implemented as type checking. The power
of this system is that once one trusts the theory, and a very
small kernel implementing this theory, any CIC expression
that type checks represents a legitimate proof.

Underpinning this style of proof is an embrace of the
Curry-Howard isomorphism, which may be generalized to
state that a type is a proposition, and a program having that
type is a proof of the proposition. As an example, one may
pose the proposition that there exists a set, Bool, of boolean
values. A proof of this proposition is a witness of this claim,
such as true. Thus one may read the typed program term
true : Bool (pronounced, “true has type Bool”) as a
pair of proof and proposition.

More intriguingly, one may slightly abuse the fact that
the standard notations for logical implication and function
type stand in coincidence to say that a function of type
Int→Int is a proof of the proposition that Int implies
Int. Such an implication requires a program that, given an
integer, produces an integer.

A. Dependent Types

Reasoning about typed programs, one may view a higher
order function expecting an argument of type Int→Int as
parameterized over a proof of this claim. Presumably this
parameterization serves some purpose: usually an intent to
use the proof object (note the computational interpretation
asserting itself). However, there is a logical side to such
a parameterization, too. It may be that a function makes
no active use of a particular proof object supplied as an
argument, but simply wishes that there be a witness of the
specified type. For the case of Int→Int, this is unlikely,
but consider a type such as (n:N)→even n→ N that may
be used to annotate, say, a function that divides a natural
number – type N – by two. The idea here is that we would
like to write a “divide by two” function, divByTwo, on
natural numbers such that,

∀ (n:N), 2 * divByTwo n = n. (1)

The aim of this type is to preclude the function having to
return well-typed values for arguments that are not divisible
by two. Without the second parameter, whose type identifies
a subset of the natural numbers, the function author would
need to decide what natural number to return for an odd
argument, such as 3. The richer type means that the function
implementation may satisfy the desired specification, Eq. 1,
without requiring some ad hoc protocol specification of how
naturals not divisible by two are handled.

The example divByTwo function has what is known as a
dependent type [7]: a type that may depend on values. Note
in the above example that the first argument to the function is
of type N, but we have bound a name, n, to the value passed
to the function. Subsequent parts of the type may now refer
to the value passed to the function, and these references may
be used to assert properties of this value. In this case, the
program implementing the divByTwo function – i.e. the
proof of the type – need not worry that n is not divisible by
two, because a well-typed application of the function must
include a proof of even n, where even is an inductively
defined family indexed by a natural number.

Fig. 2. A three-block structure.

B. Embedding Linear Logic

The embedding of linear logic in Coq is based on that
described by Power and Webster [8]. We define the linear
logic consequence relation as an inductive type whose con-
structors correspond to the introduction and elimination rules
shown in Section III.

Given a type of linear propositions, LinProp, we can
define the intuitionistic linear logic consequence relation as
a Prop (corresponding to a logical proposition in Coq’s type
system) indexed by a list of LinProps corresponding to the
context and a LinProp corresponding to the conclusion. In
Coq syntax, this is,

Inductive LinCons :

list LinProp → LinProp → Prop :=

The constructors of this type take some number of pa-
rameters to assemble an application of the LinProp type
constructor, here with the infix − notation used earlier.
For example, the multiplicative conjunction introduction is
implemented as,

TimesRight : ∀ A B Γ ∆,

(Γ − A) → (∆ − B) → (Γ ++ ∆ − A ⊗ B)

The constructors for the LinCons type family define a way
of producing values of Coq’s Prop type. In Section II, we
said that the assembly actions we intend to deal with do not
produce interesting computational values. Because the real-
world actions of the robot are distinct from values computed
within the programming language, we focus on the things
that are available to the programming language: the types.

We therefore use the LinCons indexed type family to
produce types, and demand that our assembly programs
produce values of these types. Similar to the divByTwo

example, we will be writing functions that take parameters
whose value is solely logical, not computational. If we have
a value of type Γ − A and a value of type ∆ − B, then we
may use the TimesRight constructor to produce a value of
type Γ ++ ∆ − A ⊗ B.

V. ASSEMBLY TASKS

Given that we are working with virtual values whose
only purpose is to carry informative types, we bootstrap the

system by introducing axioms that define the actions our
robot is capable of performing. These axioms are the kernel
of the logical specification of the application. Our goal is to
program the mobile manipulator platform shown in Figure 1
to produce structures composed of interlocking blocks as
shown in Figure 2.

A. Data Types and Linear Facts

We define a coordinate system for these blocks such that
block placements are aligned with the X and Y axes that
define the ground plane. With this convention established,
we refer to the more negative and more positive ends of
blocks as their “left” and “right” ends. To capture a block’s
position, (x, y, z), we define a 3D point data type with integer
coordinates,
Inductive Point : Set :=

point : Z→ Z→ Z→ Point.

The Block data type builds on Point to also capture the
block’s orientation.
Inductive Block : Set :=

block : Point → Orientation → Block.

In order to ensure that we do not attempt to force two
blocks to occupy the same volume of space, we maintain a
set data structure, type BlockEnv, recording all the Blocks
known to be in the environment. The environment is a
fact recorded in the linear context as, env : BlockEnv →
LinProp.

Other propositions involving a single block are clearL

: Block → LinProp, indicating that a block’s left end
is clear, clearR : Block → LinProp indicating that
a block’s right end is clear, and table : Block →
LinProp indicating that a block is on the table. The clear*
propositions will let us work with blocks that may not be
physically capable of supporting stacked blocks.

Blocks may be vertically stacked in two ways: they may
be stacked directly on top of each other, on : Block →
Block → LinProp, or one block may bridge two perpen-
dicular blocks as shown in Figure 2. The bridging configu-
rations are indicated by the linear proposition, bridgesL :

Block → Block → Block → LinProp indicating that
the first Block bridges the left ends of the second and third
Blocks, and bridgesR for the support blocks’ right ends.

A final structural property is required to verify bridg-
ing configurations: the bridge supports must be parallel,
aligned, and a particular distance apart. We encode linear
safety certificates regarding the suitability of two potential
foundation blocks as safeBridgeL : Block → Block

→ Block → LinProp to indicate that the first Block

may safely bridge the left ends of the second two, and
safeBridgeR for the right ends of the support blocks.

Finally, we track the gripper’s binary state using holds

: LinProp and empty : LinProp indicating whether the
gripper is currently holding a block, or if it is empty.

We will not be directly producing values using these
LinProp constructors. Instead, we will solely rely on a
small number of axioms that define the primitive aspects of

our robotic platform. By virtue of being inhabitants of the
LinProp type, all these logical facts may take part in the
LinCons relation that we will use to reason about the state
of our system.

B. Axiomatized Assembly

To begin, the manipulator is able to fetch new blocks from
a cache of blocks,

Axiom newBlock : [empty] − holds.

This axiom states that, given a linear context consisting of
empty, indicating that the gripper is not holding anything,
one may conclude that the gripper now holds a block.
This corresponds to the real-world action of the mobile
manipulator driving to the parts cache and picking up a fresh
block.

Adding a block to the environment is our only way of
building anything, but there are variations that we must
consider. In each case, placing a block requires that the new
block not collide with any block already known to be in
the environment. Note that this fact is not linear: it is not a
resource, but a proposition in the native constructive logic of
Coq. We check a block against an environment with,

Definition collisionFree E X :=
∀ Y, Y ∈ E → noOverlap X Y.

where noOverlap is a function producing a proposition that
there is a separating plane between two blocks based on
integer inequalities involving block dimensions. The types
are inferred in the definition of collisionFree, but it has
type BlockEnv→ Block→ Prop. It is a claim that Block
X does not overlap any block Y in environment E.

We may finally write down the axiom that defines our
ability to place a block in the workspace,
Axiom put : ∀ X Y Z E,

collisionFree E X →
([holds ⊗ env E] −

empty ⊗ clearL X ⊗ clearR X ⊗
env (add E X) ⊗
(table X &

clearL Y ⊗ clearR Y (on X Y &

safeBridgeL X Y Z (bridgesL X Y Z &

safeBridgeR X Y Z (bridgesR X Y Z)).

The put axiom states that if block X is collisionFree
in environment E, then a linear context consisting of the
facts that the gripper holds a block and that the current
environment is, in fact, E, implies that the system state may
transition such that the gripper is empty, block X is clear

on both ends, the current environment is now E augmented
by block X, and a fact describing X’s configuration.

This last item is an additive conjunction of the various
facts that may describe a newly placed block: the program-
mer may conclude any one of the options. The newly placed
block may be,

• a foundational block placed on the table
• directly on top of another block, Y, given the linear

assumptions that both ends of Y are clear

• bridging the left or right ends of blocks Y and Z given
that such a bridging configuration is safe.

As this axiom handles all the ways a block may be placed,
we prove several specialized placement lemmas to handle
the various cases in the style of [8]. These lemmas, an
example of which is reproduced here, represent the first
public interface of the system specification to be exposed
to users.
(* Put block X on block Y. *)

Lemma puton : ∀ X Y E,

collisionFree E X →
([env E ⊗ holds ⊗ clearL Y ⊗ clearR Y] −
empty ⊗ clearL X ⊗ clearR X ⊗
env (add E X) ⊗ on X Y).

These specialized lemmas are useful units of composition,
but they still require some work to use. Power and Webster
[8] use a little bit of Coq’s automation facilities, embodied
in the Ltac language for defining proof-writing tactics, to
make theorem proving somewhat easier, but we take this
further by demanding that semantically meaningful actions
should correspond to a single interaction in Coq’s interactive
proving mode. These proof writing tactics absolve the user
from having to perform repetitive context manipulations or
derive facts like collision safety that result from decidable
integer inequality proofs and set operations.

In general, each lemma is accompanied by a tactic that
rewrites the current proof goal so that the lemma may be
applied and automatically discharges assumptions of the
lemma. Note that this scripting of the proof assistant is
not skipping over any of the obligations for rigor that we
desire, it is merely automating the process of specifying the
incremental logical steps needed to produce a desired result.

C. Program or Proof

The choice of using Coq’s interactive theorem proving
mode – wherein the user enters commands that update a
sequent tracked and displayed by Coq – rather than its more
traditional program writing facilities reflects the way the
system will be used. While one may write functions that
ostensibly compute with the detailed types we are building
through the application of the various constructors, we opt
for writing down lemmas and theorems which we then must
prove to Coq’s satisfaction. The two tasks are intimately
connected, but the interaction with a proof assistant gets at
precisely the value Coq brings to the robotics programming
domain.

A formal, machine-checked proof contains nothing more
than a finite list of steps needed to derive the conclusion from
the assumptions. In contrast, an informal proof, intended
as communication between humans, often elides steps of
logical reasoning in favor of documenting key aspects of
the proof state on the path from assumptions to conclusion.
This difference presents the central contribution of this work:
a robot program is a specification of the operations the robot
is to perform, while the proof assistant meticulously tracks
the state of the process. To be clear, the dynamic state of a

Fig. 3. A fourteen-block structure comprising two towers with spanning
bridges.

proof is the type of the composition of the proof steps up to
any given point.

This tracking of state, missing from typical imperative
scripts, allows the proof checker to guarantee that the pro-
gram/proof is free of defects that would guarantee its failure.
Finally, we note that the proof state is a highly granular safety
predicate as it reflects the dynamic state of the system, rather
than committing to a safe subset of the system’s configuration
space at the outset. The safe states of the system depend on
what has come before: safety is causal.

D. Putting It All Together

We are now ready to consider the statically verifiable pro-
gram needed to generate the assembly script corresponding
to the structure shown in Figure 3. This structure is built from
two towers, each consisting of six blocks, with two spanning
blocks bridging the gap between the towers. To name the key
components of the structure, we refer to the blocks directly
supporting the bridging spans as PeakLeft and PeakRight

for the peaks of the left and right towers, while the spanning
blocks are named SpanA and SpanB.

We rely extensively on helper tactics as described at the
end of Section V-B: get_from_cache wraps the newBlock
axiom; put_on_table wraps the puttb lemma (itself a
specialization of the general put axiom); and bridge{L,R}

wrap specializations of put for placing blocks that bridge
pairs of support blocks.

The target structure shows a large amount of repetition in
the tower assemblies that we naturally wish to abstract using
a function. Rather than writing a long series of statements
of the form,
get_from_cache();

bridgeL(X,Y,Z);

we will work with a function that executes the task of
adding a layer to a tower any number of times. We will
call this function, implemented as a tactic, build_tower,
and parameterize it by the integer (X,Y) coordinates of the

tower center and the natural number of levels to add to the
tower. We will use the names introduced above for blocks
serving particular roles so that we may refer to them by name
in the program rather than having to type in their coordinates
repeatedly.

build_tower(2,3,2);
build_tower(6,3,2);
get_from_cache();
bridgeL(SpanA, PeakLeft, PeakRright);
get_from_cache();
bridgeR(SpanB, PeakLeft, PeakRight);

This program, which is enough to drive the system shown
in Figure 1, builds one tower centered at (X,Y) coordinates
(2,3) with two layers above its foundation, and another at
(6,3). The two spanning blocks are retrieved from the cache
and used to bridge the gap between the towers.

Enough Coq automation has been provided that this C-like
syntax can be simply translated into the following verifiable
Coq program,

Lemma TowerBridge : [empty, env ∅] − >.
Proof.

intros.
build_tower 2 3 2%nat.
build_tower 6 3 2%nat.
use_aliases [PeakLeft, PeakRight].
get_from_cache.
bridgeL SpanA PeakLeft PeakRright.
get_from_cache.
bridgeR SpanB PeakLeft PeakRight.

Qed.

The linear context at the end of this program is far from void:
it contains 34 facts about the world, including an environment
proposition recording the 14 placed blocks. This context may be
inspected to verify that it trivially satisfies propositions about the
resultant structure. For instance, the propositions,

bridgesL SpanA PeakLeft PeakRight

and

bridgesR SpanB PeakLeft PeakRight

are elements of the ending context.
The imperative program dressed up with the Lemma syntax is

used to prove a trivial proposition, during the course of which
Coq verifies that each step is legal. Before ending the interactive
proof session, the accumulated linear type context is extracted as
it represents the most specific proposition proved by the original
program. This specific type is used to annotate the elaborated proof
to provide a modular unit for reuse in future constructions.

VI. RELATED WORK

Systems and languages for the assembly of shapes and structures
have seen increasing attention recently [9], [10], [11], [12], [13],
[14]. These works focus on operational aspects of getting pieces
into place to form a structure, rather than physical properties of
those structures or the systems doing the assembling. Napp [15]
describes the composition of guarded programs for organization,
but the composition of guard clauses is not targeted by a static
feasibility analysis.

There is also a connection to the extensive research done on
using temporal logics for motion specifications, some highlights of
which include [16], [17], [18], and [19]. These works are primarily
concerned with ensuring that a robot, or team of robots, is always
in a valid state, and/or eventually transitions into a particular set of

accepting states. To this end, specifications are written in a temporal
logic that refers to elements of an identified state space.

Our approach differs from these works in several ways. First,
we do not aim to automatically identify a witness of a proposition,
but instead seek to determine what proposition a given program
is witness to. Given a putative proof, we attempt to identify the
most specific theorem. Second, the specification of system state
is tremendously burdensome when dealing with all the logical
facts one can derive from a particular action. The domains we are
interested in are both dynamic and infinite. Rather than manually
identify a desired system state, we emphasize the identification
of complex configurations through the composition of a core set
of actions with known properties. Third, we focus on giving the
platform designer tools to enable application specific formalization
in the form of language metatheory. For instance, to prove collision
freedom we made use of a noOverlap function that produced a
disjunction of possible separating planes between two blocks. In
order to automate proofs about collision safety, it is helpful to know
that noOverlap is a commutative relation, a fact readily proved
within Coq.

These differences set this work apart from model checking ap-
proaches more commonly found in robotics today. Model checking
is, in a sense, the flip side of the approach taken by this paper.
Constructing the specification – a sentence in some logic – is
laborious and error prone, it should be automated. The approach
shown here synthesizes the specification from the program while
simultaneously verifying that the given program is a proof of the
derived specification.

VII. CONCLUSIONS AND EXTENSIONS

We have shown examples of language-based verification for
programs controlling a single robot with a single gripper. Many
of the facts proved by this system may seem trivial: verification
that the gripper is empty before it is used to pick up another block
could probably be performed by a human looking over the program
before running it. But, setting aside the benefits of automating the
verification of even simple properties, the system described extends
immediately to systems with, say, four grippers, merely be starting
the specification off with a larger initial context. Instead of starting
out in an empty environment with an empty gripper, [empty ⊗
env ∅], we can start out with the context, [empty ⊗ empty
⊗ empty ⊗ empty ⊗ env ∅], and use the same assembly
lemmas and tactics to verify that our multi-manipulator is never
over-extended.

The expressiveness of linear logic is a good fit for robotic sys-
tems that frequently must deal with finite resources while exploring
infinite domains characterized by the introduction and elimination
of dynamic objects over the course of execution. By embedding
the necessary logical building blocks in a proof assistant like Coq,
the system designer empowers application programmers with a rich
toolkit for formal verification of critical system properties.

ACKNOWLEDGMENTS

The authors wish to thank Professor Ani Hsieh and the Drexel
University SAS Lab for access to their automated assembly plat-
form, and Jean Gallier for the “Girardian turnstile” LATEX.

REFERENCES

[1] J.-Y. Girard, “Linear logic,” Theor. Comput. Sci., vol. 50, pp. 1–102,
January 1987. [Online]. Available: http://dx.doi.org/10.1016/0304-
3975(87)90045-4

[2] P. Wadler, “Linear types can change the world!” in Programming
Concepts and Methods. North, 1990. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.5002

[3] ——, “A taste of linear logic,” in Proceedings of the
18th International Symposium on Mathematical Foundations
of Computer Science, ser. MFCS ’93. London, UK:
Springer-Verlag, 1993, pp. 185–210. [Online]. Available:
http://portal.acm.org/citation.cfm?id=645722.666394

[4] T. Braüner, “Introduction to linear logic,” University of
Aarhus, Tech. Rep. LS-96-6, Dec. 1996. [Online]. Available:
http://www.brics.dk/LS/96/6/BRICS-LS-96-6/BRICS-LS-96-6.html

[5] Y. Bertot and P. Castéran, Interactive Theorem Proving and
Program Development, Coq’Art: The Calculus of Inductive
Constructions. Springer-Verlag, 2004. [Online]. Available:
http://www.labri.fr/perso/casteran/CoqArt/index.html

[6] T. Coquand and G. Huet, “The calculus of constructions,” Inf.
Comput., vol. 76, pp. 95–120, February 1988. [Online]. Available:
http://portal.acm.org/citation.cfm?id=47724.47725

[7] H. Barendregt, “An Introduction to Generalized Type Systems,” Jour-
nal of Functional Programming, vol. 1, no. 2, pp. 125–154, April
1991.

[8] J. Power and C. Webster, “Working with linear logic in coq,” in The
12th International Conference on Theorem Proving in Higher Order
Logics, 1999.

[9] R. Nagpal, “Programmable self-assembly using biologically-inspired
multiagent control,” in Proceedings of the 1st International Joint Con-
ference on Autonomous Agents and Multi-Agent Systems (AAMAS),
July 2002.

[10] E. Klavins, “Automatic synthesis of controllers for distributed assem-
bly and formation forming„” in Proceedings of the IEEE Conference
on Robotics and Automation, May 2002.

[11] E. Klavins, R. Ghrist, and D. Lipsky, “A grammatical approach to self-
organizing robotic systems,” IEEE Transactions on Automatic Control,
vol. 51, no. 6, 2006.

[12] J. Werfel and R. Nagpal, “Three-dimensional construction
with mobile robots and modular blocks,” Int. J. Rob. Res.,
vol. 27, pp. 463–479, March 2008. [Online]. Available:
http://dx.doi.org/10.1177/0278364907084984

[13] J. Werfel, Y. Bar-Yam, D. Rus, and R. Nagpal, “Distributed Con-
struction by Mobile Robots with Enhanced Building Blocks,” in
Proceedings of the 2006 IEEE International Conference on Robotics
and Automation, May 2006.

[14] S. Yun, M. Schwager, and D. Rus, “Coordinating construction of
truss structures using distributed equal-mass partitioning,” in Proc.
of the 14th International Symposium on Robotics Research, Luzern,
Switzerland, Aug 2009.

[15] N. Napp and E. Klavins, “Robust by composition: Programs for
multi-robot systems,” in International Conference on Robotics and
Automation (ICRA10), 2010, pp. 2459–66.

[16] M. Antoniotti and B. Mishra, “Discrete event models+temporal
logic=supervisory controller: automatic synthesis of locomotion con-
trollers,” in IEEE International Conference on Robotics and Automa-
tion, vol. 2, May 1995, pp. 1441 –1446 vol.2.

[17] G. E. Fainekos, H. Kress-Gazit, and G. J. Pappas, “Temporal logic
motion planning for mobile robots,” in Proceedings of the 2005 IEEE
International Conference on Robotics and Automation, April 2005, pp.
2020–2025.

[18] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal logic-
based reactive mission and motion planning,” IEEE Transactions on
Robotics, vol. 25, no. 6, pp. 1370–1381, 2009.

[19] M. Kloetzer and C. Belta, “Automatic deployment of distributed
teams of robots from temporal logic motion specifications,” IEEE
Transactions on Robotics, vol. 26, pp. 48–61, February 2010.
[Online]. Available: http://dx.doi.org/10.1109/TRO.2009.2035776

