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Abstract. This paper describes the implementation of a decentralized architecture for au-
tonomous teams of aerial and ground vehicles engaged in active perception. We provide a
theoretical framework based on an established approach to the underlying sensor fusion prob-
lem [3]. This provides transparent integration of information from heterogeneous sources.
The approach is extended to include an information-theoretic utility measure that captures the
task objective and robot inter-dependencies. A distributed solution mechanism is employed
to determine information maximizing trajectories and assignments subject to the constraints
of individual vehicle and sensor sub-systems. This architecture enables the benefit of the
complementary aerial and ground based vehicle and sensor capabilities to be realized. The
approach is applied to missions involving searching for and tracking multiple ground targets.
Experimental results for vehicles equipped with cameras are presented. These illustrate the
impact of the team configuration on overall system performance.

1 Introduction

Aerial and ground vehicles exhibit complementary capabilities and characteristics as
robotic sensor platforms. Fixed wing aircraft offer broad field of view and rapid cov-
erage of search areas. However, minimum limits on operating airspeed and altitude,
combined with attitude uncertainty, place a lower limit on their ability to resolve and
localize ground features. Ground vehicles on the other hand offer high resolution
sensing over relatively short ranges with the disadvantage of slow coverage. This
paper presents a decentralized architecture and solution methodology for seamlessly
realizing the collaborative potential of air and ground robots. Experimental results
using robot with complementary capabilities detailed in Table 1, demonstrate rapid
localization of ground features alleviating the requirement for a time consuming
extensive search by ground vehicles.

This paper is organized as follows. Following a review of related work, Section
3 details the technical approach taken and the system architecture. The experimental
setup and hardware along with sensor modelling and controller implementation for
a collaborative feature localization task are described in Section 4. Experimental
results are presented and discussed in Section 5 followed by concluding remarks.
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2 Related Work

This work builds on previous endeavors in decentralized data fusion [6,5] and active
sensor networks [3]. The established architecture and methodology is used here.
Approaches to active sensing that implement alternative system architectures and
techniques for estimation and control include [7,12,9]. The use of aerial and ground
based sensor platforms is closely related to other efforts to exploit the truly comple-
mentary capabilities of air and ground robots. Examples of such initiatives include
the DARPA PerceptOR program [8] and Fly Spy project [11]. While exceptional re-
sults have been obtained with advanced airborne sensors such as aerial laser scanning
[10], the combined use of air and ground active sensing offers high resolution aware-
ness from relatively low cost visual sensors. The approach presented enables this
collaborative potential to be realized through seamless integration and refinement of
information from heterogeneous robot sensor systems.

3 System Architecture and Approach

The approach taken builds on established methods in decentralized data fusion
(DDF): the information form of the Kalman filter. This methodology has previ-
ous been applied to localization of ground features by aerial sensor platforms [6].
Ground targets are modeled as point features with corresponding position estimated
by decentralized information filter implementation. The underlying equations are
presented briefly. See [5] for a full derivation.

Consider a system described by the discrete time state and observation processes

x(k) = F(k)x(k − 1) + G(k)w(k), z(k) = h(k,x(k)) + v(k) (1)

where the process noise w(k) and observation noise v(k) are uncorrelated white
sequences w ∼ N (0, Q) and v ∼ N (0, R). The information filter is obtained
by replacing the representation of the state estimate x̂ and covariance P with the
information state ŷ and Fisher information Y. Notation (i | j) indicates a value at
time i, conditional on observation information obtained up to time j. The information
state and information matrix are defined as

ŷ(i | j)
�
= P−1(i | j)x̂(i | j), Y(i | j)

�
= P−1(i | j). (2)

The information vector and matrix contributions associated with an observation are

i(k)
�
= HT (k)R−1(k)(z(k) − h(x̂(k | k − 1)) + H(k)x̂(k | k − 1),

I(k)
�
= HT (k)R−1(k)H(k). (3)

where HT (·) is the Jacobian �xh(·). With these definitions, the information filter
can be summarized in two stages as:
Prediction:

Y(k | k − 1) =
�
F(k)Y−1(k − 1 | k − 1)FT (k) + Q(k)

�−1

,

ŷ(k | k − 1) = Y(k | k − 1)F(k)Y−1(k − 1 | k − 1)ŷ(k − 1 | k − 1). (4)
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Estimation:

Y(k | k) = Y(k | k − 1) +
�N

i=1
Ii(k),

ŷ(k | k) = ŷ(k | k − 1) +
�N

i=1
ii(k). (5)

where Ii(k) and ii(k) are the information matrix and information state contributions
of the sensors i = 1, . . . , N . The posterior state estimate may be obtained from

x̂(k | k) = Y−1(k | k)ŷ(k | k). (6)

The additive structure of the estimation Equation 5 results in a remarkably simple
decentralized architecture. As in [3], a control layer is implemented above the DDF
framework. Figure 1 details the structure of the DDF and control implementation
in each active sensing node. Mutual information gain is used as a control objective
in order to generate robot sensing trajectories that seek to maximize the reduction
of estimate uncertainty. This utility measure applied to a ground feature localization
task is depicted in Figure 2.

Fig. 1. Active sensing node structure.
Fig. 2. Ground vehicle mutual informa-
tion gain utility measure

Instances of the active sensing node may be composed to form proactive teams
of networked robotic sensors. This is the basis of the approach taken to active ground
feature localization by collaborative aerial and ground robots. All air and ground
vehicles execute an instance of the DDF node detailed in Figure 1. The search area
specified by system operator is divided into search patterns to be executed by the
available aerial vehicles. Upon sighting potential ground features, associated new
filters are pushed onto the network of DDF nodes. This exchange provides cues to the
ground vehicles actively seeking to reduce the estimate uncertainty. Ground vehicles
see these uncertain features influencing their utility and the resulting trajectories.

4 Experimental Setup

This section describes the elements involved in the collaborative air-ground fea-
ture localization experiments. The robot platforms, feature localization filter, sensor
modeling and control implementation are detailed.
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4.1 Robot Platforms

The approach detailed in Section 3 has been implemented on the aerial and ground
robot test-beds shown in Figure 3. The Ground vehicles are a commercial 4WD

Fig. 3. Fixed wing UAVs (top) and ground robot platforms (bottom).

model truck modified and augmented with an on-board computer, stereo firewire
camera, GPS and inertial sensors as described in [2]. The aerial vehicles are quarter
scale Piper Cub model aircraft equipped with the Piccolo autopilot by Cloud Cap
Technology (see [1] for further details). In addition to the sensors within the autopilot,
the air vehicles carry a sensor pod containing a high resolution firewire camera,
inertial sensors and a 10Hz GPS receiver. A spread-spectrum radio modem is used
for Communications between air vehicles and the operator base station. The ground
vehicles and base station communicate through an Ad-Hoc 802.11b network.

4.2 Feature Localization Filter

The ground features are modeled as two-dimensional stationary points in a plane at
known altitude represented by Gaussian random variables as depicted in Figure 2.
There is no process dynamics, i.e., F(k) = I2×2 and no process noise, i.e., Q(k) =
02×2. Each filter node maintains a list of active and potential features. Detection
is based on extracting indistinguishable colored features from camera images. A
data association process using Chi-square testing is performed on incoming feature
observations. A new potential filter is created for observations that fail to match
existing filters. Potential filters that receive a set number of associated observations
are promoted to active status and propagated throughout the DDF network.
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4.3 Sensor Modeling and Platform Capabilities

Projective geometry is used to determine the observed location of ground features
from measurements obtained using the camera installations shown in figure 4. The
projection matrix P for each camera is obtained from pre-determined intrinsic pa-
rameters and current estimates of the camera rotation and translation.

Fig. 4. Modelling aerial and ground based vision sensors.

�
u

v

1

�
= P


�

X
Y
Z
1


� (7)

Ground features are considered to be at a common known altitude Z. Equation
7 is solved to determine the location of feature observations in a global XY plane
from the measurements u and v in the camera coordinates. Estimates of the camera
measurement noise and attitude uncertainty are propagated through this relationship
and degraded by the platform position uncertainty to determine an approximate
feature observation covariance.

Fusion of GPS, inertial and encoder measurements allows the ground vehicles
to determine their position with greater certainty than the aerial platforms using
GPS alone. A summary of the system capabilities for the air and ground vehicles
is presented in Table 4.3. This illustrates the complementary attributes of these
sensor platforms. Airborne sensors can cover large areas and distances to make a
small number of relatively uncertain observations. While significantly more accurate,
ground platforms travel slowly and offer limited field of view.

Clodbuster UGV Fixed Wing UAV
Sensor Height 0.3m 65m
Sensor Range 5m 50m

Observation Uncertainty 0.2 ∼ 0.5m 6 ∼ 8m
Vehicle Velocity 0.5 ∼ 1m/s 15m/s

Table 1. Summary of sensor and vehicle capabilities

4.4 UGV Controller Implementation

A controller is implemented on the ground vehicles to generate sensing trajectories
that actively reduce the uncertainty in feature estimates. A gradient control law is
obtained by considering action utility with zero look-ahead rather than planning
actions over time. The instantaneous mutual information rate for the estimation
process is [4]

I(t) =
1

2

d

dt
log | Y(t) | =

1

2
trace

�
Y−1(t)Ẏ(t)



(8)
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where Y is the block diagonal information matrix corresponding active features
with uncertainty above a desired threshold. For the process model considered, Ẏ(t)
is equal to the sensor observation information I(t) in Equation 3. Given that this
observation information depends on the system configuration through the nonlinear
observation model, Equation 8 relates the sensor system state xR = [xR, yR, ψR]T

as indicated in Figure 5, to a time varying field equal to the instantaneous rate
of change of feature uncertainty. The gradient of this field can be evaluated in
terms of the current Fisher information and the partial derivatives of the observation
information with respect to xR by

�xR
I(t) =

1

2
trace

�
Y−1(t)�xR

I(t)
�
. (9)

Analytic expressions are available for the models considered here. Control actions
can be scheduled according to the direction and magnitude of the local gradient. A
simple control solution is implemented by driving at a fixed velocity while heading
in the direction of steepest gradient ψ�(t)

ψ�(t) = arctan

�
�yR

I(t)

�xR
I(t)


. (10)

When implemented on a nonholonomic robot with constraints imposed on the
vehicle turn rate and sensor field of view, this controller may result in the robot
circling a feature while unable to make observations. To resolve this, the controller
is disengaged when the expected feature location is within the turn constraint and
outside the field of view as illustrated in Figure 6.

Fig. 5. The ground vehicle turn controller
tracks the gradient of feature information gain.

Fig. 6. Handling ground vehicle sensing
field of view and control constraints.

5 Results

Results are presented for an experimental investigation of a collaborative feature
localization scenario. Three rectangular orange features each measuring 1.1×1.4
meters were placed in a 50×200 meter search area. Figure 7 details the search
trajectory generated for the aerial vehicle to cover this area in multiple passes. The
elapsed time for each pass was approximately 100 seconds. A sequence of images
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Fig. 7. Example single UAV search pattern at the Bridge-
port Airport, New Jersey test site.

Altitude = 65m 

Roll and Yaw uncertainty = 5deg. 

Ground Feature 

Observation  Confidence

Fig. 8. Aerial images of the test site captured during a typical UAV flyover at 65 meters
altitude. Three orange ground features highlighted by white boxes are visible during the four
second pass. The confidence ellipse associated with a feature observation is indicated in the
last image. This represents the compounded uncertainty due to errors in UAV attitude, UAV
position and camera calibration.

captured from an altitude of 65 meters is shown in Figure 8. The feature estimates
are made available to the ground vehicles seamlessly thought the DDF network.

Figure 9 illustrates the initial feature uncertainty and the trajectory taken by the
ground vehicle to refine the quality of these estimates. Detailed snapshots of the
active sensing process are shown in Figure 10. These indicate the proposed control
scheme successfully positioning the ground vehicle to take advantage of the on-board
sensor characteristics.
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Fig. 9. Figures indicating (a) Initial feature confidence and UGV active sensing trajectory,
(b) σx and σy components of feature estimate standard deviation over time.

It is important to note the performance benefit obtained through collaboration.
Assuming independent measurements, in excess of fifty passes (about eighty minutes
flight time) are required by the UAV to achieve this feature estimate certainty. It would
take in excess of half an hour for the ground vehicle with this speed and sensing
range to cover the designated search area and achieve a high probability of detecting
the features. The collaborative approach using aerial cues to active ground sensing
completes this task in under 10 minutes. A performance level well in excess of the
individual system capabilities.

6 Future Work

The architecture presented could be applied to teams of multiple ground and air
vehicles without change. However, the simple controller implemented here is not
expected to achieve the full potential of multi UGV teams. The application of pre-
dictive cooperative control strategies that account for the nonholonomic, control and
sensing constraints, promises to address this concern. More sophisticated estimation,
detection and association schemes should also be considered. This work investigated
tasking ground vehicles from cues provided by aerial robots executing predetermined
fixed search trajectories. Actively controlling the UAV sensing trajectories will be
the subject of future research.

7 Conclusion

This paper presented a consistent architecture and approach for enabling proactive
collaboration among aerial and ground based sensor platforms. The architecture



Synergies in Air-Ground Feature Localization         361

4.8362 4.8362 4.8362 4.8362 4.8362 4.8363 4.8363 4.8363 4.8363 4.8363 4.8364

x 10
5

4.4226

4.4226

4.4226

4.4226

4.4226

4.4226

4.4226

4.4226

4.4226

x 10
6

Easting (m)

N
or

th
in

g 
(m

)

Feature Confidence 

Feature Location Estimate
UGV trajectory

4.8362 4.8362 4.8362 4.8362 4.8362 4.8363 4.8363 4.8363 4.8363 4.8363 4.8364

x 10
5

4.4226

4.4226

4.4226

4.4226

4.4226

4.4226

4.4226

4.4226

4.4226

x 10
6

Easting (m)

N
or

th
in

g 
(m

)

Observation Confidence Observation 

Estimate

UGV Sensing Location 

(a) (b)

4.8362 4.8362 4.8362 4.8362 4.8362 4.8363 4.8363 4.8363 4.8363 4.8363 4.8364

x 10
5

4.4226

4.4226

4.4226

4.4226

4.4226

4.4226

4.4226

4.4226

4.4226

x 10
6

Easting (m)

N
or

th
in

g 
(m

)

4.8362 4.8362 4.8362 4.8362 4.8362 4.8363 4.8363 4.8363 4.8363 4.8363 4.8364

x 10
5

4.4226

4.4226

4.4226

4.4226

4.4226

4.4226

4.4226

4.4226

4.4226

x 10
6

Easting (m)

N
or

th
in

g 
(m

)

(c) (d)

4.8362 4.8362 4.8362 4.8362 4.8362 4.8363 4.8363 4.8363 4.8363 4.8363 4.8364

x 10
5

4.4226

4.4226

4.4226

4.4226

4.4226

4.4226

4.4226

4.4226

4.4226

x 10
6

Easting (m)

N
or

th
in

g 
(m

)

4.8362 4.8362 4.8362 4.8362 4.8362 4.8363 4.8363 4.8363 4.8363 4.8363 4.8364

x 10
5

4.4226

4.4226

4.4226

4.4226

4.4226

4.4226

4.4226

4.4226

4.4226

x 10
6

Easting (m)

N
or

th
in

g 
(m

)

Estimate History 

Rejected Observation 

Final Estimate Confidennce 

(e) (f)

Fig. 10. Snapshots of the active feature location estimate refinement by an autonomous ground
robot equipped with vision, GPS, inertial and odometric sensors. This corresponds to the
second feature indicated in Figure 9(a). Figure (a) indicates the initial confidence region
obtained through aerial sensing alone. Any need for an extensive search by the ground
vehicle is alleviated since this confidence region is slightly smaller than the ground vehicle
on-board camera effective field of view. Compounded error sources in the ground vehicle
sensor system result in feature observations that provide predominantly bearing information
as shown in Figures (b) to (e). The controller successfully drives the ground robot to sensing
locations orthogonal to the confidence ellipse major axis that maximize the expected reduction
in estimate uncertainty. False feature detections are rejected as indicated in Figure (f).
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provides seamless integration of air and ground sensor platforms, allowing system
elements to be transparently aware of and exploit the collective knowledge and re-
sources. This methodology was applied to a ground feature search and localization
problem. Experiments were conducted using fixed wing aerial and ground robot plat-
forms with truly complementary capabilities in terms of sensing accuracy, coverage
and speed. Results indicate significant performance benefits are obtained through
collaborative air and ground sensing in search and reconnaissance missions.
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