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Abstract

This paper deals with the problem of recovering the

dimensions of an object and its pose from a single im-

age acquired with a camera of unknown focal length. It

is assumed that the object in question can be modeled

as a polyhedron where the coordinates of the vertices

can be expressed as a linear function of a dimension

vector, �. The reconstruction program takes as in-

put a set of correspondences between features in the

model and features in the image. From this informa-

tion the program determines an appropriate projection

model for the camera (scaled orthographic or perspec-

tive), the dimensions of the object, its pose relative to

the camera and, in the case of perspective projection,

the focal length of the camera. We demonstrate that

this reconstruction task can be framed as an uncon-

strained optimization problem involving a small num-

ber of variables, no more than four, regardless of the

number of parameters in the dimension vector.

1 Introduction

This paper deals with the problem of recovering

the dimensions of an object and its pose from a sin-

gle image acquired with a camera of unknown focal

length. It is assumed that the object in question can

be modeled as a polyhedron where the coordinates of

the vertices can be expressed as a linear function of a

dimension vector, �. That is, if � is an n � 1 vector,

then there are a set of 3�n matrices, K1;K2; : : : ;Km,

where the position of the ith vertex is given by Ki�.

In practice, many man-made objects can be described

by such a model. For example, most buildings can

be readily described in terms of a collection of axis-

aligned polyhedral primitives, blocks, wedges, frus-

tums etc.

The input to the reconstruction program takes the

form of a set of correspondences between features in

the model, lines and points, and features in the im-

age. From this information the program determines

an appropriate projection model for the camera, scaled

orthographic or perspective, the dimensions of the ob-

ject, its pose relative to the camera and, in the case of

perspective projection, the focal length of the camera.

We demonstrate that this reconstruction problem can

be framed as an unconstrained optimization problem

over a small number of variables, no more than four,

regardless of the number of parameters in the dimen-

sion vector.

In [3] and [2] the problem of reconstructing models

from one or more images taken with calibrated cam-

eras was addressed. This paper improves on those

results by proposing e�cient techniques to deal with

situations where the imagery was acquired with an in-

completely calibrated camera and describes how the

computational e�ort required to solve for all the un-

known parameters can be reduced by taking advantage

of the structure of the projection equations.

Tomasi and Kanade [6] and Pollefeys, Van Gool and

Proesmans [4, 5] describe e�ective techniques for re-

covering the structure of a rigid scene from a sequence

of images acquired under orthographic and perspective

projection respectively. However, multiframe tech-

niques are not applicable in situations where only one

image is available.

Caprile and Torre [1] describe a method for cal-

ibrating a perspective camera from three vanishing

points in the image. Our procedure takes advantage

of vanishing points when they are available but does

not require them. When su�ciently many vanishing

points are found an initial solution for the unknown

parameters can be computed directly and then re�ned

using non-linear optimization techniques. If the van-

ishing point information is inconclusive or unavailable

the system resorts to solving an optimization problem

over four variables in the worst case. One of the contri-

butions of this paper is a novel technique for recover-

ing the structure of a scene under scaled orthographic

projection when no vanishing points are available.

Section 2 of this paper presents an outline of the



reconstruction procedure while sections 3 and 4 de-

scribe the solution to various subproblems of this re-

construction task. Section 5 presents results that were

obtained with this algorithm on actual images. A dis-

cussion of our conclusions and future work are pre-

sented in Section 6.

2 Reconstruction Procedure

A software system has been implemented that al-

lows the user to specify correspondences between

edges in the model and edges in the image by selecting

a line in the model and then tracing the corresponding

line in the image. Since the lines that the user draws

are superimposed with the image, this method allows

for very accurate recovery of the image lines. Through

this procedure we are able to associate vertices in the

model with lines in the image. These point-to-line cor-

respondences will be used in most calculations; how-

ever, in some cases we will require correspondences be-

tween model vertices and image points. These image

points can be found by computing the intersections of

the lines drawn by the user.

Once these correspondences have been established,

the reconstruction procedure attempts to determine

whether a scaled orthographic or perspective camera

model should be employed. One simple way to distin-

guish between the two imaging situations is by analyz-

ing lines in the image that correspond to parallel lines

in the scene. If a set of lines in the image correspond-

ing to parallel lines in the scene appear to verge then

the system employs a perspective projection model.

In situations where no verging lines are found

the reconstruction procedure assumes a scaled ortho-

graphic projection model, recovers a solution for the

unknown parameters and then computes the residual

disparity between the reprojected model vertices and

the lines in the image. If this residual is above a cer-

tain threshold value, the system switches to a per-

spective model. Thus, the simpler projection model

(ie. scaled orthographic) is favored if it explains the

data su�ciently well.

The next step in the reconstruction procedure is the

computation of vanishing points in the image of the x-,

y-, and z-directions of the model if possible. The ho-

mogeneous coordinates of the vanishing points in the

image are computed in the usual manner. Suppose the

user speci�es n lines in the model that are each par-

allel to the x-axis of the object. Let l1; l2; :::; ln be 3-

vectors representing the projective coordinates of the

corresponding lines in the image. Then the vanishing

point in the x-direction is the vector vx that minimizes

�(lt
i
vx)

2. This vector can be found by eigenvalue de-

composition of AtA, where A is the matrix whose rows

SCALED ORTHOGRAPHIC

How many vanishing points
can be recovered?

Zero or One         Two           Three

ORTHO- 0 or 1 VPs

Minimize a 2-d function.
Compute the residual.

Minimize a 1-d function.
Compute the residual.

ORTHO- 2 VPs ORTHO- 3 VPs

Closed form solution.
Compute the residual.

PERSPECTIVE

How many vanishing points
can be recovered?

Zero       One        Two or Three

  PERSPECTIVE- 2 VPs

 Closed form solution.

PERSPECTIVE- 0 VPs

Minimize a 4-d function.

PERSPECTIVE- 1 VP

Minimize a 2-d function.

DONE

Do any parallel lines verge
           in the image?

Yes No

Is the residual too large?

No
Yes

Figure 1: A ow chart describing the operation of the

reconstruction procedure.

consist of the lt
i
's. The \best estimate" for the van-

ishing point is the eigenvector that corresponds to the

eigenvalue of AtA with smallest magnitude.

Under a scaled orthographic projection model there

are three cases to consider.

� Three vanishing points recovered.

� Two vanishing point recovered.

� No vanishing points recovered.

In the �rst case, the unknowns can be found in

closed form. If only two vanishing points are recov-

ered, the unknowns can be found by solving a one-

dimensional minimization problem. In the last case, a

two-dimensional optimization problemmust be solved.

If the projection model is perspective, there are

three possible cases.

� Two or three vanishing points are recovered and

not at in�nity.

� One vanishing point recovered and not at in�nity.

� No �nite vanishing points recovered.



In the �rst case, the system can be solved in closed

form. In the second case, the problem reduces to min-

imizing a function of two variables. In the last case,

the problem reduces to minimizing a function of four

variables.

In the sequel it is assumed that, after a suitable

change of image coordinates, the aspect ratio of the

camera is one and the coordinates of the principal

point in the image are (0; 0). In most situations the

aspect ratio of the imaging device is known a'priori

and the principal point is, for all practical purposes,

coincident with the image center. In the case of scaled

orthographic projection, the exact location of the prin-

cipal point is, of course, immaterial to the reconstruc-

tion computation.

3 Scaled Orthographic Cases

Under the scaled orthographic projection model

the projection matrix, P , which relates coordinates of

points in the model to their projections on the image

plane can be written as follows:

P =

24 f 0 0 0

0 f 0 0

0 0 0 1

35 � R T

0 1

�
(1)

where f denotes the scale factor associated with this

camera and R 2 SO(3) and T 2 <
3 represent the

rotation and translation of the camera with respect to

the model frame.

3.1 Recovering Rotation from Vanishing
Points

The homogeneous coordinates of the vanishing

point in the image, vx, corresponding to the x-

direction in the model frame can be computed as fol-

lows:

vx / P

0BB@
1

0

0

0

1CCA /

0@ R11

R21

0

1A (2)

In an analogous manner, we can obtain expressions

for vy and vz : vy /

0@ R12

R22

0

1A, vz /

0@ R13

R23

0

1A.

When all three vanishing points can be recovered,

we are e�ectively given three pieces of information

about the rotation matrix R. That is, for some a; b;

and c, the vanishing points give us:

aR11; bR12; cR13;

aR21; bR22; cR23;

We shall names these quantities as follows:

A; B; C
D; E; F

Since the �rst two rows of R are each of unit length,

we have the equations:�
A

a

�2
+

�
B

b

�2
+

�
C

c

�2
= 1

�
D

a

�2
+

�
E

b

�2
+

�
F

c

�2
= 1

Because the �rst two rows of R are orthogonal to

each other, we have the equation:

AD

a2
+
BE

b2
+
CF

c2
= 0

This can be summarized as a system of three linear

equations in three unknowns:24 A2 B2 C2

D2 E2 F 2

AD BE CF

350@ 1

a2

1

b2

1

c2

1A =

0@ 1

1

0

1A
which can easily be solved to yield a,b, c, and ulti-

mately R by utilizing the fact that the third row of

R is simply the cross product of the �rst two rows.

There is actually a four-way ambiguity in recoveringR

because the signs of a, b, and c are unknown. The ro-

tation matrix is chosen in such a way that the optimal

solution for the dimension vector � consists entirely of

positive entries.

There are situations where the system of linear

equations described above will become singular. This

will occur when two of the vanishing points are coin-

cident. In this case the more general reconstruction

procedure described in Section 3.4 will be invoked to

obtain a solution.

3.2 Recovering Scene Dimensions

Once an estimate for the rotation matrix becomes

available all that remains is to calculate � and t. Ac-

cording to the model, the coordinates of the jth in the

world frame are given by Kj�. Let ljk = (lx
jk
l
y

jk
lz
jk
)t

represent the homogeneous coordinates of the line in

the image plane connecting points j and k. Then the

constraint that the projection of the jth vertex in the

image should lie along this line can be expressed as

follows:

lt
jk
P

�
Kj�

1

�
= 0

) (lx
jk
l
y

jk
)[fC(RKj�+ T )] + lz

jk
= 0

) (lx
jk
l
y

jk
)
�
(CRKj) I

�0@ f�

fTx
fTy

1A+ lz
jk

= 0



Where C =

�
1 0 0

0 1 0

�
. So for each point to line

correspondence we can construct an a�ne equation in

the parameter vector

0@ f�

fTx
fTy

1A. If a su�cient num-

ber of correspondences are available one can obtain a

solution for this parameter vector in the usual manner.

Note that this procedure yields no information about

the z component of the translation vector T . It is

also important to keep in mind that the solution only

yields the dimensions of the scene up to a scale factor

since it is impossible to separate the scale parameter

f from the other variables in the vector.

3.3 Two Vanishing Points Recovered

In situations where only two of the three vanishing

points are available it is possible to obtain a solution

for the reconstruction problem using the procedures

given above by optimizing over all possible values for

the missing vanishing point.

Suppose, for example, we are given vx and vy then

we can obtain estimates for the scene structure by min-

imizing the following function from [0; �] to <+:

function Res (�)

Step 1) Let vz =

0@ cos(�)

sin(�)

0

1A.

Step 2) Using the procedure in the

previous section, compute R; f�; fTx and fTy.

Step 3) Calculate the residue,

�(lt
ij
P

�
Ki�

1

�
)2, and return this value.

One can use standard minimization technique to

minimize the value of Res(�) and thus �nd the ap-

propriate values for the unknown parameters. Since

this is an optimization problem with only one degree

of freedom, it can be solved quite quickly.

3.4 No Vanishing Points Recovered

In the case where no vanishing point information is

available the reconstruction system makes use of corre-

spondences between model vertices and image points.

If (ui; vi) represents the measured location of the pro-

jection of the ith model vertex in the image then the

system chooses values of the unknown parameters to

minimize the discrepancy between the observed image

locations and the predicted values. That is, the goal

of the reconstruction system is to minimize the follow-

ing objective function, O, where the rotation matrix

R has been rewritten as a product of a series of rota-

tions about the x, y and z axes and the matrix C is

de�ned in Section 3.2.

O = �

� ui
vi

�
� fC(Rz()Ry(�)Rx(�)Ki�+ T )

2
This expression can be simpli�ed by utilizing the

fact that rotation about the optical axis, z, corre-

sponds to a planar rotation of the image features. So if

the angles � and � were known, O could be rewritten

as:

O = �

� ui
vi

�
�

�
c �s

s c

�
(Li�

0 +

�
T 0

x

T 0

y

�
)

2
= �

� c s

�s c

��
ui
vi

�
� (Li�

0 +

�
T 0

x

T 0

y

�
)

2
Where Li = CRy(�)Rx(�)Ki, c = cos , s = sin ,

�0 = f� and

�
T 0

x

T 0

y

�
= f

�
c s

�s c

��
Tx
Ty

�
In this situation it is possible to compute optimal

estimates for , �0, T 0

x
and T 0

y
by rewriting the objec-

tive function as follows:

O = �

� c s

�s c

��
ui
vi

�
� (Li�

0 +

�
T 0

x

T 0

y

�
)

2
= �

� ui vi
vi �ui

��
c

s

�
� I

�
T 0

x

T 0

y

�
� Li�

0

2

= �


�
ui vi 1 0

vi �ui 0 1
� Li

�0BBBB@
c

s

T 0

x

T 0

y

�0

1CCCCA


2

This can be recognized as the standard problem

of �nding a vector x =
�
c s T 0

x
T 0

y
�0
�t

that

minimizes kAxk
2
subject to the constraint kBxk

2
= 1

where the matrix B is chosen to reect the constraint

that c2+ s2 = 1. This generalized eigenvalue problem

can be solved using standard techniques from linear

algebra.

The ability to compute optimal estimates for f�,

, fTx and fTy in this manner suggests that a solu-

tion for the reconstruction problem can be obtained by

�nding values of � and � that minimize the following

residual function:

function Res2(�; �)

Step 1) Let Li := CRy(�)Rx(�)Ki for all i.

Step 2) Solve the generalized eigenvalue

problem to recover , �0, T 0

x
and T 0

y
and



return the residual value, O, for these

values.

4 Perspective Cases

In the case of perspective projection the matrix of

intrinsic parameters is given by:

A =

24 f 0 0

0 f 0

0 0 1

35
where f is the focal length of the camera.

4.1 Recovering Rotation from Two Van-
ishing Points (not at In�nity)

If two vanishing points can be recovered under per-

spective projection where neither one is a point at in-

�nity, then the rotation matrix, R, can be recovered

in closed form. Suppose, for example, we are given vx
and vy . Then we have the following proportions:

vx � ARx̂; vy � ARŷ

Since Rx̂ is orthogonal to Rŷ we have the equation:

(A�1vx)
t(A�1vy) = 0

which can be rewritten as follows:

vx1vy1

f2
+
vx2vy2

f2
+ vx3vy3 = 0

) f =

s
vx1vy1 + vx2vy2

�vx3vy3

The �rst column of R can then be found by nor-

malizing the vector A�1vx The second column can

be found in a similar manner, and the third column

is simply the cross product of the �rst two columns.

Again there will be a four-way ambiguity in the so-

lution for R which can be resolved by choosing the

a solution which results in a dimension vector with

positive entries.

4.2 Recovering Scene Dimensions

The parameters � and t can be found in a man-

ner similar to the method described in Section 3.2. If

ljk represents the homogeneous coordinates of the line

in the image plane connecting points j and k. Then

the constraint that the projection of this vertex in the

image should lie along this line can be expressed as

follows:

lt
jk
A(RKj�+ t) = 0

) lt
jk
[ARKj A]

�
�

t

�
= 0

Let M be a matrix formed by stacking the rows of

the form lt
jk
[ARKj A]. Then an estimate for

�
�

t

�
,

up to a scale factor, can be obtained by �nding the

unit vector that minimizes kMxk2. This is a standard

eigenvalue problem.

4.3 One Vanishing Point Recovered

The previous section describes how estimates for �

and T can be computed once estimates for R and f are

available. Knowledge of any vanishing points in the

image essentially constrains two of the three degrees of

the rotation matrix R. We can exploit this constraint

by constructing an objective function which computes

the residual of the reconstruction as a function of the

remaining two degrees of freedom. The reconstruction

problem can then be solved by �nding the minimum

of this residual function.

Consider the case where the vanishing point in the

x-direction, vx, is known (and is not at in�nity for

simplicity) 1.

We can choose to parameterize the problem in

terms of an angle � which captures the remaining de-

gree of freedom of the rotation matrix and an angle �

which denotes the �eld of view of the camera in the x

direction. If the x dimension of the image is m pixels

then the focal length, f , is given by (m=2) cot(�=2).

The resulting residual function is given below:

function Res3 (�; �)

Step 1) Let f = (m=2)cot(�=2).

Step 2) Let A =

0@ f 0 0

0 f 0

0 0 1

1A
Step 3) Let C1 := A�1vx. This represents

the first column of R (up to a scale).

Step 4) Let C2 :=

0@ cos(�)

sin(�)

0

1A � C1. This

represents the second column of R (up to a

scale). Note that C2 is orthogonal to C1.

Step 5) Let C3 := C1 � C2.

Step 6) Let R := [cC1
cC2

cC3].

1This restriction can be removed with a slight increase in the

complexity of the algorithm



Step 7) Compute estimates for � and T

Step 8) Calculate the residue,

�(lt
ij
A(RKi�+ T ))2, and return this value.

4.4 No Vanishing Points Recovered

When no vanishing point information is available

�nding a solution for the reconstruction problem in-

volves �nding values for R and f that result in the

lowest residual values. This can be seen as an opti-

mization problem involving four degrees of freedom as

described below:

function Res4 (�; �; ; �)

Step 1) Let R = Rz()Ry(�)Rx(�) and let

f = (m=2)cot(�=2).

Step 2) Let A =

0@ f 0 0

0 f 0

0 0 1

1A
Step 3) Using the procedure described in

section 4.2, compute �; and t.

Step 4) Calculate the residue,

�(lt
ij
AR(Ki�+ t))2, and return this value.

5 Experimental Results

We present the results of three experiments using

di�erent photographs taken with a Kodak DC210 dig-

ital camera. All of the images were acquired in high-

resolution mode, which produces 864� 1152 images.

Figure 2: Two boxes with slight perspective e�ects.

Figure 2 shows a Jell-O box adjacent to a block

of wood, and Figure 3 shows a wireframe reconstruc-

tion of the scene viewed from a completely di�er-

ent vantage point. The reconstruction was done us-

ing the method of Section 4.1 (two or three van-

ishing points found under perspective) and then the

estimates of the parameters were re�ned using the

non-linear minimization of Section 4.4. The vector

�, which gives the dimensions of of the object were

Figure 3: Wireframe reconstruction of Figure 2.

measured by hand and found to be (in millimeters)

(35 86 72 19 39 78)
t
. After choosing an appropriate

scaling factor, the reconstruction gave an estimate (in

millimeters) of (33:7 85:7 72:4 18:0 39:2 78:6)
t
. This

represents an RMS error of 0:75 mm. Notice that

we cannot check the accuracy of the pose estimation

because we do not have a truth model of these param-

eters.

Figure 4: Two boxes under a near-orthographic pro-

jection.

Figure 5: Wireframe reconstruction of Figure 4.

Figure 4 is an image of two blocks of wood under

a near-orthographic projection. The wireframe recon-

struction in Figure 5 was obtained using the algorithm

of Section 3.4 (no vanishing points under orthography)

though we could have obtained a starting point for



this minimization using the available vanishing points.

The dimension vector was given in millimeters by

(78 19 39 31 69:5 31)
t
and the algorithm gave an esti-

mate in millimeters of (78:2 19:6 35:3 32:5 71:0 29:1)
t
,

which yields an RMS error of 1:9 mm.

Figure 6: A pyramid atop three boxes under a near-

orthographic projection.

Figure 7: Wireframe reconstruction of Figure 6.

The image in Figure 6 is a stone structure on

the University of Pennsylvania campus. We mod-

eled it as a frustum atop a stack of three boxes.

(We ignored the pyramid that is above the frus-

tum.) Using a scaled orhtographic projection model,

we obtained the wireframe in Figure 7. The di-

mension of the object are given (in inches) by

(25 6:5 13 24 2 22 2:5 18 45)
t
and the algorithm esti-

mated the dimensions as (26 7:5 13 26 4 22 5 19 42)
t
.

The RMS error in this case was 1:7 inches. This recon-

struction was not as accurate as the others partially

because much of the stone was chipped away from the

structure and this made our edge identi�cation di�-

cult. Additionally, the structure does not have pre-

cise right angles and only somewhat approximates our

model of a frustum above a stack of boxes. It should

be noted, however, that the only inaccurate measures

corresponded to the height of each box. These heights

are small compared to the other measurements and

di�cult to discern in the photograph.

6 Conclusion
This paper presents a practical scheme for recov-

ering models of polyhedral objects from single images

taken with a camera of unknown focal length. Experi-

mental results have been presented which demonstrate

the accuracy and e�cacy of these techniques on actual

image data.

Future work will address the use of multiple views

of objects to better recover parameters and the use

of automated edge extraction. We believe that most

of the error in our estimates of � were due to human

error in drawing the edges. A better system would

allow the user to specify the approximate location of

an edge and then have the software re�ne this estimate

by examining the image gradients.

Acknowledgments
This work was supported by an NSF Training Grant

GER93-55018, by a DoE GAANN fellowship, and

DoD MURI DAAH04-96-1-0007.

References
[1] Bruno Caprile and Vincent Torre. Using vanishing

points for camera calibration. International Journal
of Computer Vision, 4(2):127{140, March 1990.

[2] Paul E. Debevec, Camillo J. Taylor, and Jitendra Ma-
lik. Modeling and rendering architecture from pho-
tographs: A hybrid geometry- and image-based ap-
proach. In Proceedings of SIGGRAPH 96. In Com-
puter Graphics Proceedings, Annual Conference Series,
pages 11{21, New Orleans, LA, August 4-9 1996. ACM
SIGGRAPH.

[3] David G. Lowe. Fitting parameterized three-
dimensional models to images. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 13(5), May
1991.

[4] M. Pollefeys, L Van Gool, and M. Proesmans. Eu-
clidean 3d reconstruction from image sequences with
variable focal lengths. In European Conference on
Computer Vision, pages 31{42, 1996.

[5] M. Pollefeys, R. Koch, and L. Van Gool. Self-
calibration and metric reconstruction in spite of vary-
ing and unknown internal camera parameters. In Inter-
national Conference on Computer Vision, pages 90{95,
1998.

[6] Carlo Tomasi and Takeo Kanade. Shape and motion
from image streams under orthography: a factorization
method. International Journal of Computer Vision,
9(2), 1992.


