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Abstract

This paper deals with the problem of recovering the dimensions of an object and its

pose from a single image acquired with a camera of unknown focal length. It is assumed

that the object in question can be modeled as a polyhedron where the coordinates

of the vertices can be expressed as a linear function of a dimension vector, �. The

reconstruction program takes as input a set of correspondences between features in the

model and features in the image. From this information the program determines an

appropriate projection model for the camera (scaled orthographic or perspective), the

dimensions of the object, its pose relative to the camera and, in the case of perspective

projection, the focal length of the camera. This paper describes how the reconstruction

problem can be framed as an optimization over a compact set with low dimension -

no more than four. This optimization problem can be solved eÆciently by coupling

standard non-linear optimization techniques with a multistart method which generates

multiple starting points for the optimizer by sampling the parameter space uniformly.

The result is an eÆcient, reliable solution system that does not require initial estimates

for any of the parameters being estimated.

Keywords: 3D Reconstruction, uncalibrated imagery, numerical optimization
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1 Introduction

This paper deals with the problem of recovering the dimensions of an object and its pose

from a single image acquired with a camera of unknown focal length. It is assumed that the

object in question can be modeled as a polyhedron where the coordinates of the vertices can

be expressed as a linear function of a dimension vector, �. That is, if � is an n� 1 vector,

then there are a set of 3� n matrices, K1; K2; : : : ; Km, where the position of the ith vertex

is given by Ki�. Consider, for example, the model shown in Figure 1. For this model the

following expressions detail how the coordinates of the vertices labeled, P1 and P2 can be

expressed as linear functions of the dimension vector � = (LWHh)t.
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P2
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Figure 1: A simple example of a linearly parameterized polyhedral model. The coordinates

of each of the vertices in this �gure can be expressed as a linear function of the parameter

vector � = (LWHh)t
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(1)

In most situations the entries in the parameter vector, �, will refer to dimensions that

are only meaningful when positive. Note that generally speaking any polyhedron can be

expressed by this model simply by choosing � to be a vector of dimension 3N where N is

the number of vertices in the model. In practice, most man-made objects, such as buildings,

contain symmetries which allow the model to be expressed with far fewer parameters. For

the model shown in Figure 1, the positions of 10 vertices can be characterized using only

four parameters. This makes it possible to recover the model dimensions from measurements

in a single image.
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The input to the reconstruction program takes the form of a set of correspondences between

features in the model, lines and points, and features in the image. From this information the

program determines an appropriate projection model for the camera, scaled orthographic or

perspective, the dimensions of the object, its pose relative to the camera and, in the case of

perspective projection, the focal length of the camera.

The principal diÆculties in solving this problem stem from the non-linearities associated

with the unknown rotation, R 2 SO(3), that represents the orientation of the camera with

respect to the objects frame of reference. In some situations it is possible to recover infor-

mation about this rotation from vanishing points in the imagery. A number of systems have

been proposed which exploit this cue [1, 7]. Less attention has been directed to cases where

the vanishing point information is inconclusive or non-existent. The principal contribution

of this paper is to describe a framework which is able to handle the full range of situations

that can occur in practice including cases where no vanishing points are available.

Additionally, this paper describes how the reconstruction problem can be framed as an

optimization over a compact set with low dimension - no more than four. This optimization

problem can be solved eÆciently by coupling standard non-linear optimization techniques

with a multistart method which generates multiple starting points for the optimizer by

sampling the parameter space uniformly. The result is an eÆcient, reliable solution system

that does not require initial estimates for any of the parameters being estimated.

In [4] and [2] the problem of reconstructing models from one or more images taken with

calibrated cameras was addressed. This paper improves on those results by proposing eÆcient

techniques to deal with situations where the imagery was acquired with an incompletely

calibrated camera and describes how the computational e�ort required to solve for all the

unknown parameters can be reduced by taking advantage of the structure of the projection

equations.

Tomasi and Kanade [8] and Pollefeys, Van Gool and Proesmans [5, 6] describe e�ective

techniques for recovering the structure of a rigid scene from a sequence of images acquired

under orthographic and perspective projection models respectively. However, multiframe

techniques are not applicable in situations where only one image is available.
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Section 2 of this paper presents an outline of the reconstruction procedure while sections

2.1 and 2.2 describe the solution to various subproblems of this reconstruction task. Section

3 presents results that were obtained with this algorithm on actual images and on simulated

data. A discussion of our conclusions and future work is presented in Section 4.

2 Reconstruction Procedure

As described in the previous section, the reconstruction procedure hinges on the obser-

vation that the primary diÆculties in the reconstruction problem center around the non-

linearities introduced by the rotation between the camera frame and the objects frame of

reference. Given an estimate for this rotation and the focal length of the camera, the other

unknowns can be determined by �nding the minima of a positive de�nite quadratic form - a

well understood and well conditioned optimization problem which can be solved eÆciently

using standard techniques from linear algebra (see sections 2.1.2 and 2.2.2). This being the

case, the proposed reconstruction method proceeds by conducting a search over the set of

camera orientations and focal lengths for values that are in best agreement with the observed

image measurements.

In the sequel we will discuss a variety of subcases for both perspective and orthographic

projection, ranging from situations where all of the vanishing points can be observed to

situations where none can be found. For each case we detail how the resulting reconstruction

problem can either be solved directly or reformulated as an optimization over a compact set

with low dimension. Once the problem has been reduced to this form it can be solved by

applying standard non-linear optimization techniques and a multistart method which chooses

starting points for the optimization procedure by sampling the parameter space uniformly.

Such an approach is made feasible because of the fact that the parameter space can be

bounded and can, therefore, be sampled e�ectively.

The �rst stage of the reconstruction procedure involves �nding feature correspondences

in the image data. A software system has been implemented that allows the user to specify

correspondences between edges in the model and edges in the image by selecting a line in

the model and then tracing the corresponding line in the image. Since the lines that the user

draws are superimposed with the image, this method allows for very accurate recovery of
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the image edges. Through this procedure we are able to associate vertices in the model with

lines in the image. These point-to-line correspondences will be used in most calculations;

however, in some cases we will require correspondences between model vertices and image

points. These image points can be found by computing the intersections of the lines drawn

by the user.

Once these correspondences have been established, the reconstruction procedure attempts

to determine whether a scaled orthographic or perspective camera model should be employed.

One simple way to distinguish between the two imaging situations is by analyzing lines in

the image that correspond to parallel lines in the scene. If a set of lines in the image

corresponding to parallel lines in the scene appear to verge then the system employs a

perspective projection model.

In situations where no verging lines are found, the reconstruction procedure assumes a

scaled orthographic projection model, recovers a solution for the unknown parameters, and

then computes the residual disparity between the reprojected model vertices and the lines

in the image. If this residual is above a certain threshold value, the system switches to a

perspective model. Thus, the simpler projection model (ie. scaled orthographic) is favored

if it explains the data suÆciently well.

SCALED ORTHOGRAPHIC

How many vanishing points
can be recovered?

Zero or One         Two           Three

ORTHO- 0 or 1 VPs

Minimize a 2-d function.
Compute the residual.

Minimize a 1-d function.
Compute the residual.

ORTHO- 2 VPs ORTHO- 3 VPs

Closed form solution.
Compute the residual.

PERSPECTIVE

How many vanishing points
can be recovered?

Zero       One        Two or Three

  PERSPECTIVE- 2 VPs

 Closed form solution.

PERSPECTIVE- 0 VPs

Minimize a 4-d function.

PERSPECTIVE- 1 VP

Minimize a 2-d function.

DONE

Do any parallel lines verge
           in the image?

Yes No

Is the residual too large?

No
Yes

Figure 2: A 
ow chart describing the operation of the reconstruction procedure.

6



The next step in the reconstruction procedure is the computation of vanishing points

in the image of the x-, y-, and z-directions of the model if possible. Suppose that the user

speci�es n lines in the model that are each parallel to the x-axis of the object. Let l1; l2; :::; ln

be 3-vectors representing the projective coordinates of the corresponding lines in the image.

Then the homogeneous coordinates of the vanishing point in the x-direction is the vector

vx that minimizes �(lt
i
vx)

2. This vector can be found by eigenvalue decomposition of AtA,

where A is the matrix whose rows consist of the lt
i
's. The \best estimate" for the vanishing

point is the eigenvector that corresponds to the eigenvalue of AtA with smallest magnitude.

Under a scaled orthographic projection model there are three cases to consider: three

vanishing points recovered, two vanishing point recovered to vanishing points recovered. In

the �rst case, the unknowns can be found in closed form. If only two vanishing points are

recovered, the unknowns can be found by solving a one-dimensional minimization problem.

In the last case, a two-dimensional optimization problem must be solved.

If the projection model is perspective, there are three possible cases: two or three vanishing

points recovered, one vanishing point recovered, no vanishing points recovered. In the �rst

case, the system can be solved in closed form. In the second case, the problem reduces to

minimizing a function of two variables. In the last case, the problem reduces to minimizing

a function of four variables.

In the sequel it is assumed that, after a suitable change of image coordinates, the aspect

ratio of the camera is one and the coordinates of the principal point in the image are (0; 0).

In most situations the aspect ratio of the imaging device is known a'priori and the principal

point is, for all practical purposes, coincident with the image center. In the case of scaled

orthographic projection, the exact location of the principal point is, of course, immaterial to

the reconstruction computation.
2.1 Scaled Orthographic Cases

Under the scaled orthographic projection model the projection matrix, P , which relates

coordinates of points in the model to their projections on the image plane can be written as

follows:

P =

2
64 f 0 0 0

0 f 0 0

0 0 0 1

3
75
"
R T

0 1

#
(2)
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where f denotes the scale factor associated with this camera and R 2 SO(3) and T 2 <3

represent the rotation and translation of the camera with respect to the model frame.

2.1.1 Recovering Rotation from Vanishing Points

The homogeneous coordinates of the vanishing point in the image, vx, corresponding to the

x-direction in the model frame can be computed as follows:

vx / P

0
BBB@

1

0

0

0

1
CCCA /

0
B@
R11

R21

0

1
CA (3)

In an analogous manner, we can obtain expressions for vy and vz: vy / (R12R220)
t,

vz / (R13R230)
t

When all three vanishing points can be recovered, we are e�ectively given three pieces of

information about the rotation matrix R. That is, for some a; b; and c, the vanishing points

give us:  
A

D

!
= a

 
R11

R21

!
;

 
B

E

!
= b

 
R12

R22

!
;

 
C

F

!
= c

 
R13

R23

!
; (4)

Since the �rst two rows of R are each of unit length, we have the equations:

�
A

a

�2
+

�
B

b

�2
+

�
C

c

�2
= 1 (5)

�
D

a

�2
+

�
E

b

�2
+

�
F

c

�2
= 1 (6)

Because the �rst two rows of R are orthogonal to each other, we have the equation:

AD

a2
+
BE

b2
+
CF

c2
= 0

This can be summarized as a system of three linear equations in three unknowns:

2
64

A2 B2 C2

D2 E2 F 2

AD BE CF

3
75
0
B@

1

a2

1

b2

1

c2

1
CA =

0
B@

1

1

0

1
CA

which can easily be solved to yield a,b, c, and ultimately R by utilizing the fact that the

third row of R is simply the cross product of the �rst two rows. There is actually a four-way

ambiguity in recovering R because the signs of a, b, and c are unknown. The rotation matrix
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is chosen in such a way that the corresponding optimal solution for the dimension vector �

consists entirely of positive entries.

There are situations where the system of linear equations described above will become

singular. This will occur when two of the vanishing points are coincident. In this case the

more general reconstruction procedure described in Section 2.1.4 will be invoked to obtain

a solution.

2.1.2 Recovering Scene Dimensions

Once an estimate for the rotation matrix becomes available all that remains is to calculate

the dimension vector � and t. According to the model, the coordinates of the jth vertex

in the world frame are given by Kj�. Let ljk = (lx
jk
l
y

jk
lz
jk
)t represent the homogeneous

coordinates of the line in the image plane connecting points j and k. Then the constraint

that the projection of the jth vertex in the image should lie along this line can be expressed

as follows:

lt
jk
P

 
Kj�

1

!
= 0

) (lx
jk
ly
jk
)[fG(RKj�+ T )] + lz

jk
= 0

) (lx
jk
ly
jk
)
h
(GRKj) I

i 0B@
f�

fTx
fTy

1
CA+ lz

jk
= 0

Where G =

 
1 0 0

0 1 0

!
. So for each point to line correspondence we can construct an

aÆne equation in the parameter vector

0
B@

f�

fTx
fTy

1
CA. If a suÆcient number of correspondences

are available one can obtain a solution for this parameter vector by solving the resulting

linear system. Note that this procedure yields no information about the z component of

the translation vector T . It is also important to keep in mind that the solution only yields

the dimensions of the scene up to a scale factor since it is impossible to separate the scale

parameter f from the other variables in the vector.
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2.1.3 Two Vanishing Points Recovered

In situations where only two of the three vanishing points are available it is possible to obtain

a solution for the reconstruction problem using the procedures given above by optimizing

over all possible values for the missing vanishing point.

Suppose, for example, we are given vx and vy then we can obtain estimates for the scene

structure by minimizing the following function from the interval [0; �] to <+:

function Res (�)

Step 1) Let vz =

0
B@

cos(�)

sin(�)

0

1
CA.

Step 2) Using the procedures in sections 2.1.1 and 2.1.2, compute R; f�; fTx

and fTy.

Step 3) Calculate the residue, �(lt
ij
P

 
Ki�

1

!
)2, and return this value.

One can use standard minimization techniques such as Golden Section Search to minimize

the value of Res(�) and thus �nd the appropriate values for the unknown parameters. Since

this is an optimization problem with only one degree of freedom on a bounded interval it

can be solved quite quickly.

2.1.4 No Vanishing Points Recovered

In the case where no vanishing point information is available the reconstruction system makes

use of correspondences between model vertices and image points. If (ui; vi) represents the

measured location of the projection of the ith model vertex in the image then the system

chooses values of the unknown parameters to minimize the discrepancy between the observed

image locations and the predicted values. That is, the goal of the reconstruction system is to

minimize the following objective function, O, where the rotation matrix R has been rewritten

as the product of a series of rotations about the x, y and z axes and the matrix G is de�ned

in Section 2.1.2.

O = �







 
ui
vi

!
� fG(Rz(
)Ry(�)Rx(�)Ki�+ T )







2
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This expression can be simpli�ed by utilizing the fact that rotation about the optical axis,

z, corresponds to a planar rotation of the image features. So if the angles � and � were

known, O could be rewritten as:

O = �







 
ui
vi

!
�

 
c �s

s c

!
(Li�

0 +

 
T 0

x

T 0

y

!
)







2

= �







 

c s

�s c

! 
ui
vi

!
� (Li�

0 +

 
T 0

x

T 0

y

!
)







2

Where Li = GRy(�)Rx(�)Ki, c = cos 
, s = sin 
, �0 = f� and

 
T 0

x

T 0

y

!
= f

 
c s

�s c

! 
Tx
Ty

!

In this situation it is possible to compute optimal estimates for 
, �0, T 0

x
and T 0

y
by rewriting

the objective function as follows:

O = �







 

c s

�s c

! 
ui
vi

!
� (Li�

0 +

 
T 0

x

T 0

y

!
)







2

= �







 
ui vi
vi �ui

! 
c

s

!
� I

 
T 0

x

T 0

y

!
� Li�

0







2

= �















"
ui vi 1 0

vi �ui 0 1
� Li

#
0
BBBBBB@

c

s

T 0

x

T 0

y

�0

1
CCCCCCA















2

This can be recognized as the standard problem of �nding a vector x =
�
c s T 0

x
T 0

y
�0
�
t

to minimize kAxk
2
subject to the constraint kBxk

2
= 1 where the matrix B is chosen to

re
ect the constraint that c2 + s2 = 1. This generalized eigenvalue problem can be solved

eÆciently using standard techniques from linear algebra [3].

The ability to compute optimal estimates for f�, 
, fTx and fTy in this manner suggests

that a solution for the reconstruction problem can be obtained by �nding values of � and �

that minimize the following residual function:

function Res2(�; �)

Step 1) Let Li := GRy(�)Rx(�)Ki for all i.
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Step 2) Solve the generalized eigenvalue problem to recover 
, �0, T 0

x
and T 0

y

and return the residual value, O, for these values.

Once again, the problem has been reduced to an optimization over a small number of

bounded parameters, in this case � and �.
2.2 Perspective Cases

In the case of perspective projection the matrix of intrinsic parameters is given by:

A =

2
64
f 0 0

0 f 0

0 0 1

3
75

where f is the focal length of the camera.

2.2.1 Recovering Rotation from Two Vanishing Points (not at In�nity)

If two of the vanishing points corresponding to the axes of the objects frame of reference can

be recovered where neither one is a point at in�nity, then the rotation matrix, R, can be

recovered in closed form [1]. Suppose, for example, we are given vx and vy. Then we have

the following proportions:

vx � ARx̂; vy � ARŷ

where x̂ and ŷ are simply the unit vectors along the x and y axes respectively. Since Rx̂

is orthogonal to Rŷ we have the equation:

(A�1vx)
t(A�1vy) = 0

which can be rewritten as follows:

vx1vy1

f 2
+
vx2vy2

f 2
+ vx3vy3 = 0

) f =

s
vx1vy1 + vx2vy2

�vx3vy3

The �rst column of R can then be found by normalizing the vector A�1vx The second

column can be found in a similar manner, and the third column is simply the cross product
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of the �rst two columns. Again there will be a four-way ambiguity in the solution for R

which can be resolved by choosing the a solution which results in a dimension vector with

positive entries.

This method will succeed so long as neither vx3 or vy3 are equal to zero. If one or both

of the vanishing points are at in�nity then the method described in section 2.2.3 can be

employed to produce a reconstruction.

2.2.2 Recovering Scene Dimensions

The dimension vector � and the camera translation T can be found in a manner similar to

the method described in Section 2.1.2. Let ljk represent the homogeneous coordinates of the

line in the image plane connecting points j and k. Then the constraint that the projection

of this vertex in the image should lie along this line can be expressed as follows:

lt
jk
A(RKj�+ T ) = 0

) lt
jk
[ARKj A]

 
�

T

!
= 0

LetM be a matrix formed by stacking the rows of the form lt
jk
[ARKj A]. Then an estimate

for

 
�

T

!
, up to a scale factor, can be obtained by �nding the unit vector that minimizes

kM

 
�

T

!
k2. This is a standard eigenvalue problem.

2.2.3 One Vanishing Point Recovered

The previous section describes how estimates for � and T can be computed once estimates for

R and f are available. Knowledge of any vanishing points in the image essentially constrains

two of the four degrees of freedom associated with the rotation matrix R and the focal length

parameter f . We can exploit this constraint by constructing an objective function which

computes the residual of the reconstruction as a function of the remaining two degrees of

freedom.

Consider the case where the vanishing point in the x-direction, vx, is known. In this case

the problem can be parameterized in terms of a variable � which captures the remaining
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degree of freedom of the rotation matrix and an angle � which denotes the �eld of view of

the camera in the x-direction. If the x dimension of the image is m pixels then the focal

length, f , is given by (m=2) cot(�=2). The advantage of parameterizing the system in terms

of the �eld of view, �, instead of the focal length, f , is that the parameter � can be restricted

to the interval [0; �] while the parameter, f is unbounded.

For a given value of � one can compute f and, hence, the matrix A. Once a value of

A has been generated it is quite easy to generate a rotation matrix that would generate

the observed vanishing point, that is a matrix R0 2 SO(3) such that R0

0
B@

1

0

0

1
CA / A�1vx .

One way to accomplish this is by a Gram-Schmidt orthonormalization process. The entire

set of rotation matrices which preserve the vanishing point in the x direction can then be

parameterized as follows: R = R0Rx(�). Once again there will be a four way ambiguity in

the rotation matrix that must be accounted for.

Based on this analysis, the reconstruction problem can be solved by �nding the minimum

of the following residual function.

function Res3 (�; �)

Step 1) Let f = (m=2)cot(�=2).

Step 2) Let A =

0
B@ f 0 0

0 f 0

0 0 1

1
CA

Step 3) Generate a matrix R0 such that R0

0
B@

1

0

0

1
CA / A�1vx

Step 4) Let R := R0Rx(�)

Step 5) Compute estimates for � and T

Step 6) Calculate the residue,

�(lt
ij
A(RKi�+ T ))2, and return this value.

If a second vanishing point is available it can be used to resolve the ambiguity associ-

ated with the rotation matrix. For example if the vanishing point in the y direction, vy,

is available then once an A matrix has been chosen one can determine the camera orienta-
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tion immediately by selecting a rotation matrix, R, where the �rst and second columns are

proportional to A�1vx and A�1vy respectively. E�ectively this reduces the reconstruction

problem to an optimization over a single parameter, �. As mentioned previously, this ap-

proach should be preferred to the one described in section 2.2.1 in situations where one or

both of the vanishing points are at in�nity.

2.2.4 No Vanishing Points Recovered

When no vanishing point information is available �nding a solution for the reconstruction

problem can be recast as �nding values for R and f that minimize the residual function

described below. This optimization is carried out over four bounded parameters: �, �, and


 which represent an Euler angle parameterization of R and � which denotes the �eld of

view of the camera.

function Res4 (�; �; 
; �)

Step 1) Let R = Rz(
)Ry(�)Rx(�) and let f = (m=2)cot(�=2).

Step 2) Let A =

0
B@
f 0 0

0 f 0

0 0 1

1
CA

Step 3) Using the procedure described in section 2.2.2, compute �; and T.

Step 4) Calculate the residue, �(lt
ij
AR(Ki�+ T ))2, and return this value.

3 Experimental Results
3.1 Simulation Results

In order to investigate the eÆcacy of the proposed reconstruction system a series of trials

were carried out on simulated data sets. In these experiments the most general versions of the

perspective and orthographic reconstruction techniques were used; namely those described in

sections 2.2.4 and 2.1.4 respectively. These methods do not make any use of vanishing point

information and are formulated as optimizations over four and two parameters respectively.

For each of these cases we generated image measurements corresponding to a polyhedron

with 64 vertices parameterized by 19 dimensions viewed from 20 di�erent vantage points. The
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simulated image measurements were corrupted with noise equivalent to 1 pixel in a 400 by

300 image. The multistart optimization procedure invoked standard numerical minimization

procedures from randomly chosen starting points until a minima with an acceptable residual

value is found. The number of trials required to �nd an acceptable minima along with the

errors in the estimated parameters at convergence was recorded.

Note that since the reconstruction procedure can only recover the dimension and camera

translation parameters up to a scale factor, the error was calculated by �rst scaling the

recovered parameters until the mean squared disparity between the recovered parameters

and the true parameter values was minimized. The percentage error between the recovered

parameter vector, �, and the actual parameter values, �t, was then computed from the

following ratio, k�� �tk=k�tk.

For the perspective case the average number of trials needed to �nd the minimum was

4.9. At convergence the average error in the rotation parameter was 0.30 degrees the average

error in the recovered �eld of view was 0.42 degrees and the average error in the dimension

parameters was 0.66%. For the orthographic case the multistart method required 2 trials on

average to �nd an appropriate minimum. At convergence the average error in the rotation

parameter was 0.25 degrees while the average error in the dimension parameters was 2%.

As with any image-based reconstruction technique where disparity in the image is used

as a proxy for metric error, it is possible to construct degenerate con�gurations where one

or more of the object dimensions cannot be recovered from the image data. The canonical

example would be a box viewed under orthographic projection along one of its axes, in this

case the dimension of the object along the viewing direction cannot be recovered. In these

situations the proposed technique may return results with a large error in the unobservable

parameters.
3.2 Results on real images

The following results were obtained using photographs taken with a Kodak DC210 digital

camera. All of the images were acquired in high-resolution mode, which produces 864�1152

images.

Figure 3a shows a Jell-O box adjacent to a block of wood, and Figure 3bc show texture-
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a. b. c.

Figure 3: a. Two boxes with slight perspective e�ects. b. c. Texture mapped reconstructions

of the scene.

mapped reconstructions of the scene viewed from novel vantage points. The reconstruction

was done using the method of Section 2.2.1 (two or three vanishing points found under

perspective) and then the estimates of the parameters were re�ned using the non-linear

minimization of Section 2.2.4. The vector �, which gives the dimensions of of the object

were measured by hand and found to be (in millimeters) (35 86 72 19 39 78)
t
. After choos-

ing an appropriate scaling factor, the reconstruction gave an estimate (in millimeters) of

(33:7 85:7 72:4 18:0 39:2 78:6)
t
. This represents an RMS error of 0:75 mm. Notice that we

cannot check the accuracy of the pose estimation because we do not have a truth model of

these parameters.

a. b.

Figure 4: a. Two boxes under a near-orthographic projection. b. Wireframe reconstruction

Figure 4a is an image of two blocks of wood under a near-orthographic projection. The

wireframe reconstruction in Figure 4b was obtained using the algorithm of Section 2.1.4 (no

vanishing points under orthography) though we could have obtained a starting point for

this minimization using the available vanishing points. The dimension vector was given in

millimeters by (78 19 39 31 69:5 31)
t
and the algorithm gave an estimate in millimeters of

(78:2 19:6 35:3 32:5 71:0 29:1)
t
, which yields an RMS error of 1:9 mm.
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a. b.

Figure 5: a. A pyramid atop three boxes under a near-orthographic projection. b. Wireframe

reconstruction

The image in Figure 5a is a stone structure on the University of Pennsylvania campus. We

modeled it as a frustum atop a stack of three boxes. (We ignored the pyramid that is above

the frustum.) Using a scaled orhtographic projection model, we obtained the wireframe in

Figure 5b. The dimension of the object are given (in inches) by (25 6:5 13 24 2 22 2:5 18 45)
t

and the algorithm estimated the dimensions as (26 7:5 13 26 4 22 5 19 42)
t
. The RMS error

in this case was 1:7 inches. This reconstruction was not as accurate as the others partly

because much of the stone was chipped away from the structure and this made edge iden-

ti�cation diÆcult. Additionally, the structure does not have precise right angles and only

somewhat approximates our model of a frustum above a stack of boxes. It should be noted,

however, that the only inaccurate measures corresponded to the height of each box. These

heights are small compared to the other measurements and diÆcult to discern in the photo-

graph.

a. b. c.

Figure 6: a. The Penn Center in Philadelphia. b. c. Texture mapped reconstructions

Figure 6a shows the Penn Center in Center City, Philadelphia. The reconstructions are

shown in Figure 6b and 6c. Philadelphia's Art Museum is shown in �gure 7a; its reconstruc-
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tions are shown in �gure 7b and 7c.

a. b. c.

Figure 7: a. The Art Museum in Philadelphia. b. c. Texture mapped reconstructions

4 Conclusion

This paper presents a practical scheme for recovering models of polyhedral objects from

single images taken with a camera of unknown focal length. The resulting algorithm can

be used to recover accurate three dimensional models of polyhedral objects from commonly

available imagery including images obtained from websites or scanned from newspapers.

Experimental results have been presented which demonstrate the accuracy and eÆcacy of

the proposed techniques on simulated data and on actual images.

Future work will address the use of multiple views of objects to better recover parameters

and the use of automated edge extraction. We believe that most of the error in our estimates

of � were due to human error in drawing the edges. A better system would allow the user to

specify the approximate location of an edge and then have the software re�ne this estimate

automatically based on image gradients.
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