Optical Flow with Geometric Occlusion Estimation and
Fusion of Multiple Frames

Ryan Kennedy and Camillo J. Taylor

Department of Computer and Information Science
University of Pennsylvania
{kenry, cjtaylor}@cis.upenn.edu

Abstract. Optical flow research has made significant progress in recent years
and it can now be computed efficiently and accurately for many images. How-
ever, complex motions, large displacements, and difficult imaging conditions are
still problematic. In this paper, we present a framework for estimating optical flow
which leads to improvements on these difficult cases by 1) estimating occlusions
and 2) using additional temporal information. First, we divide the image into dis-
crete triangles and show how this allows for occluded regions to be naturally esti-
mated and directly incorporated into the optimization algorithm. We additionally
propose a novel method of dealing with temporal information in image sequences
by using “inertial estimates” of the flow. These estimates are combined using a
classifier-based fusion scheme, which significantly improves results. These con-
tributions are evaluated on three different optical flow datasets, and we achieve
state-of-the-art results on MPI-Sintel.

1 Introduction

Optical flow has a long history and many different methods have been used. Several
modern methods have their roots in the seminal work of Horn and Schunck [1]. Current
variants of this approach employ robust cost functions [2] and modern optimization
techniques [3] and can compute optical flow accurately and efficiently for many types
of images. This is corroborated by results on the Middlebury dataset [4], for which the
top-performing algorithms are nearly error-free.

Despite this success, optical flow is far from solved. The underlying assumption of
most models is that matching pixels should have similar intensity values and nearby
pixels should have similar motions. However, these assumptions are violated in many
situations, especially when motion blur, lighting variation, large motions, and atmo-
spheric effects are involved. While Middlebury does not contain these real-world situ-
ations, more recent datasets [5, 6] have many of these difficulties and the error rates of
the best methods are correspondingly much higher. It remains an open question of how
best to deal with these complex motions and imaging conditions.

In this paper, we present a framework for optical flow that leads to an improvement
for difficult datasets. Our method is based on a triangulation of the image domain, over
which we compute optical flow. We employ a tectonic model where the triangular facets
are allowed to move relative to each other and a numerical quadrature scheme is used
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to handle the resulting occlusion effects. This allows for occlusions to be directly in-
corporated into the optimization procedure without the need for arbitrary regularization
terms.

Additionally, we describe a novel way to incorporate temporal information over
multiple frames. First, we propose “inertial estimates,” which are estimates of the opti-
cal flow based on nearby frames. Next, we combine these estimates using a classifier-
based fusion. Although fusion-based methods have been used previously [7], our ap-
proach is fundamentally different and does not require optimizing an NP-hard quadratic
binary program. The approach is also agnostic to the underlying optical flow method
and could be used with other algorithms.

In summary, we make the following four contributions:

— We show how occluded regions can be easily detected during optimization by using
a triangulation of the image domain.

— We introduce “inertial estimates” which provide multiple motion estimates based
on nearby frames.

— We show how fusing inertial estimates using a classifier provides a simple and
effective means of incorporating temporal information into optical flow.

— We evaluate our method on multiple datasets, achieving state-of-the-art accuracy
on the difficult MPI-Sintel dataset [5].

2 Related Work

Occlusions are often modeled as noise and handled through a robust cost function [2],
but an explicit model for occlusions is desirable in many situations. One common ap-
proach is to compare forward and backward flow estimates, which will not match for
occluded pixels [8]. Strecha er al. [9] use a probabilistic framework and estimate oc-
clusions as latent variables. Occlusions can also be dealt with by incorporating layers
into the model [10]. In [11], layer ordering was determined using the relative data cost
between overlapping layers. Another approach is that of Xu et al. [12] and Kim et
al. [13], who label points as occluded when multiple pixels map to a single point. The
most similar approach to our own is from Sun et al. [14], who jointly estimate motion
and occlusions, although their method is significantly more complex than our own and
is only used to fine-tune flow fields computed using other methods.

Multi-frame optical flow estimation is often approached by assuming that flow es-
timates are smooth over time as well as space [15, 10, 16], rather than using a fusion
method as we do here. Fusion methods have usually been proposed in the context of
fusing the results of multiple algorithms [17] rather than incorporating temporal infor-
mation. Lempitsky et al. [7] write the fusion problem as a quadratic binary program
which they then approximate the solution to, while Jung ef al. [18] use an algorithm
involving random partitions of the flow estimates.

Triangulations of an image were used in optical flow estimation by Glocker, et al.
[11], although otherwise their approach is quite different from ours; their triangulations
are used for incorporating higher-order likelihood terms, while we use triangulations to
model the flow and the resulting occlusions. Superpixel-based approaches that are not
based on triangles have also been previously applied to optical flow problems [19].
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Fig. 1: A triangulated section of an image. Blue circles denote edge points and red
squares denote points generated on a uniform grid with a spacing of 5 pixels. The De-
launay triangulation given by the green lines tessellates the image into regions which
form the basis of our algorithm. In practice, the data cost functions are evaluated at a
set of quadrature points within each triangle, shown here as black dots.

3 Problem Setup

Let I1, I : (£2 C R?) — R% be two d-dimensional images. In this paper, we consider
both to be color images in the CIELab color space such that d = 3. Channels are
denoted using a superscript, such as I 1(6). We attempt to estimate the motion of each
point from I; to Is. The estimated motions in the horizontal and vertical directions are
denoted by u and v respectively. Let x = (z,y) be a point in {2, and let f : 2 — R2
be a function such that f(x) = (u(x),v(x)), that is f returns the estimated motion
vector associated with every point in the image. In addition, we estimate a function
m : {2 — R which is a multiplicative factor that measures changes in lightness between
frames, as we will define in Section 4. This “generalized brightness constancy” model
has been previously used [20], and we found that it improved our results.

A key aspect of our approach is that we consider the image to be a continuous 2D
function of the image domain, rather than a set of sampled pixel locations. We do so by
extending the sampled pixel values to intermediate locations in the image plane using
bicubic interpolation. More specifically, at any continuous-valued location (z,y) € {2,
the value of the image at channel c is computed using a quadratic form

I a,y) = [P 222 1) K. [P 2y 1], (1)

where K, is the matrix of coefficients based on the channel values of nearby pixels.
Note that spatial image derivatives at any point are easily computed using derivatives of
this quadratic form. Given this representation of the image as a continuous function, our
goal is to compute a corresponding continuous function f(-) that specifies the motion
of each point in {2, along with a multiplicative brightness factor m(-).

We discretize the problem by tessellating the image /; into discrete triangular re-
gions (Figure 1), and then seek to estimate a constant motion vector f(-) and brightness
offset m(-) for each triangle. Because we assume the motion to be constant within each
triangle, the triangles should be made to conform to the content of the image in order



4 Ryan Kennedy and Camillo J. Taylor

to find an accurate solution. This approach is similar to that of [11], where a triangu-
lation of the image domain was also used. We use the following procedure. First, we
extract edges from the image I; by using the method of [21] and threshold the given
ultrametric contour map at 0.2. Each edge pixel in the image is then used as a vertex
in our triangulation. In addition to these points, we also use a set of grid points that are
evenly spaced throughout the 2D image, which serve to limit the maximum dimension
of the resulting triangles. The grid points and edge pixels are combined and a Delaunay
triangulation is constructed. An example of a tessellated image is shown in Figure 1.

4 Cost Function

Our cost function consists of data terms and smoothness terms. The data terms penalize
incorrectly-matched pixels based on image data, while the smoothness terms encourage
solutions that are smooth over the image domain. Our cost function takes the form

E(fym) =D(f,m)+ 10F(f) + 11S1(f) + 1S (f) + 1383(m) , 2)

where D(-) is a data cost term based on image data, F(-) is a feature matching term, and
S1(+),S2(+) and S3(-) are smoothness terms. The parameters 79, 71, 72 and 73 control
the tradeoff between these terms.

The cost function will be defined as an integral over the entire continuous image do-
main. We approximate this continuous integral by considering a discrete set of quadra-
ture points within each triangle using the scheme described in [22]. The integral is then
approximated by forming a weighted sum of the cost function evaluated at these points.
We used 3 quadrature points per triangle, as shown in Figure 1.

4.1 Data Term

Our data term is given by the equation

m(x) 00
D(f,m):/sﬁy Lx+f(x)—| 0 10| L(x)] dx, 3)
£ 0 01

where &.,(-) is a robust error function with parameter vector 7. Because of the large
amount of data made available in the MPI-Sintel dataset, we chose our robust cost func-
tion through a fitting procedure. In particular, the difference values, I. 2(6) (x+ f(x)) —
I 1(0) (x), are well-modeled by a Cauchy distribution, as has been previously observed
[23]. The robust function &.,(-) is then the negative log-likelihood of the Cauchy den-
sity function, summed over all channels:

d
@, (8) =Y log [m(62 +72)/7e] - &)

A separate distribution was fit to the lightness and to the combined color channels, giv-
ing values of y; = 0.3044 for lightness and y5 = y3 = 0.2012 for the color channels.
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4.2 Feature Matching Term

Feature matching has been shown to be effective at improving optical flow results, es-
pecially for large motions [24, 12]. We use HOG features [25], computed densely at
every pixel. These descriptors are then matched to their nearest neighbor in the oppo-
site image using the approximate nearest neighbors library FLANN [26]. The matches
from I; to I, generate motion estimates for each of the pixels, which we denote as
fHOG 1 2 = R2.

If the HOG match is correct, then it is desirable to have f(x) be close to frog(x).
Thus, our feature matching term is given by

F(f) = /Q S0 (1) — fro()ll2) dx, 5)

where
U, (0) = (62 +e)“ (6)

is a robust cost function with parameter o and small constant epsilon (i.e., € = 0.001)
[3]. For a = 1, this is a pseudo-£5 penalty. As « decreases, it becomes less convex with
it becoming a pseudo-¢; penalty for & = 0.5. For our feature matching term, we set
a = 0.5.

The function s : {2 — R is a weighting function which measures the confidence
in each HOG match, and is defined as follows. First, we enforce forward-backward
consistency by setting s(x) = 0 if a match is not a mutual nearest-neighbor. Otherwise,
we let s(x) = ((dy — dy)/d1)"? , where d; is the ¢, distance between the HOG feature
vector in I; at location x and its i™-closest match in I5. This is similar to the weight
used in [24] and provides a measure of confidence for each HOG match.

When evaluating this term on a triangulation, each triangle is assigned a HOG flow
estimate by taking the mean of all flow values within the triangle ¢ weighted by their
confidence scores, . ., % froc(x). The confidence of each triangle is simi-
larly set to the average of its confidence values. These flow values are then used for all
quadrature points within each triangle when evaluating the cost function.

While we used HOG features due to their speed and simplicity, more complex fea-
ture matching could be used here as well, such as [27] or [28].

4.3 Smoothness Terms

We use two different smoothness terms in our cost function: a first-order term that
penalizes non-constant flow fields, and a second-order term that penalizes non-affine
flow fields.

First-Order Smoothness A first-order smoothness term penalizes non-constant mo-
tion estimates. In our cost function, all pairs of neighboring triangles are considered.
The cost is defined as

Si(f) =Y [tllty|Za <M> (7)

LN 1£: — £l
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where N C T x T is the set of all neighboring triangles T in the tessellation, #; is
the centroid of triangle t; € T, and |¢;| is its area. The function ¥, (+) is a robust cost
function, which was defined in Equation (6).

This cost function penalizes differences in the flows between neighboring triangles,
modulated by the distance between their centroids. Note that we also multiply by the
area of the two triangles (rather than by the edge length), which effectively connects
all points within one triangle to all points in the other triangle. Now, recall that our
triangulation is constructed using both edges points and a set of uniform grid points
(Figure 1). The triangles along edges will therefore tend to have a smaller area, resulting
in a weaker smoothness constraint. In this way, our triangulation naturally allows for a
non-local smoothness cost [29].

We also apply this same smoothness cost to the multiplicative term m to encourage
only locally-consistent changes in image brightness. This is denoted as the function
S3(m), and for this we use a = 0.5.

Second-Order Smoothness While a first-order smoothness term penalizes non-constant
flows, a second-order smoothness term penalizes non-planar flows. This allows for mo-
tion fields with a constant gradient, which is important for datasets where such motions
are common, such as KITTI (Section 8.3).

Intuitively, our second order smoothness term says that the flow of each triangle
is encouraged to be near the plane that is formed from the flow values of its three
neighbors. Formally, the cost function is written as a sum of costs over all triangles
teT:

SGEDNAAA ®)

teT

(Hf(t) = Nif(t) + A f(t5) + A f ()] |2)
| Aiji| '

Here, ?;,t; and tj, are the three neighboring triangles to ¢. The values A;, A\; and Ay
are the barycentric coordinates of the centroid of ¢ with respect to the centroids of ¢;,
t; and tj. In other words, the numerator is exactly zero when the flow vector associ-
ated with the triangle ¢ can be linearly interpolated from the values associated with the
neighboring triangles. This discrepancy is then normalized by |A;;|, the area of the
triangle formed by connecting the centroids of ¢;, ¢; and ¢, making the cost akin to a
finite-difference approximation of the Laplacian. Similar to the first-order smoothness
term, the function ¥, (-) is a robust cost function and each term is multiplied by the
areas of the three neighboring triangles to impart a non-local character to the cost.

5 Occlusion Reasoning

Since we model an image as a set of triangular pieces that can move independently,
we can directly reason about occlusions. A depiction of this process is shown in Figure
2. At each iteration of our algorithm, for each quadrature point in each triangle of I,
we compute where it appears in the other image 5. We then determine whether any
other triangles overlap it in /5. For each of these overlapping triangles, we determine
whether that triangle offers a better explanation for that location as measured by the data
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Fig.2: Depiction of our occlusion term. (a) Two triangles and their quadrature points
in the tessellation of I;. (b) The triangles are moved to their estimated locations in 5,
where they now overlap. Each quadrature point is processed separately and we have
highlighted one quadrature point as an example. (¢) The data cost is compared for all
overlapping triangles at the quadrature point. The quadrature point here has a lower
data cost at the same location in the red triangle, and so we mark the quadrature point
as occluded.

I
(a

cost (Equation (3)). If a better solution exists, then the quadrature point in question is
labeled as occluded. The occluded quadrature points are not included in the evaluation
of the data cost. In this way, the data cost function only includes points which are
estimated to be unoccluded. Note that these occlusion estimates are generated directly
from the geometry and from the data cost term; no additional regularization parameters
are needed to avoid the trivial solution of labeling all points occluded. An example of
our occlusion estimation is show in Figure 3.

Occlusions can be calculated efficiently by rasterizing the triangles to find which
pixels they overlap in /5. When evaluating the occlusion term for a quadrature point,
only triangles rasterized to the same pixel need to be considered as potential occluders.

6 Optimization

As is standard, local optimization is carried out within a coarse-to-fine image pyramid
[30]. We begin with a zero-valued flow at the coarsest level and iteratively perform
local optimization until a local minimum is reached. During this process, image values
and gradients are calculated using bicubic interpolation. The resulting solution is then
propagated to the next pyramid level where it is used as an initialization and the local
optimization is repeated. At each level, a new triangulation is calculated as described in
Section 3.

Rather than linearizing the Euler-Lagrange equations [30], we use Newton’s method,
a second-order optimization algorithm. Newton’s method provides flexibility to our
framework since any suitably-differentiable function can be substituted for our cost
function without changing the optimization scheme. To find the Newton step at each it-
eration, a sparse linear system must be solved. This is commonly done with an iterative
method, such as Successive Over-Relaxation (SOR). Instead, we decompose the Hes-
sian matrix into its Cholesky factorization, after which the linear system can be solved
directly. Cholesky factorization is often avoided since it has the potential to use a sig-
nificant amount of memory, but we have found that the use of a triangulation makes it
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Fig. 3: Examples of our occlusion estimation on MPI-Sintel. During optimization, the
occlusion status of each quadrature point in each triangle is directly estimated. For visu-
alization, we label each triangle a value in [0, 1] as the proportion of its quadrature points
that are labeled occluded, and then each pixel is labeled based on the triangles that it
overlaps. Top: Groundtruth flow. Middle: Estimated occlusions. Bottom: Groundtruth
occlusions.

possible to reduce these memory requirements. First, there are often fewer triangles than
pixels, resulting in a smaller linear system. Also, the memory requirement for Cholesky
factorization is dependent on the adjacency structure of the matrix, which gives trian-
gulations an advantage since each triangle has only three neighbors rather than four or
eight. We have found that the resulting Hessian matrices can be efficiently reordered
and factorized using algorithms such as [31].

7 Multi-Frame Fusion of Inertial Estimates

A significant challenge for modern optical flow algorithms is when objects move large
distances. This is especially true when objects move either into or out of frame, for
which there are no matches. In this case, it is often not possible to estimate the motion
of these pixels from two-frame optical flow. In this section, we address this by proposing
a simple method of incorporating temporal information from adjacent frames.

7.1 Inertial Estimates

Let [t — (¢ + 1)] denote the estimated flow between frames ¢ and ¢ + 1, and suppose
that we also have access to frames ¢ — 1 and ¢ 4 2. If it is assumed that objects move at a
constant velocity (i.e., they are carried by inertia) and move parallel to the image plane,
then an estimate of the motion from [t — (¢ + 1)] is given by —[t — (¢ — 1)], which
is found by computing the flow from ¢ to ¢ — 1 and negating it, as shown in Figure 4.
Similarly, another estimate can be found using frame ¢ + 2 as [t — (¢ + 2)]. We call
these “inertial estimates” since they provide an estimate of the flow by assuming that
inertia moves all objects at a constant velocity. All three inertial estimates are computed
independently, using the same optical flow algorithm.
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Fig.4: Inertial flow estimates used in multi-frame fusion. In addition to using the two-
frame estimate [t — (¢ + 1)] directly, we also estimate the flow from [t — (¢ — 1)]
and from [t — (¢ + 2)]. These two estimates are then multiplied by the factors —1 and
1, respectively, to give an estimate of the desired flow [t — (¢ + 1)]. All three flow
estimates are then fused using a classifier.

Of course, these estimates will, on average, be inferior to using [t — (¢+1)] directly.
However, if an object is visible in frame ¢ and moves out of frame in ¢ + 1, then it may
still be visible in ¢ — 1 and so —[t — (¢ — 1)] will likely give a better estimate for that
part of the image. Similarly, using the estimate §[¢ — (¢-+2)] will provide an additional
source of information.

7.2 Classifier-Based Fusion

The three inertial estimates [t — (¢ + 1)], [t — (¢t +2)] and —[t — (¢ — 1)] must be
fused. We do so by training a random forest classifier whose output tells us which esti-
mate for each pixel is predicted to have the lowest error. We use the following features:

— The tail probability for the Cauchy distribution used in the match cost D(-). This
value varies from 0 to 1 with larger values indicating a better match. The index of
the flow estimate with the best score, and its associated score, are also used.

— Each pixel in frame ¢ is projected forward via the flow estimate and then projected
back using the backward flow. The Euclidean norm of this discrepancy vector is
used as a feature for each flow estimate. The index of the flow estimate with the
smallest discrepancy and its corresponding value are also included as features.

— The flow estimates » and v, and the magnitudes v/u? + v2.

— The multiplicative offset m(x) at each pixel.

— For every pixel, an indicator of whether the pixel is estimated to be occluded.

— The (x,y) location of each pixel.

This results in a total of 27 features. For each dataset that we evaluated our methods
on, we sampled a number of points uniformly at random from the associated training
images such that the resulting dataset had ~ 10° observations.

In this classification problem, not all data points should be counted equally. In par-
ticular, a misclassification is more costly when the three inertial estimates have very
different errors. To take this into account, each data point was weighted by the differ-
ence between the lowest endpoint error of all three flow estimates and the mean of the
other two. This weighting indicates how important each datapoint is. We then trained a
random forest classifier with 500 trees using MATLAB’s TreeBagger class. An exam-
ple of our fusion is shown in Figure 5 on the MPI-Sintel dataset [S]. As a final step in
our procedure, a median filter of size 15x 15 was applied.
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Fig. 5: Examples of our multi-frame fusion from the MPI-Sintel Final training set. Top
row: Frame at time ¢. Rows 2-4: Inertial estimates of the flow [t — ¢ + 1], —[t —
t — 1], and [t — t + 2]. Row 5: Fusion classification for each pixel. Color indicates
the estimate used at each pixel. Colors correspond to the border colors of the inertial
estimates. Row 6: Fused flow estimate. Bottom row: Groundtruth flow. For all flow
estimates, the endpoint error is printed in the image.

8 Experiments

We evaluate our algorithm on three datasets. The free parameters of our method are
To, T1, T2, T3, the value of « used in the smoothness terms S1(-) and Sx(-), and the
spacing of the uniform grid used in the triangulation. For S3(-), we set a = 0.5 for all
experiments. Parameters were chosen for each dataset using a small-scale grid search
on the training data.

We use a scale of 0.95 between pyramid levels — resulting in around 60 levels — and
used 10 Cholesky-based iterations of Newton’s method at each level.

Our basic method is denoted as TF (TriFlow), and when occlusion estimation, multi-
frame fusion and median filtering are used, they are denoted as “O” (occlusion), “F”
(fusion) and “M” (median filtering), respectively. Our final method with all components
is thereby denoted as TF+OFM.
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8.1 Middlebury

We begin with the Middlebury dataset [4] since it is a standard benchmark for optical
flow, although it has only small and simple motions. For this dataset, the parameters
were setto 7o = 0,71 = 3.5, 9 = 0,73 = 25, « = 0.36, and a small grid spacing of 2
pixels was used in order to capture the small details in this dataset.

Results on the test dataset are given in Table 1. Note that we did not evaluate our
multi-frame fusion since the dataset was too small for a reliable classifier to be trained.
Our results are comparable to other similar coarse-to-fine methods such as DeepFlow
[27]. Our occlusion estimation provides little benefit in this case, since the dataset has
very small occlusion regions.

Table 1: Endpoint error on the Middlebury test dataset. Our results are comparable with
similar coarse-to-fine methods.

‘Army Mequon Scheff. Wooden Grove Urban Yosemite Teddy Hmean
TF+OM | 010 022 036 020 098 056 0.6 0.76 || 0.42

Layers++ [10] 0.08  0.19 0.20 0.13 048 047 0.15 0.46 || 0.27
MDP-Flow2 [12]] 0.09  0.19 0.24 0.16 0.74 046 0.12 0.78 || 0.35
DeepFlow [27] 0.12 028 0.44 026 081 0.38 0.11 0.93 || 0.42
LDOF [24] 0.12  0.32 0.43 0.45 1.01 0.10 0.12 0.94 || 0.56

8.2 MPI-Sintel

The MPI-Sintel dataset [5] is a large, difficult dataset that includes large displacements,
significant occlusions and atmospheric effects. Parameters were set to 7o = 0.5, 71 =
2.0, 72 = 0,73 = 100, o = 0.6, and the grid spacing was set to 5 pixels.

Results on the MPI-Sintel test dataset are given in Table 2. As of this writing, our
method is ranked 2" among all submissions on the Final dataset and it outperforms
all other published methods in terms of endpoint error. The results are especially good
for unmatched pixels which are helped by our occlusion term and multi-frame fusion.
In particular, on the Final dataset the occlusion term improves the error on unmatched
pixels by 6.4% and the fusion improves it by an additional 7.2%.

Several examples of results from our multi-frame fusion for the Final version of the
training dataset are shown in Figure 5. As we would expect, the inertial estimates that
the classifier selects are spatially localized around the edges of objects where occlusions
occur. In all cases, the multi-frame fusion significantly reduces the endpoint error.

Figure 3 shows several examples of the occlusion estimates on images from MPI-
Sintel. During optimization, the occlusion status of each quadrature point in each tri-
angle is estimated. For visualization, we label each triangle a value in [0, 1] as the pro-
portion of its quadrature points that are labeled as occluded, and then each pixel is
labeled based on the triangles that it overlaps. The occlusion term is able to estimate the
occlusions accurately, which results in reduced error.
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Table 2: Results on the MPI-Sintel test set. Our algorithm outperforms all other pub-
lished results in terms of endpoint error (EPE) on the Final dataset. The largest change
is on unmatched pixels due to our occlusion estimation and multi-frame fusion.

Final Clean
EPE matched unmatched‘ EPE matched unmatched
TF+OFM 6.727 3.388 33.929 | 4917 1.874 29.735
TF+OF 6.780 3.436 34.029 [4986 1.937 29.857
TF+O 7.164 3.547 36.657 | 5.357 2.033 32.474
TF 7.493  3.609 39.170 | 5.723 2.077 35.471
DeepFlow [27] 7212 3.336 38.781 |5.377 1.771 34.751
AggregFlow [32] 7.329  3.696 36.929 | 4.754 1.694 29.685
FC-2Layers-FF [16] | 8.137 4.261 39.723 | 6.781 3.053 37.144
MDP-Flow2 [12] 8.445 4.150 43430 |5.837 1.869 38.158
LDOF [24] 9.116 5.037 42.344 | 7.563 3.432 41.170
8.3 KITTI

The KITTI dataset [6] consists of grayscale images taken from a moving vehicle. We
used the parameter settings 79 = 0.05, 71 = 0.02, 79 = 7,73 = 125, = 0.6, and the
grid spacing was set to 5 pixels.

On the KITTI test dataset, error is measured as the percentage of pixels with an
endpoint error greater than 3, in addition to the standard endpoint error. Our results
on this dataset are given in Table 3. This dataset is quite different than MPI-Sintel:
the images are grayscale and have low contrast and the motions are often dominated
by that of the camera. Top-performing methods on this dataset take advantage of these
properties by using better features such as census transforms and more information such
as stereo and epipolar information [33]. However, our results are comparable to similar
coarse-to-fine approaches such as DeepFlow [27], especially for endpoint error (which
the fusion classifier was trained to minimize).

We also evaluate the effect of our occlusion and fusion terms on a validation set from
the training images. For this, 100 training images were used to train a fusion classifier
and evaluation was done on remaining 94 images. Results are show in Table 4. Both the
occlusion and multi-frame fusion terms significantly improve results, as measured by
either endpoint error or the percentage of pixels with and endpoint error more than 3.

8.4 Timing

Timing was evaluated on a laptop with a 1.80 GHz Intel Core i5 processor and 4 GB
of RAM. The typical time taken for two-frame flow estimation on a 1024 x436 image
from MPI-Sintel (including all setup and feature matching, but excluding multi-frame
fusion) was 500 seconds. About half of this time is spent evaluating the cost function
within Newton’s method, and another 20% is spent solving linear systems. Much of
our approach can be sped up through parallelization. For example, the cost function
evaluation, running the algorithm on all three inertial estimates, and the random forest
fusion are all trivially-parallelizable.



Optical Flow with Geometric Occlusion Estimation and Fusion of Multiple Frames 13

Table 3: Results on the KITTI test set. We show both  Table 4: Results on a valida-
the endpoint error (EPE) and the percentage of pix- tion set from the KITTI train-
els with an EPE more than 3, for all pixels as well as ing dataset. The occlusion

non-occluded pixels. estimation term and multi-
EPE EPE % >3 % >3 frame fusion significantly im-
(all) (not occ.) (all) (not occ.) prove results.

TF+OFM | 5.0 2.0 18.46% 10.22% |EPE % >3

PCBP-Flow [33]| 2.2 09 8.28% 3.64% TF+OFM | 4.23 16.43%

DeepFlow [27] 5.8 1.5 17.79% 7.22% TF+OF [4.32 16.62%

LDOF [24] 12.4 5.6 31.39% 21.93% TF+O 5.29 1691%

DB-TV-L1 [34] | 14.6 79 39.25% 30.87 % TF 6.89 19.96%

9 Conclusion

This paper presents a novel framework for estimating optical flow based on a triangu-
lation of the image which improves results in difficult regions due to occlusions and
large motions. We use a geometric model that allows us to directly account for occlu-
sion effects. We also present a method that exploits temporal information from adjacent
frames by acquiring several flow estimates and fusing them via a classifier. Together,
these contributions result in state-of-the-art performance on the MPI-Sintel dataset. Our
approach was evaluated on a range of datasets and the results demonstrate that the pro-
posed enhancements have a significant impact on the quality of the resulting flow.
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