
Online Completion of Ill-conditioned Low-Rank
Matrices

Ryan Kennedy and Camillo J. Taylor
Computer and Information Science

University of Pennsylvania
Philadelphia, PA, USA

{kenry, cjtaylor}@cis.upenn.edu

Laura Balzano
Electrical Engineering and Computer Science

University of Michigan
Ann Arbor, MI, USA
girasole@umich.edu

Abstract—We consider the problem of online completion of ill-
conditioned low-rank matrices. While many matrix completion
algorithms have been proposed recently, they often struggle with
ill-conditioned matrices and take a long time to converge. In
this paper, we present a new algorithm called Polar Incremental
Matrix Completion (PIMC) to address this problem. Our method
is based on the GROUSE algorithm, and we show how a polar
decomposition can be used to maintain an estimate of the singular
value matrix to better deal with ill-conditioned problems. The
method is also online, allowing it to be applied to streaming
data. We evaluate our algorithm on both synthetic data and a
real “structure from motion” dataset from the computer vision
community, and show that PIMC outperforms similar methods.

Index Terms—matrix completion, online optimization, condi-
tion number

I. INTRODUCTION

Low-rank matrix structure has found applications in a great
number of domains, and the applicability of low-rank matrix
completion results to real data problems is quite promising
since datasets often have missing or unobserved values. Since
the seminal results of [6], [7], many algorithms have been
developed for low-rank matrix completion [1], [5], [9], [10],
[11], [13]. However, the low-dimensional structure found in
real data is rarely well-behaved: singular values of large data
matrices often drop off in such a way that it is not obvious at
what point we are distinguishing signal from noise. In these
scenarios, the suite of existing matrix completion algorithms
all struggle to find the true low-rank component, both with
regards to achieving low error and with regards to the number
of algorithm iterations it takes to get a good result. Recently,
several algorithms have been proposed which improve perfor-
mance for matrices with large condition numbers [10], [9],
but these algorithms still have difficulty for extremely ill-
conditioned problems. Furthermore, these algorithms are batch
and cannot easily be used for streaming data.

This paper makes the following contributions. First, we
show how the GROUSE algorithm for online matrix com-
pletion [1] can be re-interpreted via the Incremental Singular
Value Decomposition (ISVD) [4] as finding the solution to a
specific least-squares problem. Based on this interpretation, we
then present a modification to this algorithm which drastically
improves its performance for matrices with large condition
number. We also demonstrate experimentally that our algo-

rithm outperforms other batch matrix completion algorithms
on extremely ill-conditioned problems.

II. THE ISVD FORMULATION OF GROUSE

We begin by briefly describing the GROUSE algorithm [1]
and its relation to the incremental singular value decompo-
sition (ISVD) [2]. The ISVD algorithm [4], [3] is a simple
method for computing the SVD of a matrix by updating an
initial decomposition one column at a time. Given a matrix
At ∈ Rn×m at time t whose SVD is At = UtΣtV

T
t , we wish

to compute the SVD of a new matrix with a single column
added: At+1 =

[
At vt

]
. Defining weights wt = UTt vt and

residual rt = vt − Utwt, we have

At+1 =
[
Ut

rt
‖rt‖

] [
Σt wt
0 ‖rt‖

] [
V Tt 0
0 1

]
. (1)

We compute an SVD of the center matrix,[
Σt wt
0 ‖rt‖

]
= Û Σ̂V̂ T , (2)

which yields the new SVD, At+1 = Ut+1Σt+1V
T
t+1 where

Ut+1 =
[
Ut

rt
‖rt‖

]
Û ; Σt+1 = Σ̂; Vt+1 =

[
Vt 0
0 1

]
V̂ .

(3)

If only the top k singular vectors are needed, then we can apply
the heuristic of dropping the smallest singular value and the
associated singular vector after each such update.

It has recently been shown that the GROUSE algorithm [1]
has a close relationship to this ISVD algorithm [2]. Let Ât =
UtR

T
t be an estimated rank-k factorization of At such that

Ut has orthonormal columns. Given a new column vt with
missing data, let Ωt ⊆ {1, . . . , N} be the set of observed
entries. If wt and rt are now the least-squares weight and
residual vector, respectively, defined with respect to only the
set of observed indices Ωt, then we can write[

UtR
T
t ṽt

]
=
[
Ut

rt
‖rt‖

] [I wt
0 ‖rt‖

] [
Rt 0
0 1

]T
, (4)

where ṽt has imputed values, defined as

ṽt =

{
vΩt on Ωt
Utwt otherwise .



Note the similarity of Equations (1) and (4). Taking the SVD
of the center matrix to be[

I wt
0 ‖rt‖

]
= Û Σ̂V̂ T , (5)

it was shown in [2] that updating Ut to

Ut+1 =
[
Ut

rt
‖rt‖

]
Û (6)

and subsequently dropping the last column is equivalent to
GROUSE for a specific step size, which performs gradient
descent directly on the Grassmann manifold. Combining Equa-
tions (4) and (5), updating Rt then becomes

Rt+1 =

[
Rt 0
0 1

]
V̂ Σ̂, (7)

and dropping the last column provides a corresponding update
for the matrix Rt. The result is a new rank-k factorization
Ât+1 = Ut+1R

T
t+1.

We may get insight into this version of GROUSE by exam-
ining this interpretation using what we know about the SVD.
By the Eckart-Young theorem [8], the process of Equations (5)
and (6) are finding the closest rank-k matrix to

[
Ut ṽt

]
with

respect to the Frobenius norm. In other words, we can interpret
this new algorithm as solving the minimization problem

min
rank(M)=k

‖
[
Ut ṽt

]
−M‖2F . (8)

The updated Ut+1 is then given by the top k left singular
vectors of M (or any orthonormal vectors which span this
subspace). Let M = Û ẐT , where Û ∈ Rn×k, and

Ẑ =


ẑ1

...
ẑk
w

 =

[
Ẑk
w

]
∈ R(k+1)×k ; (9)

note this enforces the rank-k constraint on M . By plugging
into (8), we see that each iteration of this algorithm amounts
to minimizing the following cost function:

Ut+1 = arg min
Û

{
min
Ẑk

‖Ut − Û Ẑk‖2F + min
w
‖ṽt − Ûw‖22

}
(10)

This has an intuitive interpretation: the first term requires that
Ut+1 have a column span close to that of the current subspace
Ut and the second term requires that the new vector ṽ can
be well-approximated by a linear combination of the columns
of Ut+1 . The updated matrix is the one that minimizes the
combination of these two competing costs.

The first term of this minimization problem can be scaled by
a parameter λ in order to allow for a trade-off between the two
terms, and by bringing λ inside the norm and incorporating it
into Ẑk, this is equivalent to scaling Ut:

arg min
Û

{
min
Ẑk

‖Ut
√
λ− Û Ẑk‖2F + min

w
‖ṽt − Ûw‖22

}
(11)

A larger λ will lead to a smaller change; it can be used as a
regularization parameter.

In contrast to the ISVD algorithm, GROUSE does not make
any use of the singular values of the matrix. By not using an
estimate of the singular values, GROUSE can have difficulty
converging for ill-conditioned matrices. This is demonstrated
in Figure 1, where GROUSE was run on a rank-5 matrix
with no missing data and no noise. Even in this ideal setup,
the condition number of the matrix has a large effect on the
convergence rate of GROUSE.
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Fig. 1: Effect of the condition number of a matrix on the
convergence. We consider a rank-5 matrix of size 500× 500
with no noise or missing data. We plot the number of passes
over the data that were required to reach an RMSE error
of 1 × 10−5. As the condition number increases, GROUSE
convergence slows while that of our proposed algorithm PIMC
remains constant.

This convergence issue has been previously noticed in batch
matrix completion algorithms, and several algorithms have
been presented which alter the optimization on the Grassmann
manifold in order to take into account the non-isotropic scaling
of the space by incorporating the singular values into the
optimization [9], [10]. These algorithms have demonstrated
improved performance on ill-conditioned matrices, but are
limited to the batch setting. Furthermore, as we show in
Section IV, even these algorithms have trouble with extremely
ill-conditioned matrices. We take a similar approach and incor-
porate the use of singular values into GROUSE, which allows
for accurate matrix completion even for very ill-conditioned
matrices in an online manner.

III. PIMC FOR MATRIX COMPLETION

In order to improve the convergence of GROUSE for
ill-conditioned matrices, we would like to use UtSt as a
representative of the current subspace, where St is an estimate
of the singular values, rather than just Ut. However, we cannot
directly use ISVD and just drop the last column at each
iteration to maintain a constant rank for two reasons. First,
the resulting singular values may not be a good estimate
for the real singular values because of the missing data.



Second, the ISVD requires Vt to be orthogonal, so while with
GROUSE it is straightforward to re-process a data vector that
has previously been processed by removing the column from
Rt, with ISVD it is not possible.

We therefore propose a new algorithm, which we call Polar
Incremental Matrix Completion (PIMC). Let Ât = UtR

T
t be

the current estimate of a matrix completion problem at time
t. We represent Rt by its polar decomposition

Rt = ṼtS̃t , (12)

where Ṽt ∈ Rm×k has orthonormal columns and S̃t ∈ Rk×k
is positive semidefinite. This polar decomposition exists for
any matrix Rt, and if Ū S̄V̄ T = Rt is an SVD of Rt, then the
factors can be written explicitly as

Ṽt = Ū V̄ T and S̃t = V̄ S̄V̄ T . (13)

The matrix Ṽt now has orthonormal columns, similar to Vt
from ISVD. Likewise S̃t is an estimate of the singular values
of the space, although it may no longer be diagonal.

We additionally choose to scale St to account for the fact
that UtSt is still only an approximation to past data due to the
missing entries. When data are missing, the weights wt are
defined with respect to only the data that are observed, but
we use the interpolated vector ṽt = Utwt + rt in our update.
Recalling that the sum of squares of the singular values is
equal to the sum of column 2-norms, the singular values will
therefore be increasing with respect to this interpolated vector
rather than with respect to only the observed data as we would
like.

Instead, we will re-scale the singular value matrix St to
account for only the observed entries. To do so, we keep a
running sum of the norm of the actual observed data,

s2
t = s2

t−1 + ‖vΩt
‖22 , (14)

and at each iteration scale St by γ st
‖St‖F , where γ is a fixed

constant. The resulting factorization is given by

At+1 =
[
Ut

rt
‖rt‖

] [ γst
‖St‖F St wt

0 ‖rt‖

] [‖St‖F
γst

RTt 0

0 1

]
.

(15)
Our method, PIMC, then finds the SVD of the center matrix
and subsequently drops the last singular value and the corre-
sponding singular vectors at each iteration.

Note that the use of St effectively scales Ut at each iteration,
in a similar way to adding a regularization parameter λ
in Equation 11, and so we do not explicitly set λ in our
experiments. The full algorithm is shown in Algorithm 1.

IV. EXPERIMENTS

We compare our proposed algorithm PIMC to the ISVD for-
mulation of GROUSE, LMaFit [13], APGL [11], ScGrad [10],
and qGeom [9]; the latter two are batch algorithms designed
to perform well on ill-conditioned matrices by modifying
the metric on the Grassmann manifold. We used MATLAB
code from the respective authors with default parameters. For
PIMC, γ was set to 0.01 for all experiments.

Algorithm 1 PIMC for matrix completion
1: procedure PIMC (A, γ, tmax)
2: Initialize U1, S1, R1, s0

3: for t← 1, . . . , kmax do
4: Select a column i of A: vt = A(:, i)
5: Estimate weights: wt = arg mina ‖UΩta− vΩt‖22
6: Update the scaling weight: s2

t = s2
t−1 + ‖vΩt

‖22
7: Compute residual: rΩt

= vΩt
−UΩt

wt; rΩC
t

= 0
8: Zero-out row of Rt: Rt(i, :) = 0
9: if re-orthogonalizing Rt then

10: Compute polar decomposition: Rt = ṼtS̃t
11: Update matrices: Rt = Ṽt; St = StS̃

T
t

12: end if
13: Compute SVD of center matrix:

14: Û ŜV̂ T = SV D

([ γst
‖St‖F St wt

0 ‖rt‖

])
15: Update Ut: Ut+1 =

[
Ut

rt
‖rt‖

]
Û

16: Update St: St+1 = Ŝ
17: Set up last column for Rt update:
18: z =

[
0 . . . 0

]T
; z(i) = 1

19: Update Rt: Rt+1 =
[
‖St‖F
γst

Rt z
]
V̂

20: Drop last singular value and corresponding singu-
lar vectors

21: end for
22: return Utmax

, Stmax
, Rtmax

23: end procedure

A. Synthetic data without noise

We generated a 5000 × 5000 matrix W of rank 5 as
the product W = XSY T where X and Y are random
5000× 5 matrices with orthonormal columns and S is a 5× 5
diagonal matrix containing the singular values. The smallest
singular value was set to be σ5 = 1 × 103 and they varied
logarithmically up to σ1. 95% of the entries were removed
uniformly at random.

Results are shown in Figure 2 for two values of σ1. In
all cases, the algorithms that took account of an estimate
of the singular values of the space – PIMC, ScGrad and
qGeom – outperformed the other matrix completion algo-
rithms. However, with an increase of one order of magnitude,
the performance of ScGrad and qGeom suffers (Figure 2b).
We note that the authors of both of these algorithms only
performed experiments for condition numbers up to around
10, while here we have gone up to 1000. Our proposed
algorithm PIMC converges in roughly the same amount of time
regardless of the condition number. We hypothesize that this
may be due to the fact that ScGrad and qGeom both perform
an alternating optimization, having to retract back onto the
manifold at each iteration, while PIMC has no alternation and
remains orthogonal the entire time.
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Fig. 2: Comparison without noise. Random 5000 × 5000,
rank-5 matrices with no noise and 95% of their entires missing
were generated with singular values that varied logarithmically
from σ1 = 1× 103 up to σ5. In all cases, PIMC converges in
roughly the same amount of time.
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Fig. 3: Comparison with noise. Singular values were set to
decay exponentially from σ1 = 1 × 107 as σi = σi−1 ∗ τ
and 95% of their entires missing were generated. The rank to
estimate was set to 5 and we measure the error with respect
to the best rank-5 matrix taken from the full data. τ was set
to 0.3 and 0.1, resulting in matrices with σ1 being 123 and
10000 times larger than σ5.

B. Synthetic data with noise

We next test how the algorithms perform with respect to
noise using a random 5000×5000 matrix with singular values
that decay exponentially as σi = τσi−1 with σ1 = 1×107, for
some constant τ . 95% of the data were randomly removed and
the estimated rank was set to 5. Results are shown in Figure 3
for τ = 0.3, and 0.1. The error was measured with respect to
the best rank-5 matrix as calculated using the SVD of the data
matrix before any data were removed. This situation is much
more difficult and no algorithm is able to find the optimal
solution in any situation due to the lack of separation between
the signal and noise subspaces. However, it is again the case
that PIMC outperforms other algorithms when the spread of
singular values is larger.

C. Structure from motion data

Structure-from-motion involves recovering the full 3D loca-
tions of points given their 2D locations tracked over the frames

of a video. These tracks can be arranged in a measurement
matrix where every pair of columns gives the x and y locations
of points over all frames and each row contains the 2D
locations of all points in a given frame. If the camera is
assumed to be affine, then it can be shown that this matrix has
rank at most 4 [12]. Missing data occur when points tracks
are lost or become occluded.

(a) Banded structure of the data
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Fig. 4: Comparison of algorithms on structure-from-
motion dataset. All algorithms have trouble reaching the
optimum due to the banded structure of the data matrix. PIMC
converges the fastest and GROUSE has the least error after
1× 103 seconds. See text for details on the dataset.

We generated a synthetic cylinder of radius 10 and height
5000 with 500 points tracked over 1000 frames. After remov-
ing points tracked for fewer than five frames, the resulting
measurement matrix has size 2484×2000. The cylinder rotated
once every 500 frames, resulting in 80.13% missing data. This
matrix has an exact rank-4 solution with a condition number
σ1/σ4 ≈ 290. An interesting aspect of this dataset is that
the data are not randomly observed, but appear within a band
down the diagonal of the matrix (Figure 4a). This stands in
contrast to the theoretical guarantees of convergence for matrix
completion which assume that data are observed uniformly at
random [6], [7].

Figure 4 shows results on the structure-from-motion dataset.
All algorithms perform relatively similarly with PIMC con-
verging fastest and GROUSE achieving the lowest error, but all
are unable to find the optimal solution. We have found that the
banded structure of the data matrix here makes optimization
more difficult than if the data were sampled uniformly at ran-
dom, and when combined with a large condition number this
optimization problem is quite challenging for all algorithms.

V. CONCLUSION

In this paper we have presented a novel algorithm for
matrix completion based on the incremental singular value
decomposition. Our method is online and takes into account an
estimate of the singular values during optimization to improve
convergence for matrices which are ill-conditioned. We have
demonstrated that it outperforms other batch algorithms for
extremely ill-conditioned matrices.
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