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Abstract— We present an approach for sensor network lo-
calization when provided with a set of angular constraints.
This problem arises in camera networks when angles between
nearby points can be measured but depth measurements are
not readily available. We provide contributions for two different
variations on this problem. First, when each node is aware
of a global coordinate frame, we present a novel method for
identifying the components of the problem that are rigidly
constrained. Second, in the more difficult case where only
relative angles are known, we propose a novel spectral solution
that achieves a globally-optimal embedding under transitively-
triangular constraints, which we show encompass a wide range
of real-world conditions. We demonstrate the utility of our
algorithm on both synthetic data and data from quadrotor
robot formations.

I. INTRODUCTION

Self-localization of camera networks is a problem that
arises whenever cameras are deployed in a static configu-
ration or are mounted on robots. Monocular cameras can
measure line of sight to the other cameras but are not able
to easily determine distances. Finding the space of possible
camera positions that are consistent with these measurements
is a variant of the bearing-based or angle-of-arrival sensor
network localization problem. Note that this problem differs
from multi-robot localization and mapping where robots can
sense other points in the environment.

We address this problem for two different cases: when
orientation with respect to a global reference frame is given
(for instance, when each agent has a compass), and when
only relative bearing measurements are available. In both
cases we focus on static data. Global rigidity has been
previously studied when global orientation is known [1],
[2] and the case of relative bearings has been studied with
respect to its computational complexity [3].

Due to occlusion and other visibility conditions, it is rarely
the case that a camera network is globally-rigid with respect
to the set of measurements and so a solution is needed
for identifying rigid components. Such components can be
used to establish a local reference frame and enable target
tracking, 3D triangulation, and any other 3D guidance and
control of an agent visible to the cameras of this component.

In this paper we present the following contributions to
bearing-based localization:

1) For the case of known absolute heading we present a
linear algebraic solution for the identification of rigid
components based on the null space of the global
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Fig. 1: (a) A directed network of nodes with global angle
measurements; when a global orientation reference is avail-
able, angles can be measured with respect to this coordinate
system. (b) A directed network of nodes with relative angle
measurements. The component formed by nodes h, i, j and
k is a rigid set of triangular constraints while node ` is
connected rigidly to this component.

rigidity problem. This result holds for any dimension
of the underlying Euclidean space.

2) For the case of only relative bearing measurements in
2D, we introduce a new approach for the identification
of a subset of all rigid components, which is based on a
recursive definition of rigidity starting from triangles.
We also present a novel solution for the embedding
problem under such constraints without fixing two
points as a reference for reconstruction. We make use
of its generality to solve the embedding problem for
any triangulated network even in the presence of noise,
giving a globally-optimal embedding in seconds even
for very large networks.

The literature on sensor network localization is over-
whelming. Most of the approaches assume known position
of some anchor nodes and distance measurements. The
corresponding theory on uniqueness of localization and its
complexity are comprehensively treated in [4]. The anchor-
free relative measurement problem formulation is based on
relative distance measurements and is related to the well
known problems of graph rigidity [5], [6], multi-dimensional
scaling [7], and parallel mechanisms [8]. One of the most
complete treatments for the anchor-based and anchor-free
case can be found in [4]. From this analysis we would like
to note the trilateration result (also in [9]) which is related
to our triangle construction: if a graph in dimension d has
a complete subgraph with d + 1 nodes and the rest of the
nodes can be incrementally added by connecting with the
previous graph, then the graph is uniquely localizable and can
be realized in polynomial-time. In [10] the result is extended
to show that any uniquely localizable graph can be realized



in polynomial time via semidefinite programming. The noisy
distance measurement case has been treated in [11], [12],
[13] among many others.

Let us switch to the case of bearing measurements –
also known as angle-of-arrival measurements – where we
differentiate between approaches with measured absolute
bearings (Section III) and relative bearings (Section IV). The
case of a given global reference frame as studied in Section
III is also known as parallel drawing and its realization
has been studied in [1], [2] using the same orthogonality
constraint that we use. The rank conditions for the homo-
geneous case are proved in [1] but no solution is given for
the identification of rigid components in the underdetermined
so-called flexible parallel drawing case. In the noisy bearing
case an approach [14] for localization based on bounded
uncertainty of relative bearings was proposed and solved
approximately using linear programming.

There are very few results when only relative bearings
are available and these are usually related to moving for-
mations [15], [16]. The general 2D case where bearing
measurements between nodes are not mutual (i.e., two nodes
see cannot each other) has been proven NP-hard in [3].
A footnote in [3] hints that in the case where relative
measurements are mutual, localization can be achieved in
polynomial time. A related approach using relative bearing
measurements between cameras and landmarks in 2D was
given by [17], but their method deals with only three views
at a time and first determines camera pose [18] before
subsequently finding landmark locations. In contrast, here
we make no distinction between cameras and landmarks and
consider all constraints simultaneously. A characterization of
rigidity for certain classes of relative angle constraint systems
was also explored in [22].

Regarding relative measurements in 3D, the most complete
treatment can be found in [19] where more than one time-
point of a 3D formation is considered due to the general
static 3D case being underdetermined. We will not refer here
to the plethora of papers on formation control which relate to
estimation based approaches for localization of robot teams
over time.

We believe that our result is the first to provide linear
constraints for efficient localization in the case of relative
bearing measurements. We also offer a concrete algorithm
for identifying rigid components in the absolute bearing case.

II. PROBLEM DESCRIPTION

Given a sensor network consisting of n nodes, we consider
two problems where nodes can measure the bearing to a
subset of others. In the first case, measurements are done
with respect to a global coordinate system where each node
i can measure the bearing θij ∈ [0, 2π] between a global
orientation and another node j (Figure 1a). In the second
case, only local orientation measurements are available, so
a node i can measure the relative bearing θijk ∈ [0, 2π] from
node j to k within its sensor range (Figure 1b). In both cases
our goal is to compute the possible spatial configurations of
the sensor network.

In the global case, we represent the problem as a graph
G = (E ,V) consisting of n vertices and m directed edges
where each angle measurement θij is the bearing of node j
with respect to node i. The goal of the the graph embedding
problem is to find an embedding that assigns to each vertex
i ∈ V a d-dimensional point xi ∈ Rd such that all angle
constraints are satisfied. In this paper we focus on d = 2 or
3.

For an embedding problem in Rd, we write the location
of node i as xi =

[
x1i . . . xdi

]
. Given an embedding x =[

x1 . . . xn
]T ∈ Rdn satisfying all angular constraints,

any translation or scaling of x is also a valid embedding since
these transformations maintain the global angles between
nodes. Additionally, when no global coordinate system is
known, embeddings are also invariant to arbitrary rotations.
If a single, unique solution x exists for an embedding
problem (up to these invariant transformations), we say that
this solution is rigid. Furthermore, if any subset of vertices
V ⊂ V is sufficiently constrained such that a single, unique
solution exists for the embedding problem when restricted
to V , we say that V forms a rigid subproblem.

III. GLOBAL ANGLE MEASUREMENTS

We first consider the embedding problem in R3 when a
global orientation reference is known to all nodes (Figure 1a).
Let θij be the angle that node i measures between a global
reference direction and another node j and let dij be a unit
vector pointing in this direction. For an embedding x ∈ R3n

to be consistent with this constraint, dij and (xj−xi) should
be parallel. Equivalently, their cross product must be zero:

dij × (xj − xi) = 0. (1)

This cross product constraint can be written in matrix form
as

dij×(xj−xi)=

 0 −d3ij d2ij
d3ij 0 −d1ij
−d2ij d1ij 0

x1j − x1ix2j − x2i
x3j − x3i .

=
00
0

 (2)

and thus each measured dij provides a set of three linear
constraints (two of which are linearly independent) on x. The
entire set of 3m linear constraints can be stacked to form a
matrix A, resulting in the homogeneous linear system

Ax = 0. (3)

Any x ∈ R3n satisfying Equation (3) is a valid embedding
for the given directional constraints. This linear system can
be solved by finding the null space of the 3m × 3n matrix
A. However, in the presence of noise, the constraints might
not be satisfiable. In this case, the eigenspace corresponding
to a set of the smallest eigenvectors of A will give an
approximate solution.

A related spectral solution is given by Brand [20], who
constructs a symmetric matrix HE and their solution to the
embedding problem is given by the vector space that is
spanned by the eigenvectors of HE corresponding to eigen-
values equal to 0. The connection between their formation
and ours is given in the following theorem.



Theorem 1: The matrix HE given by Brand [20] is
related to our constraint matrix A by HE = ATA. Fur-
thermore, the corresponding solutions are the same.

Proof: Let vij = (xj−xi) and define an error function
as

Eij = ||dij × vij ||22, (4)

which measures the deviation that dij and vij are from being
parallel. Using the relationship between cross products and
dot products, this is equivalent to

Eij = ||dij ||22 · ||vij ||22 − (dij · vij)2 (5)

= dTijdijv
T
ijvij − vTijdijd

T
ijvij (6)

This can be written in matrix form as

Eij = vTij
[
dTijdijI− dijd

T
ij

]
vij (7)

The internal matrix dTijdijI − dijd
T
ij is exactly the term

given in Equation (4) of Brand [20], and therefore the cost
function given by Equation (3) in their paper is identical to
our cost function Eij (in three dimensions). Since the matrix
A in Equation (3) is a stack of linear constraints of the form
dij × (xj −xi) = 0, then if we write xT (ATA)x = 0, this
requires that ||dij × (xj −xi)||22 = 0. Since ATA is clearly
positive semidefinite, we can minimize the cost function Eij
by taking the minimum eigenvectors of ATA, but since
this is the same as Brand’s cost function, the corresponding
matrices must be the same and we have HE = ATA.

Next we show that the solutions to the two problems are
identical. A basis for the null space of A is given by the set
of right singular vectors with vanishing singular values. Let
A = UΣVT be a singular value decomposition of A. Then
HE is given by

HE = VΣ2VT . (8)

Thus, the eigenvectors of HE which have an eigenvalue of 0
are exactly the singular vectors of A which have a singular
value of 0.

We have therefore given a different characterization of the
problem presented by Brand which has the slight advantage
of having simpler notation.

Ideally, the set of constraints will be sufficient to have
a rigid solution. The null space of a rigid solution will
have dimension 4, corresponding to one embedding and the
embeddings produced by scaling, or translating along each
of the x, y and z axes. However, it is also possible that
the problem constraints may be degenerate. This can occur
either because there are multiple connected components in
the connectivity graph or because all constraints on a node
are collinear. By investigating the properties of a basis that
spans the null space of A, we are able to navigate through
the space of solutions that satisfy all the problem constraints.

Let

N =

 | |
c1 . . . ck
| |

 (9)

be a matrix whose columns span the k-dimensional null
space of A. Since Aci = 0 for all ci, then any linear

combination of the columns of N will also lie in the null
space of A. More formally, we have

Ax = 0, (10)
where

x = Nw (11)

for any w ∈ Rk. By varying w, any solution consistent with
the problem constraints can be realized.

A. Identifying Rigid Components

When an embedding problem does not admit a rigid
solution, we can instead locate subsets of vertices V ⊂ V
and the associated edges EV = {(i, j) ∈ E | i, j ∈ V }
and constraints DV = {dij ∈ D | i, j ∈ V } such that the
embedding problem when restricted to this subproblem does
have a rigid solution.

Trivially, the sets consisting of only pairs of nodes are
rigidly constrained since scaling and translation of both
points together are the only possible transformations that
can be done. However, it would be more useful to find the
maximal rigid subproblems.

Theorem 2: The set of edges of all maximal rigid sub-
problemsM = {EV } induce a partition of the original edge
set E . That is, each edge e ∈ E is included in exactly one
maximal rigid subproblem edge set EV ∈M.

Proof: Since each edge is in the rigid subproblem
consisting of just itself, each edge must be in at least one
rigid subproblem. Suppose that it were in two maximal rigid
subproblems. Since they are both maximal, each can be
scaled independently, but an edge can only have one length
and so this gives a contradiction. Therefore, each edge is part
of exactly one maximal subproblem.

Let x be a solution to an embedding problem. Because any
translation of x in space is also a valid solution, suppose that
we translate the embedding such that xi = 0 and node i is
identified with the origin. We now show how the maximal
fully constrained subproblems associated with node i can
be found. By repeating this process for each node, all such
subproblems can be determined.

Let ri be the ith set of 3 rows of N, corresponding to
the three dimensions of the position of node i over all basis
vectors of the null space so that

N =

− rT1 −
...

− rTn −

 . (12)

We fix node i to be embedded to the origin by setting xi = 0.
Since xTi = rTi w, we subtract xTi from each set of rows in
the left-hand side and rTi w from each set of rows on the
right-hand side of Equation (11) . The resulting constraint
has xi = 0. Define this modified null space matrix as

N(i) =


rT1 − rTi

...
0
...

rTn − rTi

 . (13)



This gives us a new equation,

x = N(i)w, (14)

where a given value of w ∈ Rk will yield an embedding
x such that xi is at the origin. We have eliminated some
freedom of translation by requiring that xi be embedded to
the origin. In particular, given a maximal fully constrained
subproblem that contains the node i, any edge in this
subproblem can only be scaled and not translated (or else
either xi would not be at the origin or it would not be a
rigid subproblem), and so all pairs of edge lengths within
fully constrained subproblems containing node i will have
constant ratios. Furthermore, because we have translated
node i to the origin, these edge lengths are simply their
distances from the origin up to scale. This brings us to the
following theorem.

Theorem 3: Nodes j and k with j, k 6= i are a part of
a maximal rigid component with node i if and only if the
three rows of N(i) corresponding to node j are parallel with
the corresponding rows for node k.

Proof: Suppose that j and k are in the same rigid com-
ponent as i. Since the rigid subproblem can only be scaled
without violating constraints (since i is fixed to the origin),
then for any given embedding, the ratio ||xj ||22/||xk||22 is
constant. Equivalently,[

N(i)w
]
j[

N(i)w
]
k

= α ∀ w ∈ Rk (15)

for some constant α, where the jth and kth rows can be
any of the three corresponding rows for node j and k (The
constant α may be different for each of the three pairs of
rows since the ratios between the x, y and z coordinates
may be different.). This can occur only if the jth and kth

rows of N(i) are parallel.
Conversely, suppose that the rows are parallel. Then the

ratio given in Equation (15) is constant and therefore the ratio
||xj ||22/||xk||22 is constant. This implies that only scaling can
occur and so j and k are in the same rigid component as i,
or else it would be possible to translate them.

For any two nodes j and k in the same rigid component
as i, all three rows of i must be parallel with all three rows
of j. This can be measured by taking the maximum cosine
distance between two nodes over all three of their corre-
sponding rows. All maximal fully constrained subproblems
of node i can thereby be found by identifying sets of parallel
rows of the matrix N(i), and the corresponding edge set and
associated directional constraints will form a maximal rigid
subproblem. By repeating this process for each node, all fully
constrained subproblems can be identified.

The complexity of this algorithm is dominated by the
computation of rigid components, especially since A is
sparse. To identify rigid components, a cosine distance
matrix must be computed for each node i. This can be done
in O(kn2) time, where k is the dimensionality of the null
space, for a total cost of O(kn3). However, the multiplicative

constant here is small and it can easily be parallelized for
large problems since the computation of each node can be
done independently. We found that for a random network
of under 200 nodes of degree 3 the entire algorithm took
less than a second, while for 500 nodes the null space could
be calculated in around a second and the rigid components
could be found in 14 seconds on a standard laptop computer.

IV. RELATIVE ANGLE MEASUREMENTS
We now proceed to the more difficult case when no global

coordinate frame exists and nodes are only able to measure
relative angles between other nodes. We restrict the problem
to R2 where we can derive quadratic constraints based on
the given angle measurements (the extension to R3 is not
trivial). An embedding of nodes in the plane is then given
by x ∈ R2n.

Let θijk be the measured angle between nodes j and k
from the perspective of node i (Figure 1b). We desire an
embedding such that the angle between (xj−xi) and (xk−
xi) is θijk. In such an embedding, rotating the vector (xj−xi)
by θijk would result in parallel vectors and a further rotation
by π/2 would result in the two vectors being perpendicular.
Let Rθ be a 2 × 2 rotation matrix by the angle θ. Then,
the two vectors (xk − xi) and Rθijk+

π
2
(xj − xi) will be

perpendicular in an embedding that satisfies the constraint
and so their inner product will vanish:

(xk − xi)
TRθijk+

π
2
(xj − xi) = 0. (16)

This is the same constraint that was derived by Taylor and
Spletzer [21]. The constraint is quadratic with respect to x
and has the equivalent matrix form

[
xi xj xk

]
Mi

jk

xi
xj
xk

 = 0, (17)

where

Mi
jk =

Rθijk+
π
2
+ RT

θijk+
π
2
−Rθijk+

π
2
−RT

θijk+
π
2

−RT
θijk+

π
2

0 RT
θijk+

π
2

−Rθijk+
π
2

Rθijk+
π
2

0

 .
(18)

Although this is written only in terms of xi, xj and xk, it
can be expanded into a full 2n× 2n matrix by filling in the
appropriate matrix elements, giving

xTMi
jkx = 0. (19)

Each pairwise angle measurement provides one such
quadratic constraint and so a configuration of multiple nodes
yields a set of measurements M = {Mi}i∈{1,...,m}. An
embedding x ∈ R2n will satisfy all constraints exactly when

xTMix = 0 ∀ Mi ∈M. (20)

The set of all solutions to Equation (20) is straightforward
to calculate if all Mi are positive semidefinite matrices, as
the following theorem shows.

Theorem 4: Given a set of constraints

xTA1x = 0, . . . ,xTAmx = 0, (21)



with all matrices symmetric positive semidefinite (Ai � 0),
a vector x satisfies all constraints if and only if it is in the
null space of the combined matrix Â = A1 + · · ·+ Am.

Proof: In the forward direction, if xTAix = 0 holds
for all i ∈ {1 . . .m}, then

xT Âx = xTA1x + · · ·+ xTAmx = 0. (22)

and thus x is in the null space of Â.
Conversely, if x is in the null space of Â, then Equation

(22) holds. Since each Ai is positive semidefinite, we must
have xTAix ≥ 0 for all i. The sum of non-negative real
numbers can be zero only when each individual term is zero,
and therefore xTAix = 0 for all i.

This tells us that if Mi � 0 for all i, then the solution
space is given simply by the null space of the the sum of all
of the constraint matrices. Unfortunately, Mi are generally
not positive semidefinite, as was also noted by Taylor [21].

A. Triangle Constraints

Consider the case of a triangle, where each node i, j and
k is aware of the other two and θijk + θjik + θkij = π. In the
following, we let θi = θijk when there is no ambiguity. Let
Mi, Mj and Mk be the three constraint matrices associated
with θi, θj and θk, respectively. Although each Mi is not
positive semidefinite on its own, they can be combined to
form a positive semidefinite constraint that exactly captures
the combination of the three constraints. This brings us to
our main result when no global orientation is known.

Theorem 5: Let i, j and k be three nodes, each of which
can see the other two and let θi, θj and θk be the associated
angle measures such that θi + θj + θk = π. If Mi,Mj and
Mk are the corresponding constraint matrices as defined in
Equation (18), then the matrix

M = sin θiMi + sin θjMj + sin θkMk (23)

is positive semidefinite. Furthermore, a vector x will satisfy
xTMx = 0 if and only if x corresponds to a triangle with
angles equal to θi, θj and θk.

Proof: Using the fact that the angles of a triangle sum to
π radians, there are two non-zero eigenvalues1 of the matrix
M, both of which are equal to

3− cos(2θi)− cos(2θj)− cos(2θi − 2θj). (24)

Since the cosine function is always ≤ 1 the eigenvalues are
always non-negative, and therefore M � 0.

Now, let x be an embedding and let γi, γj and γk be the
angles between node i, j and k in the embedding. We want
to show that it must be that γi = θi, γj = θj and γk = θk.
The reason for this comes from the fact that M has a null
space of dimension 4. Given any embedding x that satisfies
xTMx = 0, we can rotate, translate and scale the embedding
without violating this constraint since M was defined only
in terms of relative angles of the triangle. This implies that
the solution set corresponding to the null space of M is a
set of rigid embeddings. However, we know that the triangle

1Eigenvalues were calculated symbolically using Mathematica.

with angles θi, θj and θk satisfies xTMx = 0, and therefore
any triangle must have the same angles or else M would
have a larger null space corresponding to additional degrees
of freedom.

Theorem 5 provides us with a quadratic constraint that
exactly characterizes triangles in the plane. Furthermore, this
constraint is positive semidefinite. This has an important
consequence: if our set of constraints consists entirely of
triangles, we can find the entire solution space of embeddings
which satisfy all constraints simultaneously by finding the
null space of the combined constraint matrix.

B. Transitive Triangle Constraints

Using this method, we are able to solve the embedding
problem when all constraints are triangular. The solutions
that we obtain consist of rigid components where each rigid
component is a set of edge-adjacent triangles. The reason
that this is rigid follows from the fact that any triangle with
two angles measured is rigid, as is shown in the following
lemma.

Lemma 1: A triangular set of three nodes i, j, k ∈ V is
rigid if any two of the associated angles θi, θj or θk are
measured.

Proof: Because the angles of a triangle must sum to π,
any two measured angles are sufficient to calculate the third.
The law of sines tells us that

a

b
=

sinA

sinB
(25)

for any two side lengths a and b and opposite angles A and
B of the triangle. Since the angles of this triangle are all
defined, the ratio of the side lengths must remain constant
and therefore the triangle is rigid.

Because a triangle is rigid, in the noise-free case it is
possible to pick a reference edge of a triangle and reconstruct
the third point based on the given angle measurements.
However, in the case of multiple edge-connected triangles, it
would be beneficial to not have to define such a reference;
Theorem 5 says that we do not need to since each triangle
has a positive semidefinite constraint that characterizes it.
Also, using the optimization based by Theorem 5 allows us
to naturally handle noise (Section IV-C).

Although triangles occur frequently in real-world data (see
Section V), there are rigid embedding problems which do not
directly have triangular constraints. One subset of these rigid
problems is characterized in the following lemma.

Lemma 2: Let V ⊂ V be a rigid subproblem, and let
w 6∈ V be another node. If w measures an angle θwij between
two nodes i, j ∈ V , and if additionally either i measures an
angle θikw or j measures an angle θjkw for k ∈ V , then the
subproblem defined by V ∪ {w} is rigid.

Proof: Because V is a rigid component, the angles θijk
for any i, j, k ∈ V must remain constant. Thus, even if a
given angle θijk is not directly measured by the sensors, its
value is implicit in the other constraints and we can consider
all such angles to exist. Furthermore, if i measures an angle
θijw for j ∈ V and w 6∈ V , then the angles θikw for k ∈ V
are also implicit since the angles θijk are known.



Fig. 2: One constraint matrix is created for each set of two
angular measurements on three nodes. In the presence of
noise, the three constraints will differ and our method will
find a globally-optimal solution with respect to the three
constraints.

Suppose that w 6∈ V measures the angle θwij for i, j ∈ V ,
and that i also measures θikw for k ∈ V . Because angle θijw
is implicitly known, two angles in the triangle consisting
of i, j, w are known and by Lemma 1 this triangle is rigid.
Because the edge (i, j) is shared by both this triangle and
the rigid component V , the entire component V ∪ {w} is
rigid.

Although our algorithm deals only with triangles directly,
we can extend it to nodes which are transitively and rigidly
connected to triangular subproblems using Lemma 2. We
know that an edge-connected triangular subproblem is rigid,
and thus all internal angles of the subproblem are implicitly
defined. This allows us to create new triangular constraints
for nodes which are rigidly connected to the subproblem. In
this way, we can add triangular constraints to a larger subset
of rigid embedding problems.

C. Dealing with Noise

In real-world situations, sensor measurements will have
noise and the sum of three angle constraints in any given
triangle will not be exactly π, making Theorem 5 invalid. To
deal with noise, we view each set of two angular constraints
incident on three points as a full triangle. Because each
triangle is rigidly defined by just two constraints (Lemma
1), we add a third angle to every set of two so that an exact
triangle is formed, as shown in Figure 2.

When three constraints forming a triangle are given as part
of the measured data, this results in a set of three overlapping
constraint matrices rather than just one. If the measured
angles sum to π then all three matrices will be identical,
but if there is noise then the matrices will differ. In the case
of noise, the exact null space of the combined constraint
matrix will be trivial since no non-trivial embedding can
simultaneously satisfy all three conflicting constraints. How-
ever, the eigenvectors of the combined constraint matrix that
correspond to the four smallest eigenvalues will provide an
embedding which gives a globally-optimal rigid solution with
respect to the cost function based on all of these constraints,
as we now show.

Consider a set of triangular constraints formed by the
nodes i, j and k (Figure 2). Using the above construction, we
create three constraint matrices M1,M2 and M3, where the

Fig. 3: A formation of quadrotors.

matrices differ due to measurement noise. From Theorem 5,
we know that xTMix = 0 for a consistent embedding and
is strictly positive otherwise. We thus consider each xTMix
to be a measure of how much the embedding x violates the
constraint Mi. A globally-optimal embedding is given by
solving the optimization problem

min
x

xTM1x + xTM2x + xTM3x = xT
∑
i

Mix. (26)

Because each Mi is positive semidefinite, so is the sum∑
i Mi. The solution to this problem is given by the eigen-

vectors of
∑
i Mi corresponding to the four smallest eigen-

values, since a rigid embedding will have four degrees of
freedom (a problem with multiple triangulated components
can be easily split into separate rigid components). Thus, by
constructing a set of three constraints for each triangle, our
method results in a globally-optimal solution in the presence
of measurement noise. Also, by weighting each matrix Mi,
Equation (26) can be made to give preference to certain
constraints, which is useful when the relative accuracy of
measurements is known.

Noise also makes extending triangular constraints transi-
tively to other nodes difficult. Without noise, all implicit
constraints could be directly calculated. However, if mea-
surements are noisy then it’s not clear how to set the angles
for implicit constraints. We propose the following approach.
First, each rigid triangular component can be embedded us-
ing the previously-described method. Given this embedding,
all noisy angle measurements within these components are
reconciled and all implicit angle constraints can be added
without ambiguity. Any node which is rigidly connected to
one of these components can then be added to the problem
and by calculating a new embedding using these triangular
constraints, the attached nodes will be incorporated. This
process can be continued iteratively until any node which
is transitively connected to a triangular rigid component is
added to the embedding.

The complexity of this algorithm can be split into two
steps. In the first, all triangle constraints must be identified,
which can be done in linear time if each node has a constant
degree by seeing whether connections of connections of a
node point back to itself. Finding the null space of such a
matrix will take O(n) time per iteration using, for example,
Lanczos iteration [23].
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Fig. 4: We generate data according to three visibility models:
(a) each node can view others within a fixed radius, (b)
randomly-placed walls obstruct visibility, and (c) randomly-
placed pairs of pillars to obstruct visibility.

V. EXPERIMENTS

We demonstrate the use of our methods using two types
of data. The first consists of entirely synthetic data, where
we generate 20 random points in the plane under realistic
measurement constraints. In particular we use three different
visibility models, as shown in Figure 4:

1) Local visibility: each node is able to sense other nodes
within a fixed radius.

2) Walls: two walls are randomly placed in the plane
which obstruct the view between nodes.

3) Pillars: two pairs of pillar pairs are randomly placed
in the plane.

Second, we use a dataset from [24] based on kQuadNano
quadrotors developed by KMel Robotics which have a di-
ameter of 21 cm (see Figure 3). This dataset consists of 12
quadrotors within a 4 × 4-meter area. Although the angle
measurements are also synthetic in this case, the formations
are more realistic than simply using random points.

A. Global Angle Measurements

We first consider the case when angle measurements are
made with respect to a global coordinate frame. Figure 5
demonstrates how we are able to identify the rigid compo-
nents of any embedding problem. Although a given solution
to an embedding problem may have many degrees of freedom
when it is underconstrained, each rigid subproblem will be
fixed up to scale and translation.

B. Relative Angle Measurements

We also demonstrate our proposed algorithm for calcu-
lating embeddings when only relative angle measurements
are available. Quantitative results are shown in Table I for
different conditions and various amounts of noise. We use
noise that is normally-distributed with 0.1, 0.3 and 0.5-
degree standard deviations in addition to uniform noise
between 0 and 1 degree. These noise measures corresponds
to errors of 1.67, 5.03, 8.38 and 16.76 pixels, respectively,
in a 1920 × 1080-pixel resolution HD camera with a 90-
degree horizontal field of view. Such an error in a line-of-
sight bearing measurement can be induced, for example, by
the uncertainty in the measurement of the centroid of the
appearance of another robot.
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Fig. 5: We are able to identify rigidly-constrained compo-
nents in embedding problems when a global coordinate frame
is available. Top row: randomly-generated configurations of
20 nodes. Bottom row: a configuration of quadrotors. Each
column shows a different visibility mode. First column: each
node can sense others within 1.5m. Second column: two
random walls block visibility in addition to a 1.5m sensor
range. Third column: two random sets of two pillars block
visibility in addition to a 1.5m sensor range.

Each rigid component’s embedding is solved separately
and Procrustes analysis is performed to align the reconstruc-
tion with the ground truth. We report the mean squared dis-
tances between points. In all cases, mean error measurements
are very low. There are also several interesting patterns in the
data. First, both the mean error and its variability tend to de-
crease as the visibility radius increases. This happens because
with a higher-visibility radius there are more connections and
our global optimization procedure is able to better remove
noise by reconciling redundant constraints. Also, note that in
all cases the majority of constraints are part of a triangle, and
with an intermediate visibility radius this proportion reaches
80−90%. This supports our claim that triangles are common
due to the geometric constraints of Euclidean space.

VI. DISCUSSION

We have proposed algorithms for two formulations of
the angular embedding problem. When global angles are
known, we have presented a novel method for identifying
rigid components. When only relative bearings are known,
we have given a spectral algorithm to solve the embedding
problem and find a globally-optimal solution for triangular
constraints. We have also extended this method to account
for nodes which are transitively connected to triangular
constraints. Together, these two graph setups account for
many common real-world situations. Although we have not
dealt with relative angle constraints that are not part of a rigid
component, our algorithm can be used as an initialization for
iterative algorithms that incorporate these constraints.

It’s also interesting to note that solutions for the embed-
ding problem both with and without a global coordinate
system are characterized by linear constraints. This allows us
to solve heterogeneous problems in which only a subset of
nodes are aware of their orientation by combining all linear
constraints for both types of nodes into a single linear system.



Mean reconstruction errors (mm) from relative angle constraints in a 4× 4-meter area
Random configurations (20 nodes)

Visibility
Noise (◦) 1.5m 2m 3m 4m walls pillars

U(−1, 1) 46.87± 133.0 mm 13.30± 49.16 mm 2.667± 0.602 mm 2.265± 0.384 mm 69.04± 255.6 mm 19.45± 133.6 mm
N (0, 0.52) 49.50± 151.7 mm 10.71± 47.79 mm 2.385± 0.582 mm 1.952± 0.302 mm 79.59± 285.9 mm 7.747± 26.16 mm
N (0, 0.32) 13.28± 37.45 mm 14.76± 113.6 mm 1.383± 0.312 mm 1.172± 0.187 mm 8.576± 28.97 mm 1.901± 1.932 mm
N (0, 0.12) 15.94± 103.6 mm 1.382± 2.017 mm 0.456± 0.110 mm 0.379± 0.052 mm 10.60± 91.33 mm 0.802± 1.289 mm

Proportion 0.62 0.70 0.87 0.98 0.84 0.80triangular

Quadrotor configurations (12 nodes)

Visibility
Noise (◦) 1.5m 2m 3m 4m walls pillars

U(−1, 1) 6.817± 4.177 mm 7.163± 9.244 mm 2.889± 1.099 mm 2.720± 0.747 mm 16.25± 73.45 mm 10.71± 53.41 mm
N (0, 0.52) 5.907± 3.866 mm 6.095± 8.166 mm 2.540± 0.980 mm 2.337± 0.701 mm 20.25± 80.02 mm 7.949± 38.75 mm
N (0, 0.32) 3.548± 2.319 mm 3.139± 3.413 mm 1.521± 0.575 mm 1.408± 0.403 mm 11.68± 58.78 mm 2.918± 5.136 mm
N (0, 0.12) 1.164± 0.745 mm 1.009± 1.037 mm 0.504± 0.194 mm 0.470± 0.139 mm 1.793± 4.961 mm 1.099± 3.271 mm

Proportion 0.66 0.81 0.97 0.99 0.86 0.85triangular

TABLE I: Quantitative results for our algorithm with relative angular constraints. We show the mean and standard deviation
of reconstruction errors (in mm) after alignment to ground truth data. We use both random configurations of nodes and
configurations of actual quadrotors. Noise was added independently to each angle based on either a uniform (U) or normal
(N ) distribution. For the quadrotor configurations, 6 different formations were selected. In both cases, results were averaged
over 100 trials. Errors are calculated over all constraints that were part of a trianglular-constrained subproblems and thus
optimized by our method; in the last row of each section we show the proportion of all constraints that were part of triangles.
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