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Abstract

In this paper, we present an approach to the problem of actively con-
trolling the configuration of a team of mobile agents equipped with
cameras so as to optimize the quality of the estimates derived from
their measurements. The issue of optimizing the robots’ configura-
tion is particularly important in the context of teams equipped with
vision sensors, since most estimation schemes of interest will involve
some form of triangulation.

We provide a theoretical framework for tackling the sensor plan-
ning problem, and a practical computational strategy inspired by
work on particle filtering for implementing the approach. We then
extend our framework by showing how modeled system dynamics
and configuration space obstacles can be handled. These ideas have
been applied to a target tracking task, and demonstrated both in
simulation and with actual robot platforms. The results indicate that
the framework is able to solve fairly difficult sensor planning prob-
lems online without requiring excessive amounts of computational
resources.

KEY WORDS—optimal target tracking, sensor fusion, par-
ticle filtering

1. Introduction

The idea of using teams of small, inexpensive robotic agents
to accomplish various tasks is one that has gained increasing
currency in the field of robotics research. Figure 1 shows a
picture of a Clodbuster robot which is based on a standard
remote controlled motion platform and is outfitted with an
omnidirectional video camera—its only sensor. Using teams
of these modest robots, fairly sophisticated applications, such
as distributed mapping, formation control and distributed ma-
nipulation, have been successfully demonstrated (Alur et al.
2000; Spletzer et al. 2001).

One of the more interesting aspects of these platforms is

The International Journal of Robotics Research
Vol. 22, No. 1, January 2003, pp. 7-20,
©2003 Sage Publications

that estimates for relevant quantities in the world are formed
by combining information from multiple distributed sensors.
For example, the robots in the team shown in Figure 1 ob-
tain an estimate for their relative configuration by combining
the angular measurements obtained from all of the omnidi-
rectional images and performing a simple triangulation oper-
ation. Similar techniques can be used to estimate the locations
of other features in the environment, such as the box they are
manipulating. In fact, we could choose to view the team in
Figure 1 as a three-eyed stereo rig where the individual eyes
can actually be moved on the fly.

This capability invites the following question: given that
the robot platforms are mobile, how should they be deployed
in order to maximize the quality of the estimates returned
by the team? This is a particularly important question in the
context of robots equipped with vision sensors, since most of
the estimation techniques of interest in this case are based on
some form of triangulation.

Similar questions arise when we consider the problem
of integrating information from a sea of distributed sensors.
Given that there is some cost associated with transmitting and
processing data, which sensor readings should we use to form
an estimate for the parameters of interest?

In this paper we present a theoretical framework for dis-
cussing such questions and a practical computational ap-
proach, inspired by work on particle filtering, for tackling
them. The suggested approach could be viewed as an applica-
tion of the theory of games since the problem of controlling
the configuration of the robots is reformulated as the prob-
lem of optimizing a quality function that reflects the expected
value of assuming a particular formation. Results obtained by
applying this approach to a target tracking task are presented
in Section 3.

It is important to note that while the approach was devel-
oped to handle the problems faced by teams of robots equipped
with vision sensors, it could also be used to deploy robots
equipped with other types of sensors, such as laser range find-
ers or sonar systems.
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Fig. 1. A single Clodbuster robot (left) and the team performing a distributed manipulation task.

1.1. Related Work

The focus of this research is a probabilistic framework which
exploits the degrees of freedom afforded by robot mobility
to actively manage sensor positions for improved state esti-
mation. We demonstrate its effectiveness in an optimal target
tracking task. “Optimal tracking” can be defined using various
metrics. We choose to minimize the expected error in tracking
target positions. Since the measurements of multiple robots
are combined to estimate target pose, this relates strongly to
work in sensor fusion.

In our target tracking task, robots rely on omnidirectional
cameras for tracking groups of targets. Merging measure-
ments from multiple vision sensors for improved state estima-
tion was considered by Bajcsy and others under the heading
of Active Perception. Improvements were seen in various per-
formance metrics, including ranging accuracy (Bajcsy 1988;
Krotkov and Bajcsy 1993). Our framework can be viewed as
an extension of this paradigm to distributed mobile robotics.

Durrant-Whyte and co-workers pioneered work in sensor
fusion and robot localization. This yielded significant im-
provements to methods used in mobile robot navigation, lo-
calization and mapping (Majumder, Scheding, and Durrant-
Whyte 2001; Dissanayake et al. 2001). Thrun and co-workers
have also contributed significant research to these areas
(Thrun 2001; Thrun et al. 2000). The work of both groups has
emphasized probabilistic techniques for data fusion—with a
recent focus on particle filtering methods. Our approach is
also probabilistic, and it too leverages particle filtering meth-
ods. However, our work distinguishes itself from traditional
data fusion techniques in that the sensors themselves are ac-
tively managed to improve the quality of the measurements
obtained prior to the data fusion phase, resulting in corre-
sponding improvements in state estimation.

Since the sensors are actively managed, our work relates
to research in on-line sensor planning as well. Relevant to our
approach was a methodology for distributed control proposed

by Parker (1999). This framework—Cooperative Multi-Robot
Observation of Multiple Moving Targets (CMOMMT)—
attempted to maximize the collective time that each target
was being observed by at least one robot.

The theory of games has also provided inspiration for sim-
ilar research in target tracking. The pursuit-evasion problem
was investigated by LaValle et al. (1997) and Fabiani et al.
(2001). Both examined the task of maintaining target visibil-
ity in a cluttered environment known a priori to the pursuer.
LaValle’s approach generated trajectories that minimized a
loss function which grew when the target became occluded.
Fabiani’s motion strategy was based on the expected maxi-
mum value of a corresponding utility function U . Of the two,
Fabiani’s work is more relevant. The value of U was affected
by uncertainty in the target’s position, which was indirectly
affected by uncertainty in the pursuer’s position. As a result,
the pursuer trajectory was influenced not just by target posi-
tion, but also by known landmark positions in the environment
which could be used to reduce uncertainty in target pose.

In all three of these cases, the optimization criterion was
based on maintaining target observability, rather than the qual-
ity of the observation. Additionally, the work of LaValle and
Fabiani was limited to the case of a single pursuer/evader. In
theory, both could be extended to multiple agents. However,
in practice the resulting explosion in computational complex-
ity would be prohibitive. In contrast, the complexity of our
framework is implementation-dependent, and may be tuned
by the user to scale very efficiently in terms of the number of
robots and targets.

In the next best view (NBV) problem, sensor placement
is of primary concern (Pito 1999; Stamos and Allen 1998).
Given, for example, previous range scans of an object, an
NBV system attempts to determine the next best position of
the scanner for acquiring the object’s complete surface geom-
etry. As in our framework, the emphasis is optimizing sensor
placement. However, NBV is intended for use in a static en-
vironment. Inherent in our approach is the ability to handle
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dynamic scenes which makes it more akin to a control law for
distributed sensors.

2. Developing the Framework

2.1. A Theoretical Approach

In this section we describe the theoretical framework used to
discuss the problem of sensor deployment. In order to ground
the terminology, we describe how various elements in the
framework relate to the scenario depicted in Figure 2. In this
example, three robots are tasked with localizing a single mov-
ing target.

Let Cr denote the configuration space of the robot plat-
forms. In this case, we can consider the vector formed by
concatenating the positions and orientations of the three
platforms with respect to some base frame of reference
[x1, y1, θ1, x2, y2, θ2, x3, y3, θ3]T. Let ρ ∈ Cr denote an ele-
ment of this configuration space. Similarly, let Cw denote the
configuration space of the target parameters under consider-
ation. In Figure 2, this space is particularly simple since we
need only consider the position of the moving target with
respect to the base frame denoted by the vector [xt , yt ]T. In
general, however, this space can be much more complicated.
Let ω ∈ Cw denote an element of this configuration space.

Let Ẑ represent the set of all possible sensor measurements,
and let ẑ ∈ Ẑ denote our measurement vector. In this example,
ẑ corresponds to the vector formed by concatenating the three
angles measured by the robots [α1, α2, α3]T. The hat serves
to remind us that these measurements are corrupted by noise.
It is assumed that the designer has some model for the noise
process, which is given in the form of a conditional probability
density function P(ẑ|ρ, ω). This function allows us to predict
the distribution of measurements as a function of ρ and ω.

Let Est : Cr × Ẑ → Cw denote a function that produces an
estimate of the target’s position, ω̂, from the noisy measure-
ments, ẑ, and the robots’ configuration, ρ. Disp : Cw ×Cw →
R+ is a function which returns an indication of the dispar-
ity between an estimated value ω̂ and the actual value ω. For
our target tracking example, an appropriate function might
be the Euclidean distance Disp(ω, ω̂) = ||ω − ω̂||2. Other
applications may require more sophisticated error metrics.
P(ω)denotes a probability density function on the configu-

ration space Cw which can be used to model prior information
about the values of the parameters of interest. For example, we
may have some information about where the target could be
based on prior measurements or a dynamic model for the tar-
get’s motion. Given this terminology, we can define a quality
function Q(ρ) as follows:

Q(ρ) =
∫

Cw

∫

Z

Disp(ω,Est (ρ, ẑ))P (ẑ|ρ, ω)P (ω) dẑ dω.

(1)

This function captures how the expected error in the estimate,
ω̂, varies as the configuration of the robots changes. Note
that there are, of course, several alternative definitions for
this quality function that are equally reasonable. We could
consider the maximum expected error in the estimate or the
median expected error. Different choices for Q(ρ) may be
more appropriate in certain situations.

With these notions in place, we can formulate the problem
of choosing an appropriate configuration for the robots as an
optimization problem as follows:

min
ρ∈�

Q(ρ). (2)

The goal in this case is to find a choice of ρ ∈ �, where
� ⊂ Cr , which minimizes the quality function Q(ρ). Limit-
ing the optimization to a subset of Cr , �, allows us to model
situations where certain configurations cannot be achieved
due to obstacles in the environment, sensor constraints or lim-
itations on the range of motion of the robots.

Note that, even though the approach is being discussed in
the context of target tracking, the framework is general enough
to be applied to a wide range of sensor planning problems. The
specifics of the task would be reflected in the definitions of
Cr , Cw, ẑ, Est and Disp.

2.2. A Computational Solution

For most interesting systems, the optimization problem given
in eq. (2) is difficult to solve analytically. However, it is possi-
ble to approximate this process computationally. To do this we
draw inspiration from prior work on particle filtering (Isard
and Blake 1998).

In particle filtering, probability distributions such as P(ω)
are approximated by sets of tuples (ωj , πj ), where ωj is a
single sample from Cw and πj is a weight that reflects the
likelihood of ωj representing the state ω. By making use of
this approximation, we can replace the integrals of eq. (1) with
a summation:

Q(ρ) ≈ 1

N

N∑
j=1

Disp(ωj , Est (ρ, ẑ)). (3)

where N corresponds to the number of samples selected at
random fromP(ω) andP(ẑ|ρ, ω). By choosingN sufficiently
large, this single summation can reflect the effects of both
integrations in eq. (1).

The computation of Q(ρ) is outlined in Algorithm 1. For
a more concrete explanation, we refer to Figure 3. To esti-
mate Q(ρ), a sample ω is chosen at random from P(ω), and
projected from target space to each robot’s image frame (Fig-
ure 3(a)). The corresponding image measurements are then
corrupted with noise from our sensor model, and projected
back into target space using our Est function (Figure 3(b)).
We can obtain the disparity between this new sample ω̂ and
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Fig. 2. Target localization by a robot team.

(a)                                            (b)              (c)
Fig. 3. Evaluating Q(ρ). A sample ω is taken randomly from P(ω) and projected into the sensor frames (a), corrupted with
noise from our sensor model and reprojected as ω̂ (b), so that Disp(ω, ω̂) can be calculated (c). This is repeated for N random
samples.

our original sample from Disp(ω, ω̂) (Figure 3(c)). This pro-
cedure is repeated forN samples. Using ||ω−ω̂||2 as our Disp
function, Q(ρ) then reflects the expected mean-squared error
in target position.

A simple but effective approach to optimizing the robot
configuration is to approximate the gradient of the quality
function, ∂Q

∂ρ
, by sampling its value in the vicinity of the current

robot configuration. The control law governing robot motion
would then be

ρ̇ ∝ −∂Q

∂ρ
. (4)

Gradient-based approaches can often lead to local
minima—and consequently sub-optimal performance—in
traditional optimization problems, and local minima do in
fact exist when tracking multiple targets. However, in a dy-
namic environment Q(ρ) is actually redefined whenever the
estimated positions of the targets change with respect to one
another. As a result, we often have only a single time-step
for optimizing a given Q(ρ), and in such cases can generate

“piecewise optimal” trajectories using a gradient approach.
Alternatively, we could employ standard optimization tech-
niques, such as the Simplex method (Press et al. 1993), to
choose the best achievable robot configuration in the vicinity
for the next time instant.

Algorithm 1. Calculate Q(ρ) for a given P(ω)
err ⇐ 0
for i = 1 to N do
ωi ⇐∈ P(ωi)

{Choose a sample at random from P(ωi)}
ẑi ⇐∈ P(ẑ|ρ, ω)
{Choose a sample at random from P(ẑ|ρ, ω)}
ω̂i ⇐ Est(ρ, ẑi)

{Generate an estimate for ω̂}
err ⇐ err + Disp(ωi, ω̂i)

end for
Q ⇐ err

N

Note that it is possible to incorporate knowledge of system
dynamics into this framework in the usual manner. In the



Spletzer and Taylor / Dynamic Sensor Planning and Control 11

CONDENSATION algorithm described by Isard and Blake
(1998), a particle distributionP(ω) is propagated at each time-
step according to a known dynamic model. This same P(ω)
serves as the assumed input for our framework, and establishes
a complementary relationship between sensing and control,
as the same particle sets used for tracking targets are also
used to control the robot team for improving future tracking
estimates.

3. Experimental Results

3.1. Simulation Experiments

In order to demonstrate the utility of the proposed framework,
we first apply it to three sensor planning problems in simu-
lation: tracking a single point target; tracking multiple point
targets; and tracking a box. We then extend the point target
tracking problem by incorporating a dynamical model for the
target. Finally, we integrate motion planning techniques for
local obstacle avoidance and we demonstrate target tracking
in a cluttered workspace. Each of these scenarios is explained
in more detail below.

We have assumed in all of these scenarios that the robots
can accurately measure their positions and orientations with
respect to one another, since it is the robot positions relative
to the targets that are of interest. Note that we could consider
the error in the positioning of the robots within this frame-
work by adding extra noise terms to the measurements or by
including the configuration of the robots as part of the state
to be estimated.

3.1.1. Tracking a Single Point Target

For the first scenario, we consider two robots equipped with
omnidirectional cameras, and tasked with tracking a single
target. Cr represents the concatenation of the robot positions,
Cw the target position, and ẑ the two angles to the target mea-
sured by the members of the robot team. We assume ẑ to
be corrupted with random noise generated from our sensor
model. Est(ρ, ẑ) returns an estimate for the target position,
ω̂, which minimizes the squared disparity with the measure-
ments, ẑ, and Disp(ω, ω̂) simply returns the Euclidean dis-
tance between the estimated target position and the actual
value.

In our simulations, robot motions are constrained by the
maximum robot velocity and the robot positions are limited by
mandating a minimum standoff distance to the target. These
serve to define the valid configuration space for the robots,�.
Below, we provide results from Matlab simulations for two
robots with both static and dynamic targets. For these trials,
100 exemplars were used to approximateP(ω), and the sensor
model (for all trials) was assumed to be Gaussian noise with
σ = 1◦.

Figure 4 shows the static target case for two robots. Trajec-
tories for this symmetric case are predictable and consistent

with simulation results, as are the dramatic drops in estima-
tion error over time. Similar results are obtained for the case
of an unpredictably moving target, as shown in Figure 5 (Ex-
tension 1).

3.1.2. Tracking Multiple Point Targets

For the second scenario, we examine the more interesting
problem of n robots trackingm independently moving, unpre-
dictable point targets. This problem can be tackled in much
the same manner. Cw now represents the concatenation of pos-
sible target positions, and ẑ the corresponding n × m angles
measured from robots to targets. Est(ρ, ẑ) approximates the
position of every target, and Disp(ω, ω̂) returns the summed
disparities between estimated and true target positions.

The results from a pair of simulation runs can be found
in Figures 6 and 7 (Extension 2). In these trials, three un-
predictable targets were tracked by five and four robots,
respectively.

Note the behavior of the robots as they move from their
original positions to more advantageous vantage points. The
robots automatically split off to track targets without any need
for sophisticated switching rules for arbitrating robot–target
assignment. The final configuration is simply a consequence
of the definition of theQ(ρ) function that the system attempts
to optimize. Note also that it is not possible in these scenarios
to assign two robots to every target, so the robots distribute
themselves automatically to come up with the best composite
estimate. This is significant, as relatively complex tracking
behaviors can be implicitly encoded into Q(ρ), and the need
for explicit switching controllers is mitigated.

3.1.3. Tracking a Box

For the third case, we consider the problem of using the mea-
surements from the robots to estimate the configuration of a
box in the scene. This example demonstrates how the pro-
posed framework can be applied to scenarios where the state
estimate is not simply the concatenation of a set of point lo-
cations. Here the configuration space Cw is identified with
SE(2) and elements of this set denote the position and orien-
tation of the box. The robots can measure the angles to all of
the visible box corners, ẑ. The estimation function Est(ρ, ẑ) as
always is nonlinear, and minimizes the disparity between the
predicted angles to the visible corners and the actual measure-
ments. Disp(ω, ω̂) returns the sum of the distances between
the recovered box corners and the actual corners. For these tri-
als, 20 “box” exemplars were used to estimate P(ω). Sample
simulation results can be found in Figures 8 and 9.

In both cases we can see that the robots not only migrate to
positions more advantageous for tracking the corner features,
but also for maximizing the number of visible features. The
latter effect is a result of the Est function using only the visible
corners to estimate the box pose. Inherently better estimates
are obtained when more features are available.
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Fig. 4. Generated trajectories (left) and disparity measurements (right) for two robots tracking a static point target.
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Fig. 5. Generated trajectories (left) and disparity measurements (right) for two robots tracking an unpredictable moving point
target.
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Fig. 6. Generated trajectories (left) and summed disparity measurements (right) for five robots tracking three point targets.
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Fig. 7. Generated trajectories (left)and summed disparity measurements (right) for four robots tracking three point targets.
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Fig. 8. Generated trajectories (left) and summed disparity measurements (right) for two robots tracking a static box.
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Fig. 9. Generated trajectories and summed disparity measurements for three robots tracking a static box.
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3.1.4. Incorporating the Dynamical Model

Integrating target dynamics into sensor planning often pro-
vides significant improvements in tracking performance. Dy-
namical models can be obtained using an approximation of
target dynamics, or through “learned” models as demonstrated
in Isard and Blake (1998). For our simulations, we employed
the former approach.

Consider the case of n observers on the ground tracking a
ball traveling through the air with some unknown initial ve-
locity Vt . We again model these observers as robots equipped
with omnidirectional cameras. In this case, Cr represents the
concatenation of the robot positions, which are constrained
to operations in the x–y plane, and Cw ⊂ R3 represents the
space of target positions. The measurement vector ẑ denotes
the n azimuth and elevation angle pairs to the target measured
by members of the robot team.

We approximated the dynamical model for the ball dω̂
dt

by
assuming constant acceleration under gravityg and estimating
its velocity from position measurements over time. Actual ball
dynamics dω

dt
in the simulation were slightly more realistic and

also modeled drag effects. The corresponding equations of
motion are given in eqs. (5) and (6), where µ is density, and
m, d, CD and v0 are the mass, diameter, drag coefficient and
current velocity of the ball, respectively:

dω̂

dt
= v0t + gt 2

2
(5)

dω

dt
= v0t + πd2t2(4µballgd − 3CDµairv

2
0)

24m
. (6)

As before,P(ω)was initially approximated by a randomly
generated set of exemplars that were constrained to lie within
the intersection of the sensor error cones, and all of the parti-
cles were given equal weight. The distribution was then propa-
gated using standard particle filtering techniques. At each time
step t , deterministic drift was applied to P(ω) based on this
dynamic model, followed by stochastic diffusion to account
for model uncertainty. We sampled P(ω) at this point, as it
allowed the robot pose ρt+1 to be optimized over the expected
target position ωt+1—not over the current target position ωt .
That is, the robots moved so as to optimize their ability to
localize the target at the next time instant based upon where
they predicted the target would move.

In our simulations, robot motions were constrained by the
maximum robot velocity Vr � Vt . This served to define the
limits of the set over which the optimization occurs,�. Results
from a sample Matlab simulation for three robots are provided
below. For this trial, 100 exemplars were used to approximate
P(ω), and the sensor model was assumed to be Gaussian noise
with σ = 1◦.

Figure 10 (Extension 3) shows a representative simulation
run of three robots tracking a single target. Robot trajecto-
ries are inefficient from a “distance-traveled” point of view,
as they attempt to optimize position estimates over the tar-

get’s entire flight rather than its endpoint. Figure 11 shows
the error in measured target position for the same target tra-
jectory from both stationary (dashed line) and moving (solid
line) observers. When viewed in this light, the benefits of the
otherwise curious robot trajectories become readily apparent.
Reductions in measurement errors by a factor of 4 to 5 over
the stationary case clearly demonstrate the effectiveness of
the integrated optimization/dynamical modeling approach.

3.1.5. Tracking Targets in a Cluttered Workspace

In the simulation results we have presented thus far, con-
straints to Cr were limited solely to pursuer dynamics and
a mandatory target standoff distance. This is adequate for op-
erations in an uncluttered workspace, but does not handle the
more generic case where obstacles are present. To address the
resulting additional constraints on Cr (and Cw), we assumed
that the robots were able to obtain accurate information about
obstacles in their immediate vicinity. This was consistent with
our approach of generating locally optimal trajectories, and
did not require a priori information of obstacle locations or
a global map of the environment. � was then defined by the
local obstacle-free configuration space.

Next, we applied standard motion planning techniques
for collision avoidance in this local neighborhood (Latombe
1991). More specifically, the trajectory was modeled as the
sum of attractive and repulsive force vectors Fatt and Frep,
respectively. Fatt corresponded to the velocity vector q̇ gen-
erated from our optimization approach. We allowed local ob-
stacles detected by the robot to impose a repulsive force vec-
tor Frep onto this desired trajectory. The magnitude of Frep

was proportional to the robot velocities and inversely pro-
portional to the distances from obstacles. The resultant force
F = Fatt + Frep represented the compromise robot trajecto-
ries as influenced by the presence of obstacles. This effectively
constrained the optimization of ρ ∈ �. A representative sim-
ulation trial can be found in Figure 12 (Extension 4).

While the presence of obstacles in this example constrained
the robots’ motion, the control law automatically adjusted
their trajectories in order to compensate for these limitations
and provide improved state estimates.

3.2. Experiments with the Clodbusters

The framework was implemented on our team of Clodbuster
robots shown in Figure 1. These use omnidirectional vi-
sion for sensing, on-board Pentium III computers, PXC200
framegrabbers, and 802.11b wireless networking for inter-
robot communications. In these experiments, a pair of pur-
suers tracked a third robot serving as a moving target. Two
sets of trials were conducted to demonstrate operations in both
cluttered and uncluttered environments.

The system architecture used by each pursuer robot is illus-
trated in Figure 13. It employed our Live-Object framework—
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Fig. 10. Ground observer trajectories optimally tracking an aerial target.
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Fig. 11. Measurement errors from stationary (dashed line) and moving (solid line) robot observers. Reductions in the latter
case are significant across the entire target trajectory.

a programming paradigm where objects encapsulate not only
relevant algorithms and data, but also a thread within which
these algorithms execute and communicate. To estimate the
target position, it was first necessary for the pursuers to local-
ize themselves. To accomplish this, the robots relied on YUV
color segmentation to isolate one another in the omnidirec-
tional camera images. By unwarping these image measure-
ments and assuming a ground plane constraint, the pursuers
were able to estimate relative range and bearing to one an-
other, as well as the bearing to the target. Alone, these were

sufficient to estimate only the relative pursuer position and
target bearing. However, by communicating their respective
tracking vectors, each pursuer could estimate the other’s rel-
ative position and orientation—and subsequently the target
position—from fusing the sensor measurements. The com-
plete pursuer and target localization process ran at 15 Hz.

In the cluttered workspace trials, it was also necessary for
each pursuer to estimate the position of obstacles. This was
done by generating a range map to edge features in the envi-
ronment as outlined in our previous work (Das et al. 2001).



16 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / January 2003

−250 −200 −150 −100 −50 0 50 100 150 200 250
−200

−150

−100

−50

0

50

100

150

200

Target 

Pursuers 

0 10 20 30 40 50 60 70 80
0

2

4

6

8

10

12

14

16

18

Fig. 12. Tracking a point target in a cluttered environment. Significant reductions to target position error were still realizable
even in the presence of obstacles.
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Fig. 13. Experimental architecture used by each pursuer. The 802.11b blocks correspond to threads where cooperation—and
as a result communication—with other robots is required.
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Target and pursuer robots were then discriminated from ob-
stacles using their relative pose as estimated during the local-
ization phase.

Experimental implementation followed closely with that
used in the corresponding simulation experiment. Derivative
estimation techniques were used to approximate the gradient
ofQ(ρ) for optimizing the pursuers’ headings. The maximum
robot speed and a prescribed standoff distance served to de-
fine � for a given time-step. The sensor model assumed that
angular measurements obtained by the robots were corrupted
with additive errors drawn from a normal distribution with a
standard deviation of σ = 0.5◦. For the cluttered workspace
trials, obstacles exhibited repulsive forces when the separa-
tion was less than 1 m. Using 100 particles to approximate
the probability P(ω) over the target configuration space, we
were able to compute locally optimal robot configurations at
a rate of 15 Hz.

A representative trial from our obstacle-free experiments is
shown in Figures 14 and 15 (Extension 5). The former shows
a series of images from an overhead view of the scene, while
the latter shows the corresponding position error estimates.
Both the trajectory and the dramatic drop in the error esti-
mate correlate well with the corresponding simulation results
presented previously in Figure 5.

Figures 16 and 17 (Extension 6) show the corresponding
trial for a cluttered workspace. The effect on the motion of the
right pursuer robot was significant. In contrast to the obstacle-
free case, its motion was constrained to a much narrower re-
gion. However, the control scheme automatically adjusted the
path of the left pursuer to compensate for this limitation. As a
result, the estimated target tracking error still fell dramatically.

It should again be noted that no explicit controllers were
needed for maneuvering the formation. Trajectories were im-
plicitly generated by Q(ρ), which captured the notion of a
good configuration.

4. Complexity Analysis

Referring to Algorithm 1, we can see that the computa-
tional complexity will depend heavily on the number of par-
ticles used to approximate P(ω) and P(ẑ|ρ, ω), the Est func-
tion used, and the number of times Q(ρ) must be com-
puted by our Q-optimizer function. Thus, the complexity is
implementation-dependent and can be tuned by the user based
upon available computational resources and desired estimator
robustness.

For our target tracking example, let m represent the num-
ber of robots, and n the number of targets. We assumed a
constant number N particles for each target. Our implemen-
tation employed a least-squares Est function, which runs in
O(m3) time. Finite difference techniques approximated ∂Q

∂ρ
,

and ran in O(m) time for a total complexity of O(m4n). The
framework lends itself to distributed computation. Taking ad-
vantage of this, the workload can be divided among the m

robots so that the time complexity for each would scale lin-
early in the number of targets, and cubically in the number of
robots.

Alternately, our Est function could employ a weighted av-
erage of the O(m2) stereo pair position estimates for each
target. A straightforward weight factor is wij = ri rj

sinθij
, where

ri is the estimated distance from robot i to the target, and
θij is the vergence angle. This is a first-order approximation
for stereo error from the determinant of the Jacobian. Using
a constant number of simultaneous perturbations to estimate
∂Q

∂ρ
, this scheme results in an O(m2n) complexity, or O(mn)

when distributed.
These are only two possible implementations, but they

demonstrate the flexibility of our approach. Robust estima-
tors that scale potentially exponentially could be used for
small numbers of robots and/or targets, or more expedi-
ent estimation techniques could be applied when computa-
tional resources are at issue. The choice is left to the user’s
discretion.

5. Conclusions and Discussion

In this paper we present an approach to the problem of con-
trolling the configuration of a team of mobile agents so as to
optimize the quality of the estimates derived from their mea-
surements. The ideas were applied to target tracking tasks,
where a team of robots was charged with optimally estimat-
ing the positions of a group of targets. This was demonstrated
both in simulation and on robot platforms. The results indi-
cate that this approach can solve fairly difficult sensor plan-
ning problems on-line without requiring excessive amounts
of computational resources.

Our approach has several positive attributes. It provides
an actual measurement reflecting the expected error in the
estimated target positions. This is a side effect of using a
numerical representation for P(ω). Also, implicit rules for
switching between robot–target assignments are embedded in
the optimization of Q(ρ), which negates the need for explicit
switching controllers.

Perhaps the most attractive feature of the approach is its
flexibility. It can be used with heterogeneous sensors, as the
Est and Q(ρ) functions abstract away specific sensor charac-
teristics. It is also scalable in the number of robots and tar-
gets, and the computational effects of this scaling can be reg-
ulated by choosing appropriate estimation and optimization
techniques.

In spite of these attributes, room for improvement still ex-
ists. The robots must combine measurements to estimate the
position of targets. So while distributed computation is readily
realizable, some level of centralization is inherent.

Our work to this point assumed that the robot positions
ρ were known a priori, and there are means to estimate the
formation pose as demonstrated in Section 3.2. However,
these estimates themselves are subject to uncertainty. We are
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Fig. 14. Trajectory for two pursuer robots tracking a moving target robot in an obstacle-free environment.
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Fig. 15. Estimated RMS position error (cm) versus time for the single target case.
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Fig. 16. Trajectory for two pursuer robots tracking a moving target robot in a cluttered workspace. The left pursuer adapts its
trajectory to the right pursuer’s mobility constraints.
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Fig. 17. Estimated RMS position error (cm) versus time for the single target case with obstacles. The results are comparable
to the obstacle-free case.



20 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / January 2003

currently reposing the problem within our framework as a si-
multaneous localization and target tracking task to address
this.

The approach was applied to target tracking tasks in both
open and cluttered workspaces. However, the latter was ac-
complished by merging with traditional motion planning tech-
niques. As a result, it was subject to similar shortcomings (e.g.,
becoming trapped in local minima). Additionally, our work in
cluttered environments only addressed issues relating to mo-
tion planning and not occluding obstacles. The latter topic is
the subject of ongoing research.

Lastly, to this point we have assumed a sensor model with
an omnidirectional field of view (FOV). Adapting our ap-
proach to limited FOV sensors involves assimilating optimal
assignment techniques with trajectory generation. This is also
the topic of ongoing work.

Appendix: Index to Multimedia Extensions

The multimedia extension page is found at http://www.
ijrr.org.

Table of Multimedia Extensions
Extension Type Description

1 Video Simulation of two robots op-
timally tracking an unpre-
dictable point target

2 Video Simulation of four robots op-
timally tracking three unpre-
dictable point targets

3 Video Simulation of three ground
observers using a dynamical
model to optimally track an
aerial target

4 Video Simulation of tracking a point
target in a cluttered workspace

5 Video Experimental trial with two
pursuer robots tracking a third
target robot in an obstacle-free
workspace

6 Video Experimental trial with two
pursuer robots tracking a third
target robot in a cluttered
workspace
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