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Abstract

This paper presents an approach to the problem of control-
ling the configuration of a team of mobile agents equipped
with cameras so as to optimize the quality of the estimates
derived from their measurements. The issue of optimizing
the robots’ configuration is particularly important in the
context of teams equipped with vision sensors since most
estimation schemes of interest will involve some form of tri-
angulation.

We provide a theoretical framework for tackling the sen-
sor planning problem and a practical computational strat-
egy, inspired by work on particle filtering, for implement-
ing the approach. The ideas have been demonstrated both
in simulation and on actual robotic platforms. The results
indicate that the framework is able to solve fairly difficult
sensor planning problems online without requiring exces-
sive amounts of computational resources.

1. Introduction

The idea of using teams of small, inexpensive robotic agents
to accomplish various tasks is one that has gained increas-
ing currency in the field of robotics research. Figure 1
shows a picture of a Clodbuster robot which is based on
a standard remote controlled motion platform and outfit-
ted with an omnidirectional video camera – its only sen-
sor. Using teams of these modest robots, fairly sophisti-
cated applications such as distributed mapping, formation
control and distributed manipulation have been successfully
demonstrated [1, 2].

One of the more interesting aspects of these platforms is
that estimates for relevant quantities in the world are formed
by combining information from multiple distributed sen-
sors. For example, the robots in the team shown in Figure
1 obtain an estimate for their relative configuration by com-
bining the angular measurements obtained from all of the
omnidirectional images and performing a simple triangula-
tion operation.

Similar techniques can be used to estimate the locations

Figure 1: A single Clodbuster robot (left) and the team performing
a distributed manipulation task.

of other features in the environment. In fact, one could
choose to view the team as a three eyed stereo rig where
the individual eyes can actually be moved on the fly.

This capability invites the following question: given that
the robot platforms are mobile, how should they be de-
ployed in order to maximize the quality of the estimates
returned by the team? This is a particularly important ques-
tion in the context of robots equipped with vision sensors
since most of the estimation techniques of interest in this
case are based on some form of triangulation.

Similar questions arise when one considers the problem
of integrating information from a sea of distributed sensors.
Given that there is some cost associated with transmitting
and processing data, which sensor readings should one use
to form an estimate for the parameters of interest?

This paper presents a theoretical framework for dis-
cussing such questions and a practical computational ap-
proach, inspired by work on particle filtering, for tackling
them. The suggested approach could be viewed as an appli-
cation of the theory of games since the problem of control-
ling the robots’ configuration is reformulated as the prob-
lem of optimizing a quality function that reflects the ex-
pected value of assuming a particular formation. Results
obtained by applying this approach to practical problems
are presented in Section 4.

It is important to note that while the approach was de-
veloped to handle the problems faced by teams of robots



equipped with vision sensors, it could also be used to de-
ploy robots equipped with other types of sensors like laser
range finders or sonar systems.

1.1. Related Work

The problem of controlling sensors to optimize information
gathering was considered by Bajcsy and others under the
heading of Active Perception [3]. This involved fusing data
from both homogeneous and heterogeneous dynamic sen-
sors to improve various performance metrics that included
ranging accuracy [4]. In this vein, our framework can be
viewed as an extension of the active perception paradigm to
the field of distributed mobile robots.

A significant amount of research has been directed to the
problems associated with getting teams of robots to coop-
erate on high level tasks such as distributed manipulation,
exploration and mapping [5, 6, 7]. However, far less em-
phasis has been placed upon optimizing the team’s collec-
tive sensing capabilities. Perhaps most relevant to our ap-
proach was a methodology for distributed control proposed
by Parker [8], which maximized the observability of a set
of moving targets by a team of robots. In this scheme, the
objective was maximization of the collective time that each
target was observable by at least one robot. The accuracy of
target pose estimates was not considered.

The theory of games has also provided inspiration for
similar research in target tracking. The pursuit-evasion
problem was investigated by LaValleet al [9]. They pre-
sented motion planning strategies that maximized the prob-
ability of keeping sight of a target as it moved through a
field of obstacles. Results were limited to the case of a
single pursuer/evader. Hespanhaet al also investigated the
pursuit-evasion problem, but from a multi-agent perspective
[10]. They proposed a greedy approach to control a group
of agents so as to maximize the probability of finding one
or more evaders. In both cases, the focus was on locating
and/or tracking one or more evaders. The quality of the es-
timates for target position was again not investigated.

In the Next Best View (NBV) problem, sensor placement
is of primary concern [11, 12]. Given, for example, pre-
vious range scans of an object, an NBV system attempts
to determine the next best position of the scanner for ac-
quiring the object’s complete surface geometry. As in our
framework, the emphasis is optimizing sensor placement.
However, NBV is intended for use in a static environment.
Inherent in our approach is the ability to handle dynamic
scenes which makes it more akin to a control law for dis-
tributed sensors.

2. Theoretical Approach

This section describes the theoretical framework that will
be used to discuss the problem of sensor deployment. In

order to ground the terminology, we will describe how var-
ious elements in the framework would relate to the scenario
depicted Figure 2. In this example, three robots are tasked
with localizing a moving target.
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Figure 2: Target localization by a robot team.

Let Cr denote the configuration space of the robotic plat-
forms. In this case, one can consider the set of vectors
formed by concatenating the positions and orientations of
the three platforms with respect to the base frame of refer-
ence(x1; y1; �1; x2; y2; �2; x3; y3; �3). Let � 2 Cr denote
an element of this configuration space.

Similarly letCw denote the configuration space of the pa-
rameters under consideration. In Figure 2 this space is par-
ticularly simple since we need only consider the position of
the moving target with respect to the base frame denoted by
the vector(xt; yt). In general, however, this space can be
much more complicated. Let! 2 Cw denote an element of
this configuration space.

Let ẑ denote the measurements obtained by the robot
team. For this example the vector formed by concatenating
the three angles measured by the robots(�1; �2; �3) serves
this purpose. The hat serves to remind us that these mea-
surements are corrupted by noise. In the sequel it will be
assumed that the designer has some model for or bounds on
the noise process.

LetEst(�; ẑ) denote a function which can be used to pro-
duce an estimate for the configuration of the world,!̂, from
the noisy measurements,ẑ, and the robots configuration,�.
Disp(!; !̂) is a function which returns a scalar value indi-
cating the expected disparity between the estimated value
!̂ and the actual value!. This value will depend upon the
distribution of errors on̂z.
P (!) denotes a probability density function on the con-

figuration spaceCw which can be used to model prior infor-
mation about the values of the parameters of interest. For
example, one may have some information about where the
target could be based on prior measurements.

Given this terminology, one can define a quality function
Q(�) as follows:

Q(�) =

Z
Cw

Disp(!;Est(�; ẑ))P (!)d! (1)



This function captures how the expected error in the esti-
mate,!̂, varies as the robots configuration changes.

Note that there are, of course, several alternative defini-
tions for this quality function that are equally reasonable.
One could consider the maximum expected error in the esti-
mate or the median expected error. Different choices for the
Q function may be more appropriate in certain situations.

With these notions in place, one can formulate the prob-
lem of choosing an appropriate configuration for the robots
as an optimization problem as shown below.

min
�2�

Q(�) (2)

The goal in this case is to find a choice of� 2 �, where
� � Cr, which minimizes the quality functionQ(�). Limit-
ing the optimization to a subset ofCr,�, allows us to model
situations where certain configurations cannot be achieved
due to obstacles in the environment, sensor constraints or
limitations on the range of motion of the robots.

Note that the framework is general enough to be applied
to a wide range of sensor planning problems. The specifics
of the task would be reflected in the definitions ofCr, Cw, ẑ,
Est andDisp. Specific instances of this framework will be
discussed in Section 4.

3. Computational Approach

For most interesting systems the optimization problem
given in equation 2 is difficult to solve analytically. It is
however, possible to approximate this process computation-
ally. To do this we draw inspiration from prior work on
particle filtering [13].

In particle filtering, probability distributions such as
P (!) are approximated by sets of tuples(!j ; �j), where!j
is a single sample fromCw and�j a weight that reflects the
likelihood of!j representing the state!. By making use of
this approximation, we can replace the integral of equation
1 with a weighted summation.

Q(�) �
X
j

Disp(!j ; Est(�; ẑ))�j (3)

Recall that the proposed technique is intended for use in
online applications where the robot team has an evolving es-
timate for the state of the system being observed and the ob-
jective is to determine how the robots should move in order
to improve the quality of this estimate at the next time in-
stant. In this context, the maximum velocities of the robots
serve to limit the configurations that need to be considered
and the current configuration of the team serves as a natural
starting point for the optimization procedure.

One simple but effective approach to optimizing the robot
configuration is to first approximate the gradient of the qual-
ity function, @

@�
Q(�), by sampling its value in the vicinity of

the current robot configuration. The controller then moves
the robot configuration in the direction indicated by this gra-
dient. Alternatively one could employ standard optimiza-
tion techniques, like the simplex method [14] to choose the
best achievable robot configuration in the vicinity for the
next time instant.

Note that it is possible to incorporate knowledge of the
dynamics of the observed system into this framework by
projecting the set of particles used to represent the distribu-
tion P (!) through the dynamic model in the usual manner
as described by Isard and Blake [13].

4. Experimental Results

4.1. Simulation Experiments

In order to demonstrate the utility of the proposed frame-
work, we have applied it to three sensor planning problems
in simulation: tracking a single point target, tracking multi-
ple point targets, and tracking a box. Each of these scenarios
is explained in more detail below.

4.1.1 Tracking a single point target

For the first scenario we considern robots equipped with
omnidirectional cameras, and tasked with tracking a single
static or randomly moving point target as shown in Figure
2. Cr represents the concatenation of the robot positions,
Cw the target position space, andẑ then angles to the tar-
get measured by the members of the robot team. We as-
sumeẑ to be corrupted with random bounded noise gener-
ated from our sensor model.Est(�; ẑ) returns an estimate
for the target position,̂!, which minimizes the squared dis-
parity with the measurements,ẑ, andDisp(!; !̂) simply
returns the Euclidean distance between the estimated target
position and the actual value.
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Figure 3: Generated trajectories (left)and disparity measurements
for 2 robots tracking a static point target.

Since our sensor noise model is assumed bounded,P (!)
is approximated from a randomly generated set of exem-
plars that are constrained to lie within the intersection of the
sensors’ error cones and all of the samples are given equal
weight.



In our simulations, robot motions are constrained by the
maximum robot velocity and the robots positions are lim-
ited by mandating a minimum standoff distance to the tar-
get. These serve to define the limits of the set over which
the optimization occurs,�. Results from Matlab simula-
tions for two robots with both static and dynamic targets
are provided below. For these trials, 100 exemplars were
used to approximateP (!), and the sensor model (for all
trials) was assumed to be bounded Gaussian noise of�5Æ

with � = 1Æ.
Figure 3 shows the static target case for two robots. Tra-

jectories for this symmetric case are predictable and con-
sistent with simulation results, as are the dramatic drops in
estimation error over time. Similar results are obtained for
the case of an unpredictably moving target, as shown in Fig-
ure 4.
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Figure 4: Generated trajectories (left) and disparity measurements
for 2 robots tracking an unpredictable moving point target.

4.1.2 Tracking multiple point targets

For the second scenario, we examine the more interesting
problem ofn robots trackingm independently moving, un-
predictable point targets. This problem can be tackled in
much the same manner as the previous one.Cw now rep-
resents the concatenation of possible target positions, andẑ

the correspondingn � m angles measured from robots to
targets.Est(�; ẑ) approximates the position of every tar-
get, andDisp(!; !̂) returns the sum of disparities between
estimated and true target positions. Results from a pair of
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Figure 5: Generated trajectories and summed disparity measure-
ments for 5 robots tracking 3 point targets.

simulation runs can be found in Figures 5 and 6. In these tri-
als, 3 unpredictable targets were tracked by 5 and 4 robots,
respectively. In both runs, 25 exemplars were used for each
target to approximateP (!).

Note the behavior of the robots as they move from their
original positions to more advantageous vantage points.
The robots automatically split off to track the targets with-
out any need for sophisticated switching rules to decide
which robots are assigned to which targets. The final con-
figuration is simply a consequence of the definition of the
Q function that the system attempts to optimize. Note also
that it is not possible in these scenarios to assign two robots
to every target so the robots distribute themselves automat-
ically to come up with the best composite estimate.
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Figure 6: Generated trajectories and summed disparity measure-
ments for 4 robots tracking 3 point targets.

4.1.3 Tracking a box

For the third case, we consider the problem of using the
measurements from the robots to estimate the configuration
of a box in the scene. This example demonstrates how the
proposed framework can be applied to scenarios where the
state estimate is not simply the concatenation of a set of
point locations. Here the configuration spaceCw is identi-
fied withSE(2) and elements of this set denote the position
and orientation of the box. The robots can measure the an-
gles to all of the visible box corners,ẑ. The estimation func-
tion Est(�; ẑ) as always is nonlinear, and minimizes the
disparity between the predicted angles to the visible corners
and the actual measurements.Disp(!; !̂) returns the sum
of the distances between the recovered box corners and the
actual corners. For these trials, 20 “box” exemplars were
used to estimateP (!). Sample simulation results can be
found in Figures 7 and 8.

In both cases we can see that the robots not only migrate
to positions more advantageous for tracking the corner fea-
tures, but also for maximizing thenumber of visible fea-
tures. The latter effect is a result of theEst function using
only the visible corners to estimate the box pose. Inherently
better estimates are obtained when more features are avail-
able.
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Figure 7: Generated trajectories and summed disparity measure-
ments for 2 robots tracking a static box.

For the sake of simplicity we have assumed in all of these
scenarios that the robots can accurately measure their posi-
tion and orientation with respect to a global frame of refer-
ence. Note that we could consider error in the positioning
of the robots within this framework by adding extra noise
terms to the measurements or by including the robots con-
figuration as part of the state to be estimated.
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Figure 8: Generated trajectories and summed disparity measure-
ments for 3 robots tracking a static box.

4.2. Experiments with the Clodbusters

The proposed framework has also been implemented on our
team of Clodbuster robots. In this experiment, a pair of
robot pursuers were tasked with tracking a third robot which
played the role of a moving target. A picture of the robot
team can be seen in Figure 9.

Each of the robots was fitted with a colored cylindrical
color which yielded a360Æ symmetrical target about each
robot’s optical axis. A color extractor operating in YUV
space was used to isolate these targets in each pursuer’s im-
age. The pursuers used these measurements to localize each
other and to estimate the targets position. The complete lo-
calization process ran at a rate of 15Hz.

For the sake of experimental expediency, the sensor
model assumed that the angular measurements obtained by
the robots were corrupted with additive errors drawn from a
normal distribution with a variance of� = 0:5Æ. This was
based upon several thousand measurements from numerous
representative static team poses. In truth, the statically mea-
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Figure 9: Clodbuster team used for experiments.

sured values were typically lower (� = 0:1� 0:3Æ). How-
ever, we expect dynamic levels to be higher and increased
� accordingly.

Experimental implementation followed closely with that
used in the corresponding simulation experiment. Deriva-
tive estimation techniques were used to approximate the
gradient of theQ function for optimizing the pursuers’
headings. The maximum robot speed and a prescribed
standoff distance served to define� for a given time-step.
Using 100 particles to approximate the probabilityP (!)
over the target configuration space, we were able to com-
pute locally optimal robot configurations at a rate of 15Hz.
A representative trial from our experiments is shown in Fig-
ures 10 and 11. Figure 10 shows a series of images from
an overhead view of the scene. Figure 11 shows the corre-
sponding position error estimates. Both the trajectory and
the dramatic drop in the error estimate correlate well with
the corresponding simulation results presented previously
in Figure 4.

Figure 10: Trajectory for two pursuer robots tracking a moving
target robot.



It should again be noted that no explicit controllers were
needed for maneuvering the formation. Trajectories were
implicitly generated by theQ function which captured the
notion of a good configuration. Additionally, as imple-
mented the computational complexity of this framework
scales linearly with both the number of targets and the num-
ber of robots, making it well suited for distributed, multi-
robot applications
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Figure 11: Estimated RMS position error (cm) vs. time for the
single target case.

5. Conclusions

This paper presents an approach to the problem of control-
ling the configuration of a team of mobile agents so as to op-
timize the quality of the estimates derived from their mea-
surements. We provide a theoretical framework for tack-
ling the sensor planning problem, and a practical compu-
tational strategy for implementing the approach. The ideas
have been demonstrated both in simulation and on an actual
robotic platform, and the results indicate that the system is
able to solve fairly difficult sensor planning problems on-
line without requiring excessive amounts of computational
resources.

Future work will investigate the issues involved in ap-
plying the framework to scenarios involving occluding ob-
stacles and to teams of robots with heterogeneous sensing
capabilities.
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