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Abstract

In this paper the problem of controlling the spatial

position and orientation of a robotic platform based on

the image data obtained from a video camera mounted

on that platform is considered. More speci�cally, we

propose control laws that generate translational and

angular velocities that will cause the robot to achieve

and maintain a �xed position and orientation with re-

spect to a set of feature points in the scene.

The proposed control schemes make use of well es-

tablished techniques for computing estimates for the

relative orientation of two camera positions from a

set of feature correspondences. An important advan-

tage of these control schemes is that it is possible to

demonstrate analytically that they are globally conver-

gent even in the presence of large calibration errors

in both the intrinsic parameters of the camera and in

the extrinsic parameters which relate the frame of ref-

erence of the camera to the body frame of the robot

platform which is being controlled. Furthermore no

a'priori knowledge about the structure of the scene is

assumed.

1 Introduction

The use of camera-based techniques to control

robotic systems has seen a signi�cant rise in popu-

larity recently. This �eld, known as visual servoing,

has been aided by the faster speeds and lower costs

of modern microprocessors, coupled with the general

availability of high quality cameras. The wealth of in-

formation available in image data and the exibility

of the sensor combine to make it an attractive option

for a control input if the right algorithms can be de-

veloped.

Papanikolopoulos, Nelson, and Khosla [17] have de-

veloped a visual tracking system that can track full

3-D motions, by utilizing a Jacobian-based adaptive

controller that estimates the depth parameters on-

line in order to track objects. More recent work

by Papanikolopoulos has extended these results us-

ing optical ow to estimate depth parameters for use

in uncalibrated environments [16]. Espiau, Rives, et

al. [4, 18, 19] proposed approaches that also utilize the

image Jacobian, by developing what they call the in-

teraction screw to describe the relationship between

robot motion and image feature motion. They have

implemented these systems, for example, in control-

ling mobile robots performing servoing based on land-

marks of known geometries. These techniques, how-

ever, require estimation of the depth of features in the

scene.

Other researchers have used strictly pose-based

control laws, which require explicit calculation of the

robot pose with respect to some known coordinate

frame. For example, Wilson et al. [21] generate pose

estimates using an extended Kalman �lter, and use

these estimates to drive the robot based on error mea-

surements in the pose space.

Hager, Chang and Morse [7] Hollinghurst and

Cipolla [11] and Horaud, Dornaika and Espiau [12]

have all investigated the issues involved in control-

ling robotic manipulators based on the image data ac-

quired with uncalibrated or coarsely calibrated stereo

systems. This work is important in the current con-

text, since it established that image-based techniques

can have a proven insensitivity to calibration param-

eters [8].

In this paper the problem of controlling the position

and orientation of a robotic platform based on the im-

age data obtained from a single video camera mounted

on that platform is considered. More speci�cally, we

propose control laws that generate translational and

angular velocities that will cause the robot to achieve

and maintain a �xed position and orientation with re-

spect to a set of features in the scene. We make the

assumption that the features that are tracked in the

image are derived from rigid objects, such as walls, ta-

bles, and other �xtures. Thus, they can move with re-

spect to the robot, but not with respect to each other.



We then formulate the problem as one of maintaining

a �xed pose relative to a given set of image features,

such as points and lines, as viewed by the onboard

camera.

The techniques described in this paper would be

applicable to a wide range of positioning tasks. They

could be employed on mobile platforms such as blimps,

helicopters, underwater vehicles, space based robots

or terrestrial vehicles to guide the robot to a desired

position and orientation with respect to one or more

target objects. The schemes could also be used for so-

called \eye in hand" servoing applications to position

the end e�ector of a robot arm with respect to a work

piece based on the image data obtained from a camera

mounted on the robot's gripper.

The proposed control schemes make use of well es-

tablished techniques for computing estimates for the

relative orientation of two camera positions from a set

of feature correspondences. As in other visual servo-

ing schemes, the goal position of the platform is ac-

tually speci�ed indirectly in terms of the image mea-

surements that would be obtained if the robot were in

the desired pose. The system generates appropriate

angular and translational velocity commands by esti-

mating the relative orientation between the cameras

current position and the target pose from the current

and desired image measurements.

The use of relative orientation for pose control has

also been proposed by Basri, Rivlin and Shimshoni

[1] Malis, Chaumette and Boudet [14, 15], Soatto and

Perona [20] and Deguchi [2]. The main contributions

of this paper are a theoretical analysis and experimen-

tal results which prove that these schemes are conver-

gent even in the presence of large calibration errors

in both the intrinsic and extrinsic parameters of the

camera system.

Note that the control laws presented here di�er

from previous work in that they do not require the

estimation of an image Jacobian or interaction screw,

used to relate the robot's body velocity to changes in

image measurements. Since this image Jacobian de-

pends upon the positions of the features with respect

to the camera, control schemes which rely on this ap-

proach must either estimate the Jacobian online or

assume that this matrix is nominally �xed at some

known value. No such estimates are required in this

method.

In Section 2 the relative orientation problem is

briey discussed. Section 3 presents an analysis of

the pose control problem, proposes control schemes for

solving this task and provides conditions under which

these strategies are known to be globally convergent.

The experimental results that have been obtained with

these methods are presented in Section 4 while Sec-

tion 5 presents some of the conclusions that have been

drawn from this research and proposes topics for fur-

ther investigation.

2 Relative Orientation

The problem of computing the relative position of

two cameras from a set of point correspondences in

two images has been well studied in both the com-

puter vision and photogrammetry literatures. Most

of the approaches to solving this problem proceed by

exploiting the epipolar constraint, which relates the

position of the projection of a point feature in one

image to its projection in the second image.
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Figure 1: The basic geometry of the relative orienta-

tion problem

The basic imaging geometry of the relative orienta-

tion problem is shown in Figure 1. Let P1 denote the

coordinates of a point P in the scene with respect to

a coordinate frame of reference centered at the focus

of projection of the �rst camera. The coordinates of

that same point P with respect to a coordinate frame

associated with the second camera are given by the ex-

pression P2 = RT (P1�T) where R and T denote the

relative orientation and position of the second frame

with respect to the �rst.

Assuming a perspective projection model, the rela-

tionship between the coordinates of a point with re-

spect to the camera frame P = (X;Y; Z)T and the

projective coordinates of the image of that point on

the focal plane, p = (u; v; 1)T can be written as fol-

lows:

p / AP; (1)

where A is an invertible upper triangular matrix that

represents the intrinsic parameters of the camera.

In our application, camera frames 1 and 2 refer to

two di�erent positions of the same camera and we will

assume that the intrinsic parameters of the camera

are �xed, hence A is a constant matrix. This means



that the projective coordinates of the projection of the

point into the two images, p1 and p2, are given by the

following equations:

p1 / AP1 (2)

p2 / AP2 = ART (P1 �T) (3)

From these two equations one can derive the epipolar

constraint which is given by

pT
1
A�TJ(T)RA�1p2 = 0; (4)

where

J(T) =

0
@

0 �Tz Ty
Tz 0 �Tx
�Ty Tx 0

1
A : (5)

The matrix F = A�T J(T)RA�1 is termed the funda-

mental matrix [5]. A number of algorithms have been

proposed for estimating this fundamental matrix from

a set of point correspondences [13, 9, 10].

If the intrinsic parameter matrix of the camera A is

known it is possible to compute the so-called essential

matrix, E, from the fundamental matrix, F , as follows:

E = ATFA / J(T)R (6)

This essential matrix can be decomposed into its

constituent parts to obtain estimates for the rotation

and translation that link the two camera positions

with the understanding that the translation vector T

can only be recovered up to a scale factor [5, 13].

When the displacement between the two camera

positions is zero the fundamental matrix degenerates

to zero. However, in this case the relationship be-

tween image coordinates in the �rst image and their

correspondents in the second image takes the form of

a collineation. That is p2 / H
1
p1 where H

1
=

ARA�1. Faugeras refers to the matrix H
1

as the

collineation of the plane at in�nity [6].

This suggests a two stage process for determining

the relative orientation of the two camera positions. In

the �rst stage the algorithm tests whether the points

in the two images are related by a collineation. This is

done by selecting a subset of four image points in the

goal image whose coordinates form a projective basis

of the real projective plane RP 2 and computing the

homography that relates these points to their corre-

spondents in the current image. It is then possible to

test how well this collineation predicts the location of

the other image features by evaluating the function

�(R; T ) =
X
i


pi
2pi
2

 �
Hpi

1Hpi
1



2

; (7)

which measures the disparity between the normalized

coordinates of corresponding points. If this resid-

ual is su�ciently small then this indicates that the

translational displacement between the two cameras is

small, and the algorithm should return the computed

collineation matrix, H
1
. Otherwise the fundamental

matrix must be estimated using any of the previously

mentioned techniques.

3 Pose Control

3.1 Controlling Pose

The objective of the proposed visual servoing

schemes is to drive the disparity between the robot's

current position and desired con�guration to zero. As

shown in Figure 1 this disparity is characterized by

two components, the rotational disparity, R 2 SO(3),

and the translational disparity, T 2 <
3. Similarly, the

body velocity of the platform, that is, its instantaneous

velocity with respect to its current pose, can be char-

acterized in terms of its angular velocity ! 2 <3 and

its translational velocity v 2 <3.

For the purposes of this discussion, we will con-

sider the problems of regulating the translational and

rotational displacements to zero separately. Let us

�rst set ! = 0 and consider control laws of the form

v = �(R;T)LT, where �(R;T) is a scalar-valued

function of pose, and L is a constant, positive de�-

nite matrix which is used to scale the control law.

Next, de�ne a Lyapunov function LT (T) = kTk2,

which we can use to test for asymptotic convergence

to T = 0 (this is the goal state, since our control is

targeted towards zeroing the relative pose). Di�eren-

tiating this Lyapunov function yields:

d

dt
LT (T) = �2TTv = �2�(R;T)TTLT (8)

From this expression we conclude that for L positive

de�nite, if �(R; T ) > 0 8T 6= 0 then LT (T) will de-

crease monotonically over time and, hence, the trans-

lational error will be regulated to zero.

The rotational displacement of the platform can

be handled in a similar manner. That is, let v = 0

and consider control laws of the form ! = �(R)M�

where �(R) is a scalar-valued function, M is a con-

stant matrix, and � is computed from J(�) = R�RT .

We can construct a Lyapunov function of the form

LR(R) = tr((R � I)T (R � I)) = 2(3 � tr(R)) which

gives a measure of the magnitude of the rotational

displacement. Di�erentiating this Lyapunov function



yields:

d

dt
LR(R) = �2tr( _R)

= �2tr(J(!)TR)

= ��T! = ��(R)�TM� (9)

From which we conclude that this control law will reg-

ulate the rotational error to zero if the matrix M is

positive de�nite and �(R) > 0 8R 6= I .

To regulate the error in both orientation and trans-

lation to zero, the control laws described above could

be applied sequentially. That is, the orientation con-

trol law would be invoked to reduce the rotational dis-

placement to an acceptable error and then the transla-

tion control law would be employed to drive the plat-

form to the desired position. In practice , however,

we have found that both of these control laws can be

applied simultaneously.

3.2 Control Schemes

In the most straightforward case, the intrinsic pa-

rameters of the camera are known and the body frame

of the robot platform and the camera frame are coin-

cident or can be made so by a suitable change of coor-

dinates. In this situation, the essential matrix can be

extracted from the fundamental matrix and estimates

for R and T=kTk can be computed as described in

Section 2.

The estimate for the rotation matrix can be used

to regulate the orientation error to zero simply by ap-

plying the control law ! = � where J(�) = R � RT .

This control law trivially satis�es the conditions for

convergence set forth in Section 3.1.

Similarly the control law v = (�(R;T)=kTk)T with

�(R;T) given in Equation 7 can be employed to reg-

ulate the translational displacement to zero since the

scalar valued function �(R;T)=kTk is guaranteed to

be greater than zero for all con�gurations where T > 0

as long as a su�cient number of feature points in gen-

eral position are used.

3.3 Control in the presence of extrinsic
calibration error

In practise the relationship between the camera

frame and the robot's body frame can be di�cult to

measure accurately. In this case there will be some

discrepancy between the frame in which the body ve-

locities, ! and v, are applied and the camera frame.

For the purposes of this discussion, we will assume a

worst-case scenario, where the displacement between

the robot and camera is completely unknown. Let

these unknown rotational and translational displace-

ments be denoted by ~R and ~T, respectively, which we

will call the extrinsic calibration errors.

In this case there will be a discrepancy between the

commanded body velocity of the camera frame and the

actual velocity, since these two velocities are related

to each other via the adjoint transformation, which

depends on R and T. More speci�cally, in the case

of a purely translational motion where the velocity of

the robot frame is v, the body velocity of the camera

frame will be ~Rv. Similarly if the angular velocity of

the robot frame is !, then the angular velocity expe-

rienced by the camera frame will be ~R!.

The equations for the control law must be amended

to account for this discrepancy. In the translational

case the e�ective velocity of the camera frame will be

given by:

v = (�(R;T)=kTk) ~RT (10)

From the analysis in Section 3.1 we can conclude that

this control law will still regulate the translational er-

ror to zero if the matrix ~R is positive de�nite. This

will be true if ~R represents a rotation of less than �=2

degrees. Notice that this is quite a generous margin

of error.

Similarly, when the orientation control law is

amended to account for extrinsic calibration error, we

obtain an expression of the form:

! = ~R� (11)

We can again conclude that the orientation error will

be regulated to zero as long as ~R is positive de�nite. It

should also be noted that while we have shown these

control laws to be valid even under very large extrinsic

calibration errors, in practice it is expected that some

information will be known about the calibration, so

that the relative calibration error will be quite small.

3.4 Control in the Presence of Intrinsic
Parameter Errors

In the previous control laws it was assumed that

the intrinsic parameters of the camera were known

perfectly. In practise the estimates for these parame-

ters will contain errors. The relationship between the

estimate for the intrinsic parameters, Aest, and the

actual values, A, can be expressed as follows:

A = Aest
~A (12)

Where ~A is an unknown invertible upper triangular

matrix.



In this case, we can recover an approximation to

the essential matrix, which we denote by ~E, from the

fundamental matrix, F :

~E = AT
estFAest (13)

= AT
est(Aest

~A)�T J(T)R(Aest
~A)�1Aest

= ~A�TJ(T)R ~A�1: (14)

From this matrix it is possible to recover an estimate

for ~AT by observing that

( ~A�T J(T)R ~A�1)T ( ~AT) = 0: (15)

If this estimate is used to to generate translational

velocity control signals the e�ective control law in the

presence of extrinsic calibration errors will take the

form:

v = (�(R;T)=k ~ATk) ~R ~AT: (16)

By the analysis in Section 3.1, we can conclude that

this control scheme will be globally convergent if the

matrix ~R ~A is positive de�nite. This result implies that

it is possible to construct control laws which servo the

robotic platform to a desired position even in the pres-

ence of large errors in both the intrinsic and extrinsic

parameters.

A similar argument for robustness in the face of

intrinsic calibration errors can be made for orienta-

tion control when the matrix H
1

is available. As was

noted earlier this matrix cannot, in general, be recov-

ered solely from point correspondences. It can, how-

ever, be estimated if the translational displacement

between the two camera frames is known to be zero

or if additional information such as correspondences

between vanishing points in the two images can be

recovered.

When this matrix is available we can recover an

estimate for the rotational displacement between the

two camera frames by noting that the H
1

matrix

takes the form of a rotation matrix under a similarity

transform. Since similarity transformations preserve

eigenvalues it follows that after an appropriate scale

factor is applied, the eigenvalues of H
1

should be 1,

ei� and e�i�, and its trace should be 1+2 cos � where,

R = exp(J(��)) and k�k = 1. Furthermore the eigen-

vector of H
1

corresponding to the unit eigenvalue will

be � = A�. From this, we can compute ~A� by pre-

multiplying � by A�1est.

From these estimates, we can apply a control law

of the form:

! = (�=k ~A�k) ~R ~A�: (17)

This control law will again regulate the orientation

error to zero as long as ~R ~A is positive de�nite.

Note that these convergence results are global in na-

ture, that is, they do not depend on the robots starting

or ending positions. This distinguishes the presented

analysis from local stability results egs [3].

4 Experimental Results

Experiments were carried out both in simulation

and on a Nomadics XR4000 mobile robot platform.

The simulation experiments modeled the action of a

robot with all 6 degrees of freedom acting under the

control schemes outlined in the previous section.
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Figure 2: This �gure demonstrates how the control

law drives the feature points to the desired values over

time even in the presence of large calibration errors.

The dots denote the current positions of the projec-

tions of the feature points in the image while the dia-

monds represent the goal con�guration.

In the simulation experiments the robot was started

in an arbitrary position and instructed to servo the im-

age measurements to a speci�ed con�guration. Fig-

ures 2a thru 2d show how the image of the feature

points change as the robot moves towards its goal.

The diamonds represent the goal con�gurations of the

points while the dots denote the current projections

of those features. These simulations veri�ed that the

control laws regulated the platform to the desired po-

sition and orientation on every occasion even in the

presence of signi�cant errors in the intrinsic and ex-

trinsic calibration parameters.

During these experiments the rotation and transla-

tion control laws were employed concurrently so the

robot translated and rotated at the same time. The

fact that the system was able to converge perfectly



in every trial provides some evidence that the trans-

lational control law is robust in the face of distur-

bances, since the angular velocity of the platform ac-

tually causes some undesired translation of the camera

frame due to extrinsic calibration errors.

The pose control scheme was also implemented on

the Nomadics XR4000 mobile platform. In this case a

simpler form of the relative orientation algorithm was

employed which exploited the fact that the motion of

the robot was con�ned to the plane. This relative

orientation computation only required four point cor-

respondences rather than the usual eight. The robot

was instructed to drive the image measurements to

a speci�ed con�guration as shown in Figure 3. The

marked points on these image indicate the features

that the robot used to accomplish its task. The in-

trinsic parameters of the camera in this example were

known only approximately and the body frame of the

robot was assumed to be coincident with the camera

frame although this was not in fact the case.
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Figure 3: This �gure shows the four features that were

used for pose control. The crosses denote the positions

of the features in the current image while the asterisks

denote the target positions of the features. The targets

shown on the walls were not used by the system.

Experiments were carried out to determine how ac-

curately the pose control system could regulate the

robot's position. The �rst step in these experiments

was to place the robot at the target location and ac-

quire an image of the scene from this vantage point.

The robot was then moved to an arbitrary starting

location and instructed to apply visual servoing until

the positions of the tracked features matched their lo-

cations in the starting image. The robot achieved the

desired pose by �rst rotating to the required orienta-

tion and then translating to the desired position. The

robot's position and orientation were independently

measured by the odometry system. Over a sequence

of 5 trials the average error in the robots position at

convergence was 9.584 cm, the average error in orien-

tation was 1.1574 degrees and the average disparity

between the measured image features and their target

locations was 3.5192 pixels.

A second implementation of our pose control

scheme on the mobile robot made use of vanishing

points in the image to achieve better control of the

robot's orientation. By tracking two parallel lines in

the image the robot was able to obtain an estimate for

the homography of the plane at in�nity and, hence an

estimate for its rotation which was used for pose con-

trol. Using the vanishing point information improved

the accuracy of the pose control system signi�cantly.

Over a series of �ve trials the average error in the robot

position at convergence was 7.04 cm, the average er-

ror in orientation was 0.5844 degrees and the average

disparity between the image features and their tar-

get locations was 3.760 pixels. Figure 4a shows how

the error in the robots orientation changes over time

during the orientation phase of the motion while Fig-

ure 4b shows the robots trajectory in the plane as it

moved towards the target position which is denoted

by a diamond. The discontinuities in these graphs are

artifacts of the implementation of the controller which

involved discontinuous changes in the robot's velocity

pro�le.
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Figure 4: Figure a indicates how the orientation er-

ror of the robot decreases over time during the ro-

tation phase of the control when vanishing points in

the image are exploited while �gure b indicates the

robots trajectory towards the target position during

the translation phase.

We expect that all of these results could be im-

proved with better feature extraction and tracking al-

gorithms and better control over the robot's velocity.



5 Conclusions and Future Work

This paper describes an approach to controlling the

pose of a robotic platform using image measurements

obtained from a camera rigidly mounted on that plat-

form. The techniques make use of well-established

techniques for computing the relative orientation of

two camera positions from feature correspondences be-

tween the two images. These techniques do not require

any a'priori knowledge of the locations of the features

in the scene nor do they attempt to estimate such in-

formation online.

The techniques di�er from methods based on pose

estimation since they do not attempt to measure the

location of the platform with respect to any particular

target object in the scene. They also di�er from other

visual servoing techniques since no attempt is made

to estimate the image Jacobian that relates control

actions to changes in the image measurements.

An analysis has been presented which demonstrates

that the proposed control schemes are convergent in

the face of large calibration errors in both the intrinsic

and extrinsic parameters. From this analysis, we are

able to derive a precise characterization of the mag-

nitudes of the errors that can be tolerated. Further

analysis is required to elucidate the rate of conver-

gence of these schemes and their disturbance rejection

properties.
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