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Abstract— This paper presents a scheme which takes as input
a 3D point cloud and an associated color image and parses the
scene into a collection of salient planar surfaces. The scheme
makes use of a fast color segmentation scheme to divide the
color image into coherent regions and the groupings suggested
by this procedure are used to inform and accelerate a RANSAC
based interpretation process. Results on real data sets are
presented.

I. INTRODUCTION

Over the past decade the advent of smaller, cheaper range
sensors has made it more attractive to field robots that can
acquire 3D range maps of their environment. Early systems
made use of single scan range finders such as the SICK or
Hokuyo sensors which were mounted on moving platforms
or pan-tilt heads and scanned across the scene to produce
a 3D point cloud. More recently, range sensors such at
the SR 4000 ’Swiss Ranger’ from Mesa Imaging and the
Velodyne scanning range sensor have been used to produce
two dimensional range images at high frame rates.

The recently announced 2D range camera systems from
Canesta and Primesense promise to further accelerate this
trend by providing real time range imagery at a very
compelling price point. The Primesense sensor, which will
be employed in the Xbox Kinect system, is a particularly
interesting example since it acquires a color video stream
along with the range imagery which makes it easier to
deploy schemes that exploit both sources of information
simultaneously.

These developments prompt us to consider the following
research question; how do we go about programming our
robots to make use of the volumes of raw data that these
sensors can produce? Ideally we would like to endow our
robots with the ability to extract relevant high level percepts
from the stream of sensor data. For instance, in an indoor
environment it would be useful for the robot to be able to
quickly detect relevant objects such as walls, doors, windows,
tables and chairs.

As a step towards this goal this paper proposes a scheme
which can be used to rapidly parse a scene into a collection of
planar surfaces as illustrated in Figure 1. The algorithm takes
as input a 3D point cloud and an associated color image.
The system then makes use of a recently developed real time
segmentation scheme to divide the color image into coherent
regions. These regions are then used to suggest groupings of
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Fig. 1. This figure shows the input to and output from the scene interpreta-
tion process. (a) shows the input image after color based segmentation with
the 3D points projected into the frame (b) shows the 3D planes recovered
by the procedure. (This figure is best viewed in color.)

the 3D points to a RANSAC based interpretation process
which extracts the relevant planar surfaces. Figure 1a shows
an example of an input image that has been passed through
the segmentation process. The associated point cloud has
been projected into the frame and overlaid on the image.
Figure1 b shows the planar surfaces that have been extracted
by the procedure, each of the recovered planes is assigned a
unique color.

Image segmentation is a well studied problem in the
Computer Vision literature and a number of effective algo-
rithms have been developed including the Mean Shift [3]
method proposed by Comaniciu and Meer, the Normalized
Cut method proposed by Shi and Malik[9], and the super-
pixel method developed by Felzenswalb and Huttenlocher
[5]. Recently, segmentation schemes based on the pB edge
detector developed by Arbelaez et al. [2] have been shown
to produce state of the art results on standard datasets.

One issue with these segmentation methods is that they all
require a considerable amount of computational effort and, as
such, they are not ideally suited to a robotic context where



we are typically interested in processing large volumes of
data quickly. The segmentation scheme that will be leveraged
in this paper makes use of an efficient randomized hashing
scheme which produces competitive segmentation results
in real time with modest computational effort. This makes
it particularly attractive for the types of applications we
envision.

Several schemes have been proposed to address the prob-
lem of interpreting point cloud data. Rusu et al. [8] describe
an impressive system for parsing range scans acquired from
indoor kitchen scenes. Toshev et al. [11] describe a scheme
that has been used to automatically parse range scans to
produce building models. Anguelov et al. [1] and Lalonde et
al. [6] describe schemes for classifying regions in point cloud
data sets to identify, buildings, trees and other structures.

Most of these schemes were designed to work offline in
a batch fashion. In this context one can afford to make
several passes over the data to identify nearest neighbors,
or to fuse neighboring regions. The goal in this work is to
develop a scheme that can ultimately be run in an online
fashion so that it can be used to parse the data as it is
being acquired. Another salient difference is the fact that
this approach seeks to exploit the relationship between the
2D range image and the associated imagery to accelerate the
interpretation process.

The idea that one can make use of the mutual information
between color and range imagery has also been explored
by Dolson et al. [4] and by Yang et al.[12]. These papers
describe innovative techniques that can be used to upsample
a relatively low resolution range image to the resolution of
an associated color image. In contrast, the goal in this work
is not to upsample the range imagery but rather to provide
an interpretation in terms of salient planar surfaces.

The idea of using image segmentation information to
constrain or inform a RANSAC based interpretation process
has also been suggested by Ni, Jin and Dellaert [7]. In this
work, these researchers show how image based groupings
can be used to improve the search for the fundamental
matrix that relates two views. Here we make use of image
segmentations to search for structurally salient regions in
the scene. This interpretation process will typically return
multiple groupings in the scene as opposed to a single
interpretation of the data such as a fundamental matrix.

Section 2 of this paper presents the approach that has been
developed to interpret the range and image data. Section 3
describes some of the results that have been obtained by
applying this approach to actual data sets. Finally Section 3
discusses conclusions and future work.

II. TECHNICAL APPROACH

A. Data Acquisition

In our experiments range and image data were acquired
using the PR2 humanoid robot from Willow Garage shown
in Figure 2. This platform is equipped with a Hokuyo range
finder mounted on a tilting platform and an array of cameras
mounted on a pan-tilt head. A calibration procedure was
performed to recover the intrinsic parameters of the cameras

Fig. 2. The PR2 humanoid robot was used to capture the input imagery
and range scans. This platform is equipped with an array of cameras and a
Hokuyou range scanner mounted on a tilting platform.

and the geometric relationship between the camera platform
and the range finder. This allows us to project the 3D points
acquired with the range scanner onto the image as shown
in Figure 1. This projection procedure takes into account
the radial and tangential distortion in the camera projection
model and the displacement between the range scanner and
the camera.

While the PR2 platform was a convenient choice for
development and debugging, the algorithms that have been
developed do not rely on any special capabilities of this
robot. The only assumption is that the 3D point cloud can
be accurately registered to the associated color imagery.
As such, the scheme could equally be applied to the data
produced with a Swiss Ranger and a color camera or to the
imagery gathered with a Primesense ’Kinect’ sensor.

B. Image Segmentation

As previously mentioned, the parsing procedure makes
use of a novel segmentation scheme based on randomized
hashing which is described in more detail in [10]. The
segmentation scheme employs a feature based approach.
Each pixel in the image is represented by a feature vector
which encodes a set of properties used to describe that
pixel. In all of the experiments described in this paper, we
employ a simple HSV color descriptor vector but one could
equally easily use more sophisticated feature vectors such as
a histogram of color values or a vector of texture coefficients.

Given this set of feature vectors, the goal of the segmenta-
tion procedure is to divide them into a set of clusters which
capture the most salient groupings in the distribution. To do
this, the scheme employs a randomized hashing procedure
where the feature vectors are hashed onto binary codes using
a series of randomly chosen splitting planes.

For each of the hash codes the clustering procedure records
how many feature vectors are mapped to that code. We expect
that clusters in feature space will induce population maxima
in the code space. That is, if we interpret the set of hash
codes as the nodes of a hypercube graph we would expect to
observe that some of the hash codes have a greater population



than their neighbors. This motivates us to replace the original
problem of clustering vectors in the feature space with the
simpler problem of looking for population maxima in the
code space graph.

The scheme is similar in spirit to the Mean Shift segmenta-
tion algorithm which also seeks to identify modes in the dis-
tribution of feature vectors. Where the mean shift algorithm
uses a Parzen Window based scheme to estimate density
in feature space, this scheme uses randomized hashing to
identify relevant groupings of feature vectors.

A significant advantage of the proposed segmentation
scheme is that the computational effort required scales lin-
early in the number of pixels and the operations required
are simple and regular. In order to demonstrate this fact,
a real time version of the scheme was implemented on a
Macbook Pro laptop computer. This implementation was
used to segment 640 by 480 video frames at a rate of 10
frames per second using a single core of an Intel Core 2
Duo processor running at 2.33 GHz. This rate includes the
time taken for all phases of the algorithm, image acquisition,
randomized hashing, local maxima detection and connected
components processing. Since almost all of the steps in the
procedure are embarrassingly parallel, the algorithm is a well
suited to implementation on modern multi-core processors
and GPUs and should be amenable to further acceleration.

C. Scene Interpretation

Once the color image has been segmented, all of the 3D
points that have been projected into the frame can be tagged
with the label of the image segment that they project to.
This provides us with a vey useful partitioning of the 3D
point data sets into subsets that are quite often semantically
meaningful.

We use this partitioning to suggest groupings to a
RANSAC based interpretation process. More specifically the
scheme considers each of the image regions in turn and pulls
out all of the 3D points that project to that segment. Using
this subset, the system runs a RANSAC loop wherein it
randomly selects groups of 3 points and constructs the plane
passing through those selections. Each candidate plane is
scored based on the number of inliers it attracts in the point
cloud and the best candidate is retained. An iteratively re-
weighted least squares procedure is then invoked to refine
the parameters of the plane. Finally all of the inliers of the
resulting refined plane in the point data set are removed
from further consideration and the next image segment is
considered.

At the beginning of the interpretation process the image
segments are sorted by population so that the larger regions
are considered first. This heuristic tends to speed up the
interpretation process since, in indoor environments, large
coherent regions in the image often correspond to planar
regions. Detecting these regions early in the interpretation
process removes those points from further consideration and,
thus, speeds the overall interpretation procedure.

It is important to note that the number of RANSAC
iterations required to find an inlier set is typically quite low

since 3D points that project to the same image segment are
very often on the same surface. This means that the chances
of picking an acceptable set of inliers from each group is
relatively high and the computational effort required to find
such a grouping is concomitantly low.

Since the procedure considers every image segment it is
quite effective at finding relatively small planar regions that
may represent a small fraction of the overall data set but that
are grouped together by the image segmentation procedure.
Such groupings would be particularly difficult to find if we
were to search for them by picking triples of points from the
data set at random.

Algorithm 1 Fast Scene Interpretation
1: Segment the color image using randomized hashing
2: Project the 3D points onto the image
3: Sort the image segments by population
4: for i = 0 to npasses do
5: for all image segments do
6: Find all of the 3D points that project to this segment
7: for j = 0 to ransac-its do
8: Select 3 points from the subset
9: Construct the plane through those points

10: Score the plane by counting inliers in the point
cloud

11: Retain the best plane
12: end for
13: Refine the best plane using iteratively reweighted

least squares fitting
14: Find all of the inliers to this plane in the point cloud

and remove them from further consideration
15: end for
16: end for

III. EXPERIMENTAL RESULTS

The proposed scene interpretation procedure was applied
to data sets that were collected in and around our office
complex. Like most indoor scenes these examples contained
a number of planar surfaces along with a number of distract-
ing point measurements caused by clutter and spurious range
readings. The results obtained on a few of these scenes are
shown in Figure 3. The first column shows the color image
of the scene, the second column shows the segmented image
along with the projection of the point cloud onto that frame.
The third column shows various views of the processed 3D
point cloud where each of the extracted planes is given a
unique color.

Table I summarizes some of the relevant numbers as-
sociated with each of the scan data sets shown in Figure
3. These results show that the total number of candidate
triples considered by the interpretation procedure is fairly
low in comparison to the the total number of 3D points in
each of the data sets. This indicates that the segmentation
procedure is doing a good job of focusing the efforts of the
interpretation procedure since even with this small number
of candidates the procedure does a creditable job of parsing



Fig. 3. This figure shows the input and output to the scene interpretation process for a variety of different scenarios. The first column shows the original
color image. The second column shows the segmented color image with the 3D points projected into the frame. The third column is a 3D rendering of
the point cloud where each recovered plane is assigned a unique color. (This figure is best viewed in color.)



TABLE I
PROCESS MEASUREMENTS

Data Set no. 1 2 3 4 5 6
Number of 3D points 59137 57368 60432 60107 60458 58324
Number of Image Segments 2534 2859 3854 4271 2847 2781
Number of Recovered planes 14 15 33 40 11 20
Total number of RANSAC its 560 720 1320 1600 440 800
Estimated RANSAC its without segmentation 2391 300859 97499 268110 476 6614
Running time of interpretation procedure in seconds 0.301 0.335 0.676 0.813 0.252 0.433

the scene into a relatively small number of salient planar
surfaces. Note that the total number of RANSAC iterations is
even less than the number of extracted image segments since
earlier stages of interpretation typically absorb the points
associated with several image regions as inliers so those
segments are not considered in subsequent stages.

For comparison we compute an estimate for the number of
RANSAC iterations that would have been required to find the
same set of planes without the benefit of image segmentation
information. Here the number of iterations required to find
a set of 3 inliers on a plane containing k points in a point
cloud of N points is approximated as (N/k)3. The estimate
for the number of RANSAC iterations required is the sum
of the iterations to required to recover each of the extracted
planes starting from the most populous and proceeding to
the smallest removing the detected inliers at each stage. This
estimate is typically several times higher than the number of
RANSAC iterations carried out by the proposed procedure.

Table I also records the total time required to perform
the scene interpretation procedure which was implemented
in MATLAB without any significant optimization and run
on a MacBook Pro laptop. The average running time across
all six trials was 0.47 seconds. This suggests that the entire
interpretation procedure, including the image segmentation
step, could be performed several times a second on a laptop
class machine.

As was noted previously, the scheme is quite effective at
pulling out small surfaces with relatively few inliers. This
illustrated in Figure III which shows a closeup view of the
interpretation produced for the first data set in Figure 3.
This closeup highlights the fact that the EXIT sign on the
ceiling and the card reader on the wall are both pulled out
as distinct surfaces even though they constitute a relatively
small proportion of the point cloud. Similarly in the fourth
data set the box on the table is successfully distinguished
from the surface of the table and the background. Most of
the apparent clutter in this particular data set is the result of
the interpretation procedure detecting and delineating small
surfaces on the structures in the ceiling. In the sixth scan data
set the table in the foreground is distinguished from the books
lying on that surface, the chair backs are also recovered as
separate regions. This is due to the fact that these subsets are
identified as coherent groups in the segmented image and as
such are eventually discovered and reported.

Fig. 4. Figure showing a closeup view of the interpretation of the first
scan data set. This view shows that the EXIT sign hanging from the roof
and the card reader on the wall are detected as separate planes even though
they are relatively small sets. (This figure is best viewed in color.)

IV. CONCLUSION

The research in this paper was motivated, in part, by the
advent of relatively inexpensive sensors that can be used
to acquire range imagery at video rates. These range video
cameras can be paired with standard image sensors to provide
rich descriptions of the scene in front of the robot. The goal
of this work has been to develop methods that could be used
to parse these kinds of data streams in an online manner to
provide the robot with a higher level understanding about its
environment.

The proposed scheme leverages a novel real-time segmen-
tation scheme based on randomized hashing which is used to
group the 3D points in the point cloud into subsets which are
likely to lie on the same surface in the scene. This grouping
is used to inform a RANSAC based interpretation scheme
which uses this grouping as a prior to bias its sampling
procedure.

Fusing the image and range data in this manner proves
to be a very effective method for guiding the interpretation
scheme towards fruitful interpretations. The scheme is able to
identify salient surfaces in most scenes with relatively little
random exploration. Hence, the scheme can be run relatively
quickly on realistic data sets. Furthermore, using the image
segmentation data as a prior helps the system to identify
small but salient surfaces that would be difficult to detect
through purely random sampling. Interestingly the results
seem to indicate that even a fairly rough segmentation of the
image can provide very useful information since no particular



effort was made to tune the segmentation procedure to
produce an optimal decomposition and one can easily notice
several artifacts in the segmentation image caused by under
or over segmentation. This is not terribly problematic since
the segments are being used as advice rather than as ’ground
truth’ and in that role the segmentation is correct much more
often than not.

The ancillary cues provided by the segmentation procedure
can also be used to focus the interpretation process. As
an example the size and position of the image segments
in the frame can provide useful cues about the extent or
importance of the associated regions. One may want to focus
ones attention on large regions in search of major structural
features such as walls or floors, or one may be interested
in searching for smaller objects like books on tables which
would typically correspond to smaller segments.

A. Future Work
We believe that this work opens up several avenues for

further exploration. Firstly, for indoor scenes at least, the
scheme can be viewed as a black box which reduces the
reams of point data to a smaller set of planar primitives that
can be matched between frames as the robot moves through
the scene. These correspondences could be used to gauge the
trajectory of the robot and to fuse 3D information gathered
from a range of vantage points.

It is also attractive to consider using the output of this
interpretation system as the input to a higher level inter-
pretation process which would seek to explain the observed
surfaces in terms of doors, floors, walls, tables, etc. Here
again the ability to rapidly reduce tens of thousands of range
points to tens of plane candidates simplifies the higher level
parsing process and makes it much more tractable.

In a similar vein one could consider using the image
segmentation information to delineate the extents of surfaces
in the scene. Typically the range images that we can obtain
are at a significantly lower resolution than the associated
imagery. The boundaries of the regions in the image could
be used to interpolate and extrapolate the surfaces in order
to provide a clearer picture of the layout of the scene.

Another place where one can leverage the image data is
in distinguishing between salient surface regions that may
be geometrically coplanar. For instance in a hallway closed
doorways may lie flush with the walls but in the image they
differ in appearance. By leveraging the image segmentation
data one may be able to discriminate between surfaces or
regions in the scene based on geometry and appearance.

Lastly while planar surfaces are prevalent in indoor en-
vironments they are not the only structures that we are
interested in extracting. One could equally consider using
the grouping information provided by the image to extract
other relevant structures or more general shape models.
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