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Abstract—This paper presents an approach to parsing the
Manhattan structure of an indoor scene from a single RGB-
D frame. The problem of recovering the floor plan is recast as
an optimal labeling problem which can be solved efficiently using
Dynamic Programming.

I. INTRODUCTION

This paper considers the problem of parsing RGB-D images
of indoor scenes, such as the one shown in Figure 1 to extract
an underlying floor plan defined by the delimiting walls.

(a) (b) (c)

Fig. 1. a. RGB image b. Depth Image c. Inferred floor plan

It is important to note that this parsing problem involves
more than simply identifying the wall surfaces in the scene.
While this is a necessary first step, the extracted walls are
effectively infinite planes supported by a finite set of depth
measurements. In order to produce a floor plan one must
reason about the extent of each plane and how the walls
interact with each other to form corners, occlusion edges and
other structures.

Furthermore, in a typical scene one must contend with the
fact that wall segments are often occluded by furniture, pedes-
trians and general clutter and that the depth measurements
may be inaccurate or missing entirely. An effective parsing
procedure needs to be able to infer the extents of the wall
surfaces even in the presence of ambiguous, uncertain and
incorrect input measurements. The approach proposed in this
paper deals with all of these problems by formulating the
parsing process as an optimal labeling problem which can be
solved exactly and efficiently using Dynamic Programming.

A number of researchers have addressed the related, but
more challenging problem of inferring the 3D structure of a
scene from monocular imagery. Gupta et al. [5] describe an
interesting system for reasoning about scene structure using
qualitative geometric and structural constraints. Hedau and
his colleagues [6, 7] have explored algorithms for inferring
the layout of indoor scenes based on vanishing points and
other cues. Lee et al. [9] present an interesting approach to

reasoning about scene structure using volumetric constraints.
Saxena and Ng [12] recast the problem in terms of a Markov
Random field and infer the scene structure based on learned
models. Furukawa et. al [4] describe an impressive system
for recovering the structure of indoor scenes that utilizes a
sequence of monocular image and employs a sophisticated
but expensive volumetric analysis procedure. In this paper we
make use of the range data provided by the Kinect sensor
which simplifies the interpretation problem and provides more
accurate parsing results.

Recently Silberman and Fergus [13] have addressed the
problem of scene analysis using RGB-D data. In this work the
analysis problem is framed in terms of pixel labeling where
the goal is to assign each pixel in the frame an appropriate
class label. The goal in our work is to go beyond a labeling
of the visible pixels and to instead propose a coherent floor
plan that accurately extrapolates the underlying structure of the
scene even in the face of clutter. In this paper we choose to
focus on extracting the floors and walls since these represent
the major structures which delimit the extent of the scene and
provide the underlying context for other structures such as
doors, walls, tables and chairs.

The approach to interpretation taken in this paper is most
similar to the one given by Lee, Hebert and Kanade [10] who
propose an approach to extracting the Manhattan structure
of a frame based on vanishing points and an analysis of
possible corners in the scene. Our approach makes use of
the 2.5D structure of the image in the same way that they
do but takes a different approach to formulating and solving
the parsing problem. The proposed approach is also similar
to the parsing scheme described by Flint et al.[3, 2] who
also make use of Dynamic Programming to efficiently propose
interpretations of indoor scenes from monocular imagery. The
principal differences between this work and that of Flint et
al.is that it takes as input an RGB-D frame and begins by
explicitly extracting planar surfaces, further the subsequent
dynamic programming optimization procedure is phrased in
terms of the RGB-D measurements as opposed to monocular
and stereo cues.

Several schemes have been proposed to address the problem
of interpreting point cloud data. Rusu et al. [11] describe
an impressive system for parsing range scans acquired from
indoor kitchen scenes. Toshev et al. [14] describe a scheme that
has been used to automatically parse range scans to produce
building models. Anguelov et al. [1] and Lalonde et al. [8]



describe schemes for classifying regions in point cloud data
sets to identify, buildings, trees and other structures.

Most of these schemes were designed to work offline in a
batch fashion. In this context one can afford to make several
passes over the data to identify nearest neighbors, or to fuse
neighboring regions. The goal in this work is to develop a
scheme that can ultimately be run in an online fashion so
that it can be used to parse the data as it is being acquired.
Another salient difference is the fact that this approach seeks
to exploit the relationship between the 2D range image and the
associated imagery to accelerate the interpretation process.

II. TECHNICAL APPROACH

Segment RGB Image

Extract Planar Segments

Find Dominant Rectilinear Structure

Identify Candidate Wall Segments

Divide Image into Intervals

Extract Wall Layout

Fig. 2. Flowchart of overall parsing procedure.

The overall procedure for parsing the scene based on an
RGB-D image is outlined in the flowchart given in Figure 2.
The first stage in the pipeline segments the input RGB image
into regions based on extracted image edges. The second stage
of processing uses the image segmentation as a prior to search
for planar surfaces in the scene. The third stage identifies
the floor of the scene and estimates the dominant rectilinear
orientation. The fourth stage considers the set of extracted
planes and identifies segments that could serve as walls. The
fifth stage breaks the image up into intervals based on the
extracted wall segments. The final stage estimates the layout
of the scene by labeling each interval with the index of the
underlying wall.

Each of these stages is explained in more detail in the
following subsections using the scene shown in Figure 1 as a
running example.

A. Image Segmentation

(a) (b)

Fig. 3. a. Extracted Intensity Edges b. Image Segmentation

The first step in our analysis is an edge accurate segmenta-
tion scheme that breaks the RGB imagery into coherent, dis-
joint regions. The image segmentation procedure begins with
a standard Canny edge extraction step which finds significant
discontinuities in the intensity image as shown in Figure 3a.
The detected edgels are then passed to a Delaunay Triangula-
tion procedure which produces a triangular tessalation of the
image. The resulting triangular graph is then segmented using
an agglomerative merging procedure that repeatedly merges
the two regions with the lowest normalized boundary cost.
These merging costs are computed by considering the average
HSV color in each region. This procedure can be efficiently
implemented using a heap data structure and the entire seg-
mentation procedure can be carried out in 0.1 seconds on a
typical image in Matlab.

B. Extracting Planar Surfaces

(a) (b)

Fig. 4. a. Extracted Planes b. Result after coplanar segments are merged

The regions derived from the image segmentation are used
to suggest groupings of the depth samples from the range
imagery. More specifically, the depth samples associated with
each of the image regions are passed to a RANSAC routine
which is used to recursively divide the point set into planar
regions. A key advantage of the proposed approach is that the
image segmentation procedure is very effective at suggesting
useful groupings so very few RANSAC iterations are needed
to discover the structures of interest. Effectively, the image
segmentation serves to focus the computational effort of
the procedure on groupings that are likely to yield fruitful
interpretations so the procedure is able to discover relevant
groupings quickly even in complex environments with several
surfaces.



It is important to keep in mind that the depth measurements
produced by the Kinect sensor are derived from structured
light via triangulation as opposed to time of flight. As such
the device is best thought of as measuring disparity which is
inversely related to depth. One practical consequence is that
the error in the depth estimates increases rapidly as one gets
further away from the sensor which argues against standard
approaches to fitting planes to points based on the residual
error in 3D.

In the proposed scheme the planar surfaces are fit to
the RGB-D measurements by exploiting the observation that
planar surfaces in the scene will project to planar regions in
the disparity image. This can be seen by taking the standard
equation for a plane in the coordinate frame of the sensor:

nxX + nyY + nzZ = c

dividing through by scene depth, Z, to obtain:

nx
X

Z
+ ny

Y

Z
+ nz = c

1
Z

and noting that u = X
Z and v = Y

Z correspond to the
normalized image coordinates while w = 1

Z denotes the
measured disparity at that coordinate. This means that planar
regions in the scene can be extracted by fitting affine models
to the disparity in each image region.

Figure 4 shows the results of the planar interpretation proce-
dure on the sample scene. Here the different colors correspond
to different planar segments that were recovered. These planar
segments are then passed to a greedy merging procedure which
seeks to group coplanar segments into extended regions as
shown in Figure 4b.

C. Finding Dominant Rectilinear Structure

The planar extraction procedure returns a set of segments
which can then be analyzed to identify salient structures.
The analysis procedure assumes that the vertical axis of the
image is roughly aligned with the gravity vector. Given this
assumption, the first step in the interpretation procedure is to
identify the floor plane by searching for a large planar region
near the bottom of the image whose normal is approximately
vertical and which appears to underly most of the other 3D
points. The normal to this plane defines the direction of the
gravity vector in the RGB-D sensors frame of reference.

Candidate wall segments are identified by looking for ex-
tended planar segments whose normals are perpendicular to
this gravity direction. Each candidate wall segment effectively
defines an associated rectilinear orientation for the scene where
the z-axis corresponds to the gravity direction, the x-axis
corresponds to the normal to the wall segment and the y-
axis is simply the cross product of these normal vectors. This
rectilinear orientation can be compactly represented with a
single rotation matrix Rcw ∈ SO(3), Rcw =

[
x̂ ŷ ẑ

]
which captures the orientation of the RGB-D sensor with
respect to the Manhattan structure of the scene.

The interpretation system cycles through each of the can-
didate wall segments and scores the associated rectilinear

orientation by determining how many of the other planar
surfaces are aligned with one of the cardinal axes. The
candidate rotation matrix with the most support is chosen
as the dominant rectilinear orientation. The fourth column of
Figure 8 depicts the extracted rectilinear structure by showing
how various segments are aligned with the dominant axes.
Segments colored blue are aligned with the gravity direction
or z-axis. Segments colored red or green are aligned with the
x and y axes respectively.

In addition to the walls extracted by the fitting procedure,
4 additional walls are added to form an axis aligned bounding
box that surrounds all of the recovered points. This bounding
box serves as a ’backdrop’ providing a default interpretation
for every point in the scene.

D. Identify Candidate Walls and Wall Segments

Once the dominant rectilinear structure of the scene has
been established, the system identifies extracted planar seg-
ments that may be walls in the scene. This is accomplished
by finding planar structures in the scene whose normals are
aligned with either the x or y axis and that have an appropriate
horizontal and vertical extent. Note that in practice the walls
are often partially occluded by furniture and other clutter so
there is no requirement that the wall segment extend from the
floor to the ceiling. The third column of Figure 8 shows the
results of the analysis that identifies wall segments. Note that
for the purposes of our experiments tall cabinets and office
partitions can serve as walls since they have an appropriate
extent and serve to delimit the floor plan of the scene.

Once the candidate walls have been identified in the image,
the points that make up that segment are further divided into
contiguous sections called wall segments. This partitioning
accounts for the fact that a wall may stop and start in the scene
as the dominant wall in Figure 1 does. These wall segments
represent continuous stretches of wall surface observed in the
RGB-D image. Figure 5 makes the distinction between walls,
which are modeled as infinite planes, and wall segments which
are thought of as finite sections of wall surface observed in
the RGB-D image.

E. Divide Image into Intervals

Figure 6 shows an idealized image of an indoor scene where
the vertical axis of the camera is aligned with the gravity
direction. In this case vertical lines in the scene will project
to vertical lines in the image. In particular the vertical lines
corresponding to corners in the scene or to points where one
wall segment occludes another would effectively subdivide the
horizontal field of view into a sequence of disjoint intervals as
shown. Each interval in the image would be associated with a
wall. This structure was noted and exploited by Lee, Hebert
and Kanade [10] in their work on parsing indoor scenes from
single images.

The parsing scheme proposed in this paper proceeds by
breaking the image into a sequence of intervals and then
associating a wall with each span to produce an interpretation
of the scene. The endpoints of the intervals are derived from



Fig. 5. An overhead view of a floor plan of the scene indicating the walls,
which are considered to have infinite extent and are depicted by dashed
lines, and the wall segments, which are depicted by the solid line segments.
These wall segments correspond to contiguous planar regions in the RGB-D
image. The interpretation system also considers all of the possible intersections
between perpendicular walls, denoted by circles in the figure, since these may
correspond to corners in the scene.

Fig. 6. Idealized figure of a frame showing how the horizontal field of view
can be divided into non-overlapping intervals each of which will be associated
with an underlying wall.

the extents of the extracted wall segments and from the
inferred intersections between all pairs of perpendicular walls.
These intersections are depicted by circles in Figure 5 . All of
these putative endpoints are projected into the horizontal field
of view of the sensor and then sorted from right to left to
define image intervals as shown in Figure 6. Including more
endpoints than needed is not a problem since the subsequent
labeling stage can consolidate neighboring intervals as needed.

Note that we do not require our input images to be perfectly
aligned with gravity as shown in this idealized view since the
rotation matrix Rcw recovered in the rectilinear analysis stage
allows us to effectively rectify the input image to account for
the tilt and roll of the sensor.

F. Extract Wall Layout

As noted in the previous subsection, the scene interpretation
procedure is rephrased as a labeling problem where the goal

Fig. 7. For each pixel in the frame we can compute the index of the wall
that best explains the observed disparity and orientation. We can then evaluate
how well a particular wall explains a given image interval by projecting the
wall into the frame at that interval and determining how many pixels in that
region agree with the proposed label. The quadrilateral demarcated on the
frame corresponds to the projection of one of the prospective walls into one
of the image intervals.

is to label each interval in the horizontal field of view with an
associated wall segment. The extents of the intervals would
define the extents of the walls from the point of view of the
observer.

This can be viewed as a graph labeling problem where the
nodes in the graph are the intervals and neighboring intervals
are connected by edges to form a simple 1D chain. We asso-
ciate a cost with assigning wall labels to each of the intervals
and a cost to assigning different wall labels to neighboring
segments and then find a labeling which minimizes the overall
cost.

In order to assign costs to each interval, the procedure
first determines the optimal wall segment label for each
pixel in the frame. This is accomplished by projecting each
wall into the RGB-D frame and comparing the disparity and
orientation predicted at each pixel with the observed disparity
and orientation. The predicted depth or disparity at each pixel
can easily be calculated based on the best fit normal to the
plane. The system considers each of the extracted walls in
turn and each pixel in the frame retains the index of the wall
that comes closest to predicting the observed disparity and
surface normal at that point.

Once this initial labeling step has been completed, we can
evaluate the cost of assigning a particular image interval to a
particular wall candidate by projecting a quadrilateral defined
by the interval endpoints and the ceiling and floor heights
into the frame as shown in Figure 7. The system considers
all of the pixels that lie within that region and measures what
fraction of these pixels do not have the wall in question as
their first choice. This fraction indicates the cost of assigning
the wall label to the interval. The lower the number, the better
the match.

This score is also weighted by the apparent size of the
interval in the image. More specifically a normalized interval



size is computed by taking the angle subtended by the interval
in the image and dividing it by the effective horizontal field
of view of the image to produce a number between 0 and 1.
The product of this normalized interval size and the fractional
score mentioned in the previous paragraph is used as the final
label score for the interval.

Unfortunately it is typically not sufficient to simply assign
each interval the index of the wall with the lowest cost. Miss-
ing depth measurements, occlusion and inherent ambiguities
serve to introduce spurious labelings. The proposed scheme
makes use of a global optimization procedure to enforce
smoothness and produce a more coherent interpretation in the
face of these uncertainties. The labeling procedure exploits the
fact that the nodes in the graph we are labeling form a simple
chain which allows us to find the globally optimal assignment
efficiently via Dynamic Programming.

In order to encourage continuity in the labeling process a
cost is associated with each of the edges in the chain. This
transition cost is designed to capture the cost associated with
assigning adjacent intervals to different wall segments. If the
proposed labeling induces a significant change in depth at the
junction between the two image intervals then a fixed transition
penalty is applied, in our experiments this transition penalty
was fixed at 0.03. Note that if two perpendicular walls meet to
form a corner there is no depth discontinuity and the associated
transition penalty would be zero.

The objective function that we are interested in minimizing
takes the following form:

O(l) =
ni∑
i=1

(fi(li) + ei(li, li−1)) (1)

Where ni denotes the number of intervals, fi(li) denotes the
cost of associating interval i with wall label li and ei(li, li−1)
represents the transition cost associated with assigning interval
i the label li while interval i− 1 is assigned the label li−1.

The optimization problem can be tackled in stages where
at each stage the system considers a series of optimization
problem of the form:

Di,j = min
k

[fi(j) + ei(j, k) + Di−1,k] (2)

Where Di,j represents the cumulative cost of assigning
interval i the label j at this stage. The Dynamic Programming
procedure systematically considers all of the legal labels that
can be assigned to each interval. Note that at each stage
this optimization problem uses the results from the previous
optimization stage. The computational complexity of the op-
timization problem O(nin

2
w). Where nw denotes the number

of wall labels. On a typical problem ni is on the order of
20 while nw is on the order of 10 so the computational cost
of the optimization is usually quite small. The final output of
the optimization procedure is a labeling of each of the image
intervals. This labeling can be used to construct the 2.5D scene
models shown in Figure 8.

The overall strategy of phrasing the interpretation process as
an optimal labeling problem that can be solved with Dynamic

Programming is similar to the approach proposed by Flint et
al.[3, 2] however the schemes used to define the interpretation
costs are quite different because this approach exploits RGB-D
imagery.

III. EXPERIMENTAL RESULTS

In order to evaluate the effectiveness of the proposed
algorithm it was applied to a data set of 38 RGB-D im-
ages taken from various vantage points in a typical office
environment. For each of the test images an interpretation
score was manually generated by counting the number of
image intervals where the wall assignment suggested by the
automatic procedure differed from the humans assessment. A
score of zero would indicate that the system had correctly
labeled all of the wall surfaces in the scene while a score of
1 would indicate that one of the image intervals was labeled
incorrectly.

On 20 of these images the procedure produced a completely
correct interpretation extracting all wall surfaces even in the
presence of significant clutter, on sixteen of the images one
of the recovered wall segments was labeled incorrectly. In the
vast majority of these cases the erroneous parse covers a small
section of the frame and the error is caused by incomplete
range data. On two of the frames the procedure failed to
produce an intelligible result. The same parameter settings
were used on all of the examples.

Figure 8 shows samples of the scenes that the system parsed
correctly. Note that the scheme was able to handle situations
with significant amounts of clutter such as the third and fifth
case. It can also correctly handle cases with relatively complex
occlusion structures as in the second example. Note that the
system correctly recovers small features like the edges of the
doorway on the second example and the structure of the water
cooler alcove in the third example. It is also able to deal
correctly with the clutter in the fourth and fifth examples.

Figure 9 shows examples of the cases where one of the
planes is labeled incorrectly. Note that in all of these cases
the errors are fairly subtle and the gross structure of the scene
is actually recovered quite well. For example In the fifth case
the person in the foreground is labeled as a wall, in the fourth
example the end of the corridor is not parsed correctly because
it is beyond the range of the sensor.

The entire segmentation and analysis procedure is imple-
mented in Matlab and it takes approximately 6 seconds to
run the complete analysis on a typical RGB-D image on a
Macbook Pro laptop. No attempt has been made to optimize
the code and we expect that a more efficient implementation
would run significantly faster.

All of the code and datasets used in this paper
are freely available online at the following website:
http://www.cis.upenn.edu/∼cjtaylor/RESEARCH/projects/
RGBD/RGBD.html.

IV. CONCLUSIONS AND FUTURE WORK

This paper has presented an approach to parsing the floor
plan of an indoor scene from a single RGB-D frame by

http://www.cis.upenn.edu/~cjtaylor/RESEARCH/projects/RGBD/RGBD.html
http://www.cis.upenn.edu/~cjtaylor/RESEARCH/projects/RGBD/RGBD.html


finding a set of candidate walls and delimiting their extent
in the image. The problem of parsing the scene is recast as an
optimal labeling problem which can be solved efficiently using
Dynamic Programming. In this sense, the method exploits the
2.5D structure of the image to simplify the scene interpretation
problem.

The analysis provides a compact description of the overall
structure of the scene in terms of a floor plane and wall
segments. This representation can serve as a basis for further
semantic analysis which would identify other structures such
as doors, tables, chairs and windows. We note that while the
Manhattan structure is a convenient cue, it is not essential to
this approach. The same basic scheme could be employed to
parse environments where some of the walls do not adhere to
the rectilinear model.

Future work will seek to merge parse results from a
sequence of RGB-D frames into larger floor plans. Here
the Manhattan structure provides a convenient framework
for accumulating information about recovered wall segments
into a coherent map in an incremental fashion. Such an
approach could be used to produce semantic decompositions of
extended regions which could be useful in a variety of robotic
applications.
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Fig. 8. Figure showing some successful scene parsing results. The second column shows the shows the planar segments extracted from the scene, different
colors are used to label points belonging to different planes. The third column shows the points belonging to candidate wall segments, the fourth column shows
shows the results of the analysis that finds the dominant rectilinear structure, Horizontal surfaces are blue and vertical surfaces are red or green depending on
their orientation. The final column shows the results of parsing the image into wall segments, each pixel is assigned a label corresponding to the underlying
wall.



Fig. 9. Figure showing cases where one of the recovered planes has an error. The second column shows the shows the planar segments extracted from the
scene, different colors are used to label points belonging to different planes. The third column shows the points belonging to candidate wall segments, the
fourth column shows shows the results of the analysis that finds the dominant rectilinear structure, Horizontal surfaces are blue and vertical surfaces are red or
green depending on their orientation. The final column shows the results of parsing the image into wall segments, each pixel is assigned a label corresponding
to the underlying wall.
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