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Abstract

This paper describes atechnology for localizing networks
of embedded cameras and sensors. In this scheme the
cameras and the nodes are equipped with controllable light
sources (either visible or infrared) which are used for sig-
naling. Each camera node can then automatically determine
the bearing to all the nodes that are visible from its vantage
point. From these angular measurements, the camera nodes
are able to determine the relative positions and orientations
of other nodesin the network.

The method is dual to other network localization tech-
niques in that it uses angular measurements derived from
images rather than range measurements derived from time
of flight or signal attenuation. The scheme can be imple-
mented with commonly available components and scales
well since the localization calculations only require limited
local communication. Further, the method provides esti-
mates of camera orientation which cannot be determined
solely from range measurements.

The localization technology can serve as a basic capa
bility on which higher level applications can be built. The
method could be used to automatically survey the locations
of sensors of interest, to implement distributed surveillance
systems or to analyze the structure of a scene based on the
images obtained from multiple registered vantage points.

1 Introduction

As the prices of cameras and computing elements con-
tinuetofal, it has becomeincreasingly attractive to consider
the deployment of smart cameranetworks. Such cameranet-
works could be used to support awide variety of applications
including environmental modeling, 3D model construction
and surveillance[3, 2, 7, 4]

One critical problem that must be addressed before such
systems can be realized is the issue of locaization. That is,
in order to take full advantage of the images gathered from
multiple vantage pointsit is hel pful to know how the cameras
in the scene are positioned and oriented with respect to each
other.

In this paper we describe a deployment scheme where
each of the smart camerasis equipped with a co-located con-
trollable light source which it can use to signal other smart
cameras in the vicinity. By analyzing the images that it ac-
quires over time, each smart camera is able to locate and
identify other nodes in the scene. This arrangement makes
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it possibleto directly determine the epipolar geometry of the
camera system from image measurements and, hence, pro-
vides a means for recovering the relative positions and ori-
entations of the smart camera nodes.

A number of approaches to recovering the relative po-
sitions of a set of cameras based on tracked objects have
been proposed in the literature [1, 6]. These approaches can
be very effective in situations where one can gather suffi-
cient correspondences over time. In contrast, the approach
proposed here directly instruments the sensors and provides
rapid estimates of the sensor field configuration using rela
tively modest computational and communication resources.

2 Implementation

Figure 1 diagrams the basic elements of our vision based
localization system. Here we show a small network of 3
nodes, two of which are equipped with cameras. We will
begin by discussing how localization proceedsin thissimple
case and then describe how the scheme can be extended to
handle multiple nodes.

Inthefirst stage of thelocalization process, the nodes sig-
nal their presence by blinking their lightsin a preset pattern.
That is, each of the nodes would be assigned a unique string
representing a blink pattern such as 10110101, the node
would then turn its light on or off in the manner prescribed
by its string. Similar temporal coding schemes are employed
in laser target designators and freespace optical communica-
tion schemes. These blink patterns provide ameans for each
of the camera equipped nodes to locate other nodes in their
images. They do this by collecting a sequence of images
over time and analyzing the image intensity arrays to locate
pixels whose intensity variesin an appropriate manner. This
approach offers a number of important advantages, firstly it
allowsthe node to both localize and uniquely identify neigh-
boring nodes since the blink patternsareindividualized. Sec-
ondly, it allows the system to reliably detect nodes that sub-
tend only afew pixelsin an image which providesan avenue
for further miniaturization of the smart camera nodes.

Figure 2 shows the results of the blinker detection phase
on atypical image. Here the detected |ocations in the image
are labeled with the unique codes that the system found.

Once the nodes have been detected and localized in the
images, we can derive the unit vectors, Vap, Vac, Vba and Vie
that relate the nodes as shown in Figure 3. Here we assume
that the intrinsic parameters of each of the cameras (focal
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Figure2. Thisfigureshowstheresultsof automatically localizing a constellation of 4 smart camerasand 3 blinker nodes.
Theimage obtained from one of the smart camerasis shown in awhile the localization results are shown in b.
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Figure 1. This figure shows the basic elements of the
proposed localization scheme. It depicts two smart cam-
era nodes equipped with controllablelight sourcesand a
third blinker node.

Figure 3. This figure depicts the relative vectors and
lengthsin our 3 node localization problem.

length, principal point, distortion coefficients) have been de-
termined in an offline calibration step. These parametersa-
low usto relate locations in the image to direction vectorsin
space.

From the vectors vay, Vac, Vba and Vye, We can derive two
additional vectors ng and ny which represent normalized ver-
Sionsof (Vap X Vac) and (Vpa X Vipe). These vectors correspond
to the normal to the plane containing the three nodes, A, B
and C expressed with respect to frames A and B respectively.
Here we note that the unit vectors vap, Vha, Na and n, are
related by a rotation matrix Rap which captures the relative
orientation of cameraframes A and B.
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From the two perpendicular unit vectors, va, and ny, we
can congtruct the orthonormal matrix Ry € SO(3) as fol-
lows: Ray=[ Vab Na (VapxNa) ] Similarly, from the or-
thogonal unit vectors —vp, and —np we construct the matrix

Vah =
na -

Ro=[ —Voa —Nb (VbaXxMNp) ]
From equations 1 and 2 we deduce that:
Ra = RapRo ©)
which in turn yields the following expression for Ryp:
Rap = Ra(Ro)" ©

Once we have ascertained the relative orientation of the
two cameras. We can recover the relative position of the
three nodes by considering the following homogenouslinear
system.

lapVab + lbe(RabVie) — lcaVac = 0 (5

Herethe unknown variables| 4, lc and |z denotethelengths
of the segments AB, BC and CA. Since this system is ho-
mogenouswe can only resolve the configuration of the nodes
up to a positive scale factor.

The scheme that we have described essentially corre-
sponds to the calibration of a stereo system where both of
the epipoles can be located and measured directly in the im-
agery. In this configuration, we require only a single addi-
tional point to resolve the relationship between the two cam-
era frames. Since the epipoles are directly measured, the
localization scheme is quite stable numerically and can be
expected to yield accurate results as long as we avoid the
singular configuration where all three nodes are collinear.

Larger networks of smart cameras and sensors can be |o-
calized by considering the relationship between triangular
subgraphs of the visibility graph as shown in Figure 4. In
this graph, the directed edges indicate that a particular smart
cameracan view another nodein the graph. Thetrianglesin-
dicatetriples of nodesthat can belocalized using the scheme



described previously. The localization results from trian-
gles that share an edge can be fused together into a com-
mon frame of reference. Therefore, if the set of localization
triangles is fully connected, the entire network can be fully
localized. Alternatively, by analyzing the connected compo-
nents in the induced graph of localization triangles, one can
automatically determine which sets of cameras can be local-
ized to acommon frame. The entirelocalization procedureis
capable of determining the relative location and orientation
of the nodes up to a scale factor, this scale can be resolved
by measuring the distance between any pair of nodes. Figure
6 shows the final result of localizing a constellation of four
smart cameras and three blinker nodes. Note that we do not
requireall of the nodesto have cameras - oncewe havelocal-
ized two or more of the cameras we can localize other nodes
equipped with lights through simple triangulation. This is
an important advantage since it means that we can deploy a
few smart camera nodes in an environment and use them to
localize other smaller, cheaper sensor motes that are simply
outfitted with blinkers.

Figure4. Larger networks of smart camerasand sensors
can be localized by considering the relationship between
triangular subgraphs of the visibility graph.

It is important to note that in this framework angular
measurements derived from images and range measurements
derived from other sources are treated as complementary
sources of information. Measurements derived from the vi-
sion system can be used to determinethe rel ative orientations
of the camera systems which is important information that
cannot be derived solely from range measurements. On the
other hand, range measurements can be used to resolve the
scale ambiguity inherent in angle only localization schemes.
Similarly angular measurements can be used to disambiguate
the mirror reflection ambiguities that are inherent in range
only localization schemes. Ultimately it is envisioned that
smart camera networks would incorporate range measure-
ments derived from sources like the MIT Cricket system or
Ultra Wide Band radio transceivers. These measurements
could be used to improve the results of the localization pro-
cedure and to localize nodes that may not be visible to the
smart camera nodes.

2.1 Refining Pose Estimates

The previous section described how neighboring cameras
can compute their relative position and orientation based on
corresponding image measurements. This process can be
done in a completely decentralized manner using only local
communication and will produce accurate relative location
estimates which is what is typically what is required to fuse
measurements from neighboring sensors.

If necessary, the estimates for node position and orien-
tation produced by this process can be further refined by a
scheme which takes account of al available measurements
simultaneously. In this refinement step the localization pro-
cessisrecast as an optimization problem where the objective
is to minimize the discrepancy between the observed image
measurementsand the measurementsthat would be predicted
based on the estimate for the relative positions and orienta-
tions of the sensors and cameras. This process is referred
to as Bundle Adjustment in the computer vision and pho-
togrammetry literature.

In the sequel we will let uj; € R® denote the unit vector
corresponding to the measurement for the bearing of sensor |
with respect to camerai. This measurement is assumed to be
corrupted with noise. The vector vij € R3 correspondsto the
predicted value for this direction vector based on the current
estimates for the positions and orientations of the sensors.
This vector can be calculated as follows:

vij = Ri(Tj =) (6)

In this expression R; € SO(3) denotes the rotation matrix
associated with camera i while T;, Tj € R? denote the posi-
tions of camerai and sensor j respectively (note that sensor
j could be another camera).

The goal then isto select the camera rotations and sensor
positions so as to minimize the discrepancy between the vec-
torsujj and vjj for every available measurement. In equation
7 this discrepancy is captured by the objective function O (x)
where x denotes a vector consisting of all of the rotation and
trandation parametersthat are being estimated.

Vi
0(x) = ¥ [luj — =12 )
~ i |

Problems of this sort can be solved very effectively us-

ing variants of Newton's method. In these schemes the ob-

jective function is locally approximated by a quadratic form

constructed from the Jacobian and Hessian of the objective
function

O (x+8%) ~ O(x) + (VO (X)) Tox+ %SXT(VZO(X))SX ©®)

At each step of the Newton algorithm we attempt to find
a step parameter space 6x that will minimize the overall ob-
jective function by solving alinear equation of the form.

8x = —(V20(x)) (VO(x)) ©)

Here we can take advantage of the fact that the linear sys-
tem described in equation 9 is typically quite sparse More
specifically, the Hessian matrix V20 will reflect the struc-
ture of the visibility graph of the sensor ensemble. This can
be seen by noting that the variables corresponding to the po-
sitions of nodesi and j only interact in the objective func-
tion if nodei observes node j or vice versa. For most prac-
tical deployments, the visibility graph is very sparse since
any given cameratypically sees arelatively small number of



nodes. This means that the computational effort required to
carry out the pose refinement step remains manageable even
when we consider systems containing several hundred cam-
eras and sensor nodes.

3 Applications of Smart Camera Networks

Sef localizing smart camera networks can serve as an
enabling technology for a wide range of higher level appli-
cations. Here we focus on two applications where the im-
ages from the camera systems are used to derive information
about the geometric structure of the environment.

3.1 Visual Hull Reconstruction

Multi camera systems are commonly used to deriveinfor-
mation about the three dimensional structure of a scene. One
approach to the reconstruction problem which is particularly
well suited to the proposed self localizing smart camera net-
work is the method of volume intersection which has been
employed in various forms by a number of researchers [5].
This method can be used to detect and localize dynamic ob-
jects moving through the field of view of the smart camera
network. Here a set of stationary cameras are used to observe
one or more objects moving through the scene. Simple back-
ground subtraction is employed to delineate the portions of
the imagesthat correspond to the transient objects. Oncethis
has been accomplished one can interrogate the occupancy of
any point in the scene, P, by projecting it into each of theim-
agesin turn and determining whether or not it lies within the
intersection of the swept regions. This process can be used
to produce an approximation for the 3D structure of the tran-
sient objects by sampling points in the volume. The results
of such an analysis are shown in Figure 5.

"

Figureb. (a) Background image of a scene (b) Imagewith
object inserted (c) Results of the background subtrac-
tion operation (d) Results of applying the volumetric re-
construction procedure to the difference images derived
from thethree smart camera nodes

In this application the ability to rapidly localize a set of
widely separated camerasis a distinct advantage. Other im-
plementations of this reconstruction scheme involve com-
plex, time consuming calibration operations. This imple-

mentation, in contrast, could be be quickly deployed in an
ad-hoc manner and would allow a user to localize and track
moving objects such as people, cars or animals as they move
through the scene.

3.2 Ad Hoc Range Finder

Another approach to reconstructing the 3D geometry of
the scene using the imagery from the smart camera network
involves establishing stereoscopic correspondences between
points viewed in two or more images. If we are able to find
such corresponding points we can readily reconstruct their
3D locations through triangulation. In order to employ this
scheme we need a mechanism for establishing correspon-
dences between pixels in one image and their mates in an-
other.

One approach to establishing these inter frame correspon-
dences is to employ structured illumination to help disam-
biguate the matching problem. Thisidea has been employed
successfully in a number of stereo reconstruction systems.
One such structured illumination scheme is depicted in Fig-
ure 7 where a projection system sweeps a beam of light
across the surface of the scene. Correspondences can then
be established by simply observing when various pixels in
the two images are lit by the passing beam.

Figure 6 shows a pair of images acquired using such a
structured light correspondence scheme. Here a plane of
laser light is swept across the scene and the curves corre-
sponding to the illuminated pixels in the two images are re-
covered. In eachimage, every point on the curve corresponds
to aray in space emanating from that camera position. To
find the correspondence for that point in the other image we
first project that ray into the other image to construct the cor-
responding epipolar line and then search aong that line to
find the corresponding pixel that is aso illuminated by the
laser plane as shownin Figure 7.

Illuminated
Scene Points

Projector E?nlzolar
b

aset of scenepointsalongaplanar curvein thescene. For
every point on the projected curve in one image we can
locate its correspondent in the other image by searching
along the epipolar linein the other image.

After sweeping the plane over the entire scenewe are able
to determine the range to most of the pointsin the scene that
arevisiblefrom both camera positions even though those two
camera positions are widely separated. Such a range map
is shown in Figure 6¢c. This range scan was constructed by



Figure 6. ((a) and (b) show Two images of a scene illuminated with a plane of laser light which is used to establish
correspondences between the two views (c) shows the range map constructed based on the correspondences derived

from a sequence of such images.

sweeping the laser plane through 180 degrees in 1 degree
increments.

It is important to note here that this range map is con-
structed in an ad-hoc manner since the relative positions and
orientations of the cameras are reconstructed automatically
using the self localization algorithm and the position and ori-
entation of the projector are not needed to recover the scene
depths. The proposed reconstruction scheme is interesting
because it provides a mechanism for recovering the structure
of an extended scene using an ensemble of small, cheap im-
age sensors and beam projectors which can be deployed in
an ad-hoc manner. Thisisin contrast to the traditional ap-
proach of recovering scene structure using expensive range
sensors which must be carefully calibrated and aligned.

Figure 8. In this experiment range maps of the scene
were constructed from 4 different vantage points using
different configurations of cameras and projectors. Two
of these scans are shown here along with the cor respond-
ing images

The scheme can be extended for use with multiple cam-
eras and multiple beam projectorsas shownin Figure 8. Here
we are able to obtain multiple range maps of the scene taken
from different vantage points using a collection of camera
systems and projector positions. Importantly, since we are
able to recover the relative positions of all of the cameras
used here via the self localization scheme, all of the recov-

ered range maps can be related to a single frame of refer-
ence. This provides an avenue to recovering the structure
of extended environments by merging the range maps ob-
tained from the different camera systems into a single coher-
ent model of the scene.

4 Conclusions

Thispaper describesaschemefor determining therelative
location and orientation of a set of smart camera nodes and
sensor modules. The scheme is well suited for implemen-
tation on wireless sensor networks since the communication
and computational requirements are quite minimal.

Self localization is a basic capability on which higher
level applications can be built. For example, the scheme
could be used to survey the location of other sensor motes
enabling a range of location based sensor analyses such as
sniper detection, chemical plume detection and target track-
ing. Further, the ability to automatically localize a set of
smart cameras deployed in an ad-hoc manner alows us to
apply a number of multi-camera 3D analysis techniques to
recover aspects of the 3D geometry of ascene fromthe avail-
ableimagery. Ultimately we envision being able to construct
accurate 3D models of extended environments based on im-
ages acquired by anetwork of inexpensive smart camerasys-
tems.
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