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Abstract

In this paper the problem of controlling the spatial

position and orientation of a robotic platform based on

the image data obtained from a video camera mounted

on that platform is considered. More speci�cally, we

propose control laws that will cause the robot to achieve

and maintain a �xed position and orientation with re-

spect to a set of feature points in the scene.

We demonstrate analytically that the proposed con-

trol scheme is globally convergent even in the presence

of large calibration errors in both the intrinsic param-

eters of the camera and in the extrinsic parameters

which relate the frame of reference of the camera to

the body frame of the robot platform which is being

controlled. Furthermore no a'priori knowledge about

the structure of the scene is assumed.

1 Introduction

The use of camera-based techniques to control

robotic systems has seen a signi�cant rise in popu-

larity recently. This �eld, known as visual servoing,

has been aided by the faster speeds and lower costs

of modern microprocessors, coupled with the general

availability of high quality cameras. The wealth of in-

formation available in image data and the exibility

of the sensor combine to make it an attractive option

for a control input if the right algorithms can be de-

veloped.

Using monocular systems Papanikolopoulos, Nel-

son, and Khosla [16] have developed a system that can

track full 3-D motions by utilizing a Jacobian-based

adaptive controller that estimates the depth param-

eters online. More recent work by Papanikolopoulos

has extended these results using optical ow to es-

timate depth parameters for use in uncalibrated en-

vironments [15]. Espiau, Rives, et al. [3, 17, 18] pro-

posed approaches that also utilize the image Jacobian.

They use the interaction screw to describe the rela-

tionship between robot motion and image feature mo-

tion. They have implemented these systems, for exam-

ple, in controlling mobile robots based on landmarks

of known geometries. These techniques, however, also

require estimation of the depth of features in the scene.

For stereo camera systems Hager, Chang and Morse

[6], Hollinghurst and Cipolla [10] and Horaud, Dor-

naika and Espiau [11] have all investigated the issues

involved in controlling robotic manipulators based on

the image data acquired with uncalibrated or coarsely

calibrated rigs. This work is important in the current

context, since it established that image-based tech-

niques can have a proven insensitivity to calibration

parameters [7].

In this paper we consider the problem of control-

ling the position and orientation of a robotic plat-

form based on image data obtained from an onboard

camera. The control laws that are proposed gener-

ate translational and angular velocities that drive the

robot to a �xed position and orientation with respect

to a set of features in the scene. We make the assump-

tion that the features are derived from rigid objects,

such as walls, tables, and other �xtures. Thus, they

can move with respect to the robot, but not with re-

spect to each other.

The proposed control schemes make use of well es-

tablished techniques for computing estimates for the

relative orientation of two camera positions from a set

of feature correspondences. As in other visual servo-

ing schemes, the goal position of the platform is ac-

tually speci�ed indirectly in terms of the image mea-

surements at the desired pose. The use of relative

orientation for pose control has also been proposed by

Basri, Rivlin and Shimshoni [1] Malis, Chaumette and

Boudet [13, 14], Soatto and Perona [19] and Deguchi

[2]. Malis, Chaumette and Boudet and have also con-

sidered the issue of robustness to intrinsic calibra-

tion parameters. This work improves on those results

by formally demonstrating robustness to both intrin-

sic and extrinsic calibration errors. Unlike other ap-

proaches our analysis proceeds by proposing a Lya-



punov function over the pose parameters as opposed

to analyzing the behavior of a task function de�ned

in terms of the image measurements. Among other

advantages, this analysis leads to a simpler character-

ization of the types of calibration errors that can be

tolerated by the control scheme.

In previous work [20] a pair of control laws which

separately regulated the translational and rotational

velocities of a platform were analyzed. It was shown

that, when used in isolation, these controllers were

able to regulate the translational and rotational o�-

sets respectively to zero even in the presence of large

calibration errors. This paper extends those results by

demonstrating analytically that a combined controller

which regulates both the translational and angular ve-

locities of the platform simultaneously is, in fact, sta-

ble in the presence of calibration errors and will drive

the robot to the desired con�guration.

It is important to note that the control laws pre-

sented here di�er from previous work in that they do

not require the estimation of an image Jacobian or

interaction screw, used to relate the robot's body ve-

locity to changes in image measurements. Since this

image Jacobian depends upon the positions of the

features with respect to the camera, control schemes

which rely on this approach must either estimate the

Jacobian online or assume that this matrix is nomi-

nally �xed at some known value. No such estimates

or assumptions are required in this method.

The techniques described in this paper are applica-

ble to a wide range of positioning tasks. They could be

used on mobile platforms such as blimps, helicopters,

underwater vehicles, space based robots or terrestrial

vehicles to guide the robot to a desired position and

orientation with respect to one or more target objects.

The schemes could also be used for so-called \eye in

hand" servoing applications to position the end e�ec-

tor of a robot arm with respect to a work piece based

on the image data obtained from a camera mounted

on the robot's gripper.

In Section 2 the relative orientation problem is

briey discussed. Section 3 describes the consequences

of calibration errors in the intrinsic and extrinsic cali-

bration parameters. Section 4 presents an analysis of

the pose control problem, proposes a control scheme

for solving this task and provides conditions under

which this strategy is known to be convergent. The

experimental results that have been obtained with this

method on a six degree of freedom robot arm are pre-

sented in Section 5 while Section 6 presents some of the

conclusions that have been drawn from this research.

2 Relative Orientation

The problem of computing the relative position of

two cameras from a set of point correspondences in

two images has been well studied in both the com-

puter vision and photogrammetry literatures. Most

of the approaches to solving this problem proceed by

exploiting the epipolar constraint, which relates the

position of the projection of a point feature in one

image to its projection in the second image.
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Figure 1: The basic geometry of the relative orienta-

tion problem

The basic imaging geometry of the relative orienta-

tion problem is shown in Figure 1. Let P1 denote the

coordinates of a point P in the scene with respect to

a coordinate frame of reference centered at the focus

of projection of the �rst camera. The coordinates of

that same point P with respect to a coordinate frame

associated with the second camera are given by the

expression P2 = RT (P1 � T) where R 2 SO(3) and

T 2 <
3 denote the relative orientation and position

of the second frame with respect to the �rst. The ro-

tation matrix R can also be expressed in terms of an

axis of rotation � 2 <
3; k�k = 1 and an angle � as

follows R = exp(�J(�)) where

J(�) =

0
@ 0 ��z �y

�z 0 ��x
��y �x 0

1
A : (1)

Assuming a perspective projection model, the rela-

tionship between the coordinates of a point with re-

spect to the camera frame P = (X;Y; Z)T and the

projective coordinates of the image of that point on

the focal plane, p = (u; v; 1)T can be written as fol-

lows:

p / AP; (2)

where A 2 <
3�3 is an invertible upper triangular ma-

trix that represents the intrinsic parameters of the

camera.

In our application, camera frames 1 and 2 refer to

two di�erent positions of the same camera and we will

assume that the intrinsic parameters of the camera



are �xed, hence A is a constant matrix. This means

that the projective coordinates of the projection of the

point into the two images, p1 and p2, are given by the

following equations:

p1 / AP1 (3)

p2 / AP2 = ART (P1 �T) (4)

From these two equations one can derive the epipolar

constraint which is given by

pT1 A
�TJ(T)RA�1p2 = 0; (5)

The matrix F / A�TJ(T)RA�1 is termed the fun-

damental matrix [4]. A number of algorithms have

been proposed for estimating this fundamental matrix

from a set of point correspondences [12, 8, 9].

Note that the fundamental matrix F can also be

rewritten in terms of a matrix H1 and a vector e.

That is:

F / J(e)H1 (6)

where H1 / ARA�1 is refered to as the collineation

of the plane at in�nity [5] and the vector e / AT

denotes the homogeneous coordinates of the epipole

in the image.

The matrix H1 cannot, in general, be recovered

solely from point correspondences. It can, however, be

estimated if additional information, such as the cor-

respondences between vanishing points in the two im-

ages, can be recovered. In the sequel, we will assume

that su�cient information is available in the image

measurements to produce estimates for both H1 and

e.

This estimate for H1 can be used to discount the

e�ects of camera rotation on the measurements for

the locations of feature points in the image. That is,

if (ui; vi) denote the coordinates of a point feature in

the image then the location where that feature would

have appeared if the camera had translated to its cur-

rent position without rotating, ( �ui; �vi), is given by the

following expression.0
@ �ui

�vi
1

1
A / H1

0
@ ui

vi
1

1
A (7)

By measuring the disparity between a vec-

tor of these corrected image measurements, �y =

(�u1; �v1; �u2; �v2; :::)
T , and the value of this vector at

the target position y0 we obtain an error function,

d(T) = k�y(T) � y0k. This function depends only on

the translational disparity, T. In the sequel this dis-

parity function will be used to scale the translational

velocity control signal. It is assumed that the features

being tracked are not in a degenerate con�guration so

that the disparity function will evaluate to zero only

at T = 0.

From the matrix H1 we can recover an estimate

for the rotational displacement between the two cam-

era frames by noting that this matrix takes the form

of a rotation matrix under a similarity transform.

Since similarity transformations preserve eigenvalues

it follows that after an appropriate scale factor is ap-

plied, the eigenvalues of H1 should be 1, ei� and

e�i�, and its trace should be 1 + 2 cos � (recall that

R = exp(�J(�))). Furthermore the eigenvector of H1
corresponding to the unit eigenvalue will be � = A�.

If the intrinsic parameter matrix of the camera, A,

is known then it is a simple matter to compute esti-

mates for the axis of rotation, �, and the direction of

translation, T, from � and e respectively. Note that it

is not possible to recover the magnitude of the trans-

lation vector. In practise, however, our estimates for

the intrinsic parameters of the camera will contain er-

rors. The relationship between the estimate for the

intrinsic parameters, Aest, and the actual values, A,

can be expressed as follows:

A = Aest
~A (8)

where ~A is an unknown invertible upper triangular

matrix.

This implies that we will only be able to estimate

the axis of rotation and direction of translation up to

this unknown transformation ~A. That is, by applying

A�1
est to � and e we can estimate the unit vectors,

~A�

k ~A�k

and
~AT

k ~ATk
.

2.1 Controlling Pose

The objective of the proposed visual servoing

scheme is to drive the disparity between the robot's

current position and desired con�guration to zero. As

shown in Figure 1 this disparity is characterized by

two components, the rotational disparity, R 2 SO(3),

and the translational disparity, T 2 <
3. Similarly, the

body velocity of the platform, that is, its instantaneous

velocity with respect to its current pose, can be char-

acterized in terms of its angular velocity ! 2 <
3 and

its translational velocity v 2 <3.

In order to accomplish this positioning task based

on the estimates that can be obtained from the image

measurements we propose the following control laws

for regulating the body velocity of the platform (see

[20] for further motivation of these control laws).



!r = � sin �
~A�

k ~A�k
(9)

vr = �d(T)
~AT

k ~ATk
(10)

In practise the relationship between the camera

frame and the robot's body frame can be di�cult to

measure accurately. In this case there will be some

discrepancy between the frame in which the body ve-

locities, !r and vr, are applied and the camera frame

as shown in Figure 2. Let these unknown rotational

and translational displacements be denoted by ~R and
~T, respectively, which we will term the extrinsic cali-

bration errors.

Body Frame of
robot

Camera Frame
R,T
~  ~

v
w

Figure 2: This �gure shows the relationship between

the cameras frame of reference and the body frame of

the platform to which the rigid body velocities, vr and

!r, are applied

In this case the body velocity of the camera,

(!c; vc), and the commanded body velocity of the

robot, (!r; vr), will be related by an adjoint trans-

formation as shown in Equation (11).

�
!c
vc

�
=

�
~R 0

J( ~T) ~R ~R

��
!r
vr

�
(11)

Notice that the presence of the J( ~T) ~R term in the

adjoint transformation points to a coupling between

the rotational and translational velocities of the cam-

era which complicates the stability analysis. If ~T were

zero then it would be possible to decouple the pose

control problem into separate rotational and transla-

tional control tasks.

2.2 Proof of Asymptotic Stability

Having characterized both the intrinsic and extrin-

sic calibration errors we can now state our main result.

Theorem 1 If the matrix ~R ~A is positive de�nite then

the control laws given in equations 9 and 10 will regu-

late the platform to the desired pose asymptotically.

Proof: In order to prove that the proposed control

laws lead to an asymptotically stable system we con-

sider the Lyapunov function L(R;T) given in equation

12

L(R;T) = kR� Ik2 + kTk2 (12)

= tr((R � I)T (R� I)) + kTk2

= 2(3� tr(R)) + kTk2

where  is a positive constant and kR � Ik refers to

the Frobenius norm of the matrix.

We will investigate the behavior of this function

on the domain fR;TjR = exp(��); � < �; kTk < �g.

This set includes practically all displacements from

the target position since the scalar � can be set to any

positive value without a�ecting the correctness of the

following proof.

Taking the derivative of this Lyapunov function

with respect to time yields the following expression:

_L(R;T) = 2tr(RJ(!c)) + 2TT vc

= 2(sin ��T!c + TT vc)

= 2(sin ��T TT )

�
!c
vc

�

= 2(sin ��T TT )

�
~R 0

J( ~T) ~R ~R

��
!r
vr

�

= �2(
sin2 ��T ~R ~A�

k ~A�k
+
 sin �TT J( ~T) ~R ~A�

k ~A�k

+
d(T)TT ~R ~AT

k ~ATk
)

If we let a represent the smallest eigenvalue of the

symmetric part of ~R ~A, b denote the largest singular

value of the matrix J( ~T) ~R ~A and s and t denote sin �

and kTk respectively then we obtain the following in-

equality:

_L(R;T) < �2

�
as2

k ~A�k
�

bst

k ~A�k
+
d(T)at2

k ~ATk

�

< �2(s t)

 
a

k ~A�k
�

b

2k ~A�k

�
b

2k ~A�k

d(T)a

k ~ATk

!�
s

t

�

Recognizing the right hand side of the expression

above as a quadratic form we can conclude that this

value will be less than zero for all non zero values of

sin � and kTk if the two by two matrix in this ex-

pression is positive de�nite. Since the matrix ~R ~A is

assumed to be positive de�nite, we can conclude that

the minimum eigenvalue a and, hence, the diagonal



entries of the matrix will be greater than zero. This

implies that the matrix itself will be positive de�nite

if its determinant, given in Equation 13 , evaluates to

a positive number for all R and T.

a

k ~A�k

d(T)a

k ~ATk
�

�
b

2k ~A�k

�2

> 0 (13)

Rearranging Equation (13) yields.

 < k ~A�k
�a
b

�2� d(T)

k ~ATk

�
(14)

To recap, we have demonstrated that the derivative

of the Lyapunov function is locally negative de�nite on

the set fR;TjR = exp(��); � < �; kTk < �g if there

exists a  such that the inequality given in Equation

14 is satis�ed for all R;T in the set. It remains then to

show that the expression given on the right hand side

of the inequality can be bounded below by a �nite

number. We proceed by bounding the constituents

k ~A�k and
d(T)

k ~ATk
since a and b are constants. The ex-

pression k ~A�k is bounded below by the square root of

the minimum eigenvalue of the positive de�nite matrix
~AT ~Asince k�k = 1 by de�nition.

For any given positive value of � it is possible to

�nd a �nite lower bound for the ratio
d(T)

k ~ATk
over the

set of all T such that kTk > � since the both the

quantities d(T) and k ~ATk are required to be greater

than zero for all non zero T and kTk cannot exceed �

by de�nition.

This implies that we need only consider the limiting

behavior of this ratio as kTk ! 0. By expanding

d(T) = k�y(T) � y0k in a Taylor series and rewriting

T as �T̂ where kT̂k = 1 and � 2 <, we obtain the

following approximation for
d(T)

k ~ATk
in the neighborhood

of T = 0.

d(T)

k ~ATk
=

k�y(T)� y0k

k ~ATk
(15)

�

k(5�y0)Tk

k ~ATk
(16)

�

k�(5�y0)T̂k

k� ~AT̂k
(17)

�

q
T̂T (5�y0)T (5�y0)T̂p

T̂T ~AT ~AT̂
(18)

Where 5�y0 represents the Jacobian of the vector

�y(T ) with respect to the translation parameterT eval-

uated at T = 0 The denominator of the expression in

equation 18 can be bounded above by the square root

of the largest eigenvalue of ~AT ~A while the numerator

can be bounded below by the square root of the small-

est eigenvalue of the matrix (5�y0)
T (5�y0). This value

will be greater than zero as long as the image Jaco-

bian (5�y0) has full rank. This will be true as long

as the con�guration of feature points being tracked is

non-degenerate as we have already assumed.

In summary, the preceding analysis demonstrates

that a �nite constant, , can be found such that the

derivative of the Lyapunov function given in Equation

12 is locally negative de�nite. This in turn implies that

the control law regulates the pose to (R;T) = (I;0)

asymptotically [21].

In practise the requirement that ~R ~A be positive

de�nite can be satis�ed rather easily. Considering the

terms individually, ~A will be positive de�nite as long

as its diagonal elements are positive and ~R will be

positive as long as it denotes a rotation of less than 90

degrees. Interestingly, this stability analysis does not

place any constraints on the magnitude of the error

parameter ~T .

3 Experimental Results

Figure 3: Pose control experiments were carried out on

a Puma 260 robot arm out�tted with a video camera.

In order to evaluate the e�cacy of the proposed

servoing technique experiments were carried out using

the Puma 260 robot shown in Figure 3. The relative

orientation of a camera mounted on the robot's end ef-

fector was estimated by tracking a set of targets shown

in Figure 4. Since this set of targets contained four

pairs of parallel lines the system was able to estimate

both the fundamental matrix F and the collineation



of the plane at in�nity H1 directly without requiring

any knowledge about the dimensions of the targets.

No attempt was made to estimate the intrinsic or ex-

trinsic calibration parameters of the camera.

Figure 4: This �gure shows an image obtained from

the camera mounted on the robot arm. The relative

orientation of the camera with respect to the target

position was obtained by tracking the corners of the

black rectangles in the image. The white crosses are

used to mark both the current locations of these fea-

tures in this image and the target image con�guration.

One of the reasons for choosing this platform for

our experiments was the fact that the joint encoders

of the robot provided an independent measure for the

position of the robot manipulator which was used to

measure the positioning accuracy of the scheme. Note

however, that we were only able to estimate the po-

sition of the end e�ector and not the position of the

center of projection of the camera because of the un-

known extrinsic calibration parameter errors, ~R and
~T.

Three experiments were carried out to investigate

the robustness of the technique to variations in the in-

trinsic and extrinsic parameters of the camera. Each

experiment consisted of a series of trials where the

robot manipulator was started at one position and

then deliberately displaced from this target pose. The

control law was then invoked to guide the manipulator

back to the initial pose and the disparity between the

position of the manipulator at convergence and the

initial pose was measured. The control law was ter-

minated when the disparity between the image mea-

surements reected in d(T) dropped below a speci�ed

value.

In the �rst set of experiments the matrix of initial

parameters, A, was set to

0
@ 100 0 220

0 100 340

0 0 1

1
A . Note

that these values were chosen arbitrarily since the ac-

tual calibration parameters were unknown. Over the

sequence of �ve trials the mean rotational and trans-

lational errors at convergence were 0.50 degrees and

4.5 millimeters while the median rotational and trans-

lational errors were 0.46 degrees and 3.8 millimeters.

In the second set of experiments the camera was

deliberately displaced from its original con�guration

by approximately 30 degrees and 10 centimeters. A

new set of trials was carried out without changing any

of the parameters in the program. Over this sequence

of 6 trials the mean rotational and translational error

at convergence were 2.23 degrees and 6.7 millimeters

while the median translational and rotational errors

were 0.54 degrees and 5.4 millimeters.

In the �nal set of experiments the matrix of intrin-

sic parametersA was changed to

0
@ 200 0 320

0 200 240

0 0 1

1
A

note that this represents a substantial change in the

parameters since the scale factors were doubled and

the center of projection was displaced by over 100 pix-

els. Over this sequence of 6 trials the mean rotational

and translational error at convergence were 4.70 de-

grees and 6.5 millimeters while the median transla-

tional and rotational errors were 3.9 degrees and 6.0

millimeters.

Note that in each case the controller was able to

guide the manipulator end e�ector to within a cen-

timeter of the desired pose.

4 Conclusions

This paper describes an approach to controlling the

pose of a robotic platform using image measurements

obtained from a camera rigidly mounted on that plat-

form. The techniques make use of well-established

techniques for computing the relative orientation of

two camera positions from feature correspondences be-

tween the two images. These techniques do not require

any a'priori knowledge of the locations of the features

in the scene nor do they attempt to estimate such in-

formation online.

The techniques di�er from methods based on pose

estimation since they do not attempt to measure the

location of the platform with respect to any particular

target object in the scene. They also di�er from other

visual servoing techniques since no attempt is made

to estimate the image Jacobian that relates control



actions to changes in the image measurements.

An analysis has been presented which demonstrates

that the proposed control schemes are convergent in

the face of large calibration errors in both the intrinsic

and extrinsic parameters. From this analysis, we are

able to derive a precise characterization of the magni-

tudes of the errors that can be tolerated.

These analytical results have been veri�ed by ex-

periments which indicate that the proposed pose con-

trol scheme is able to position the robot system accu-

rately even in the presence of large calibration errors.

These results demonstrate that it is possible to design

systems with accurate positioning capabilities with-

out having to expend much time and e�ort obtaining

accurate calibration information about the system.
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