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Abstract

This paper presents a novel approach to carrying out numerical minimization procedures

on the Lie Group SO(3) and related manifolds. The approach constructs a sequence of local

parameterizations of the manifold SO(3) rather than relying on a single global parameteri-

zation such as Euler angles. Thus, the problems caused by the singularities in these global

parameterizations are avoided.

1This research was supported by the NSF under grant number NYI IRI-9257990.



1 Introduction

A number of interesting problems in computer vision and robotics involve �nding the \optimal"

rotation matrix in the set of rigid rotations SO(3) = fR 2 IR3�3 : RtR = I; det(R) = 1g
[GO89, Hor90]. For example, the problem of determining the position of a camera with respect

to a known constellation of feature points from image data can be cast in terms of a real valued

objective function

O : SO(3)! IR (1)

which measures how well the proposed rotation matrix R explains the observed image data. Most

of these optimization problems do not have closed form solutions, which means that numerical

optimization procedures are usually applied in order to �nd the solutions. 2

In most numerical minimization paradigms, the unknown parameters are assumed to lie in

some vector space isomorphic to IRn. Therefore, in order to apply these optimization techniques,

the user constructs some parameterization of the set of rotation matrices, like Euler angles, that

maps the vectors in IR3 onto the three-dimensional manifold SO(3). Unfortunately, the Lie group

SO(3) is not isomorphic to the vector space IR3 [Stu64]. This means that all of these global

parameterizations will exhibit singularities or other anomalies at various points in the parameter

space. These anomalies can cause serious problems for gradient based minimization procedures.

There are several approaches to optimization problems on a manifold such as SO(3) that

involve calculating incremental steps in the tangent space to the manifold. That is, given an

objective function O : M ! IR and a particular element p on the manifold M we could compute

the steepest descent direction, a, in the tangent space to M at p. We would then have to decide

on a step size, �, to use in the update step p0 = p+ �a. In general, the new vector p0 will not lie

on the manifold, so some procedure will be required to rescale p0 back onto the manifold.

The technique presented in this paper avoids this rescaling problem entirely by constructing

an actual local parameterization of the manifold at each stage rather than a simple linear approx-

imation. This means that the parameterization will map any incremental step in its domain to a

distinct point on the manifold. The method also provides a systematic technique for computing

the size and direction of the incremental step at each iteration.

Our solution is to forgo the global parameterization approach in favor of an atlas of local

parameterizations. That is, at every point R0 on the manifold SO(3) we construct a continuous,

2A notable exception to this generalization is the work of Nadas[Nad78].
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invertible di�erentiable mapping between a neighborhood of R0 on the manifold and an open set

in IR3 as shown in equation (2).

R(!) = R0 expfJ(!)g ! 2 IR3;
p
!t! < � (2)

Where ! = (!x; !y; !z)
t, exp is the matrix exponential operator [Cur79], and J(!) is the skew

symmetric operator J : IR3 ! so(3) given by:

J(!) =

0
B@

0 �!z !y

!z 0 �!x

�!y !x 0

1
CA :

Equation (2) provides a one to one mapping between vectors in the open ball
p
!t! < � and

a local region of the manifold SO(3) centered around the point R0.

The objective function O can be expressed in terms of this local parameterization and a

quadratic approximation for the objective function around the point R0 can be constructed as

follows:

O(R(!)) � O(R0) + g
t! + !tH! (3)

g and H represent the gradient and Hessian of the function respectively evaluated at the point

! = 0 which corresponds to the rotation matrix R0.

This quadratic approximation can be used to construct an incremental step which leads to a

lower point on the error surface.

!s = �H�1
g (4)

This incremental step can be applied to determine the new rotation matrix as follows: R =

R0 expfJ(!s)g. Note that the user must ensure that each minimization step lies within the range

of the local parameterization, ie.
q
!t
s!s < �.

The updating step can be accomplished in a particularly elegant manner if the rotations are

represented by unit quaternions. The rotation R0 can be represented by the unit quaternion q0

and the incremental step expfJ(!s)g by the quaternion qs = (cos(�=2); (sin(�=2)=�)!) where

� =
p
!t!. The product of these two rotations can be obtained by carrying out a standard

quaternion multiplication q0qs (see the Appendix for a de�nition of quaternion multiplication).
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The entire minimization procedure is outlined below in psuedo-code

Choose starting estimate R0

Loop

Compute gradient g and Hessian H wrt local parameterization

If local gradient is small enough

end

else

Compute minimization step : !s  �H�1
g

Update R0 : R0  R0 expfJ(!s)g.

Note that the process described above is almost identical to the procedure employed in standard

Newtonian minimization algorithms [JS83], the only real di�erence is that at each iteration of this

procedure the quadratic approximation and the minimization step are expressed in terms of a

local parameter system rather than a global one.

The general approach described above is identical to the one proposed recently by Steven

Smith [Smi93] in his work on minimization on Riemanninan manifolds. However, this paper deals

speci�cally with the special case of SO(3) and closely related manifolds rather than the more

general problem discussed in Smith's thesis. Thus, we are able to take advantage of the special

relationship between SO(3) and the group of unit quaternions Sp(1) to construct computationally

e�cient algorithms for this class of problems.

It can be shown that in a Euclidean parameter space, standard Newtonian minimization al-

gorithms exhibit quadratic convergence when provided with a starting point su�ciently close to

a minimum [JS83]. Steven Smith was able to show that the algorithm described above will also

exhibit quadratic convergence on Riemannian manifolds like SO(3) [Smi93].

2 An Example

Consider the objective function given in equation (5). The maximum of this objective function

corresponds to the rotation matrix that bring the vectors ui and vi into their best alignment.

Such a problem might arise in computer vision during pose estimation from range data where the

ui are a set of model vectors and the vi are measurements.

O(R) =
nX

i=1

(ut

iRvi)
2

ui;vi 2 IR3;R 2 SO(3) (5)
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The method described in the previous section can be applied to �nd the critical points of this

function with respect to the rotation matrix R. At each stage of this minimization process, the

Jacobian and Hessian of the objective function can be calculated as follows.

R(!) =R0 expfJ(!)g (6)

O(!) =
nX
i=1

(ut

iR(!)vi)
2 (7)

@

@!x

O(!) = 2
nX

i=1

(ut

iRvi)(u
t

i

@

@x
R(!)vi) (8)

@

@!x@!y

O(!) = 2
nX

i=1

f(ut

i

@

@!x

R(!)vi)(u
t

i

@

@!y

R(!)vi) + (ut

iR(!)vi)(u
t

i

@

@!x@!y

R(!)vi)g (9)

Equations (8) and (9) refer to individual terms in the Jacobian and Hessian respectively. The

derivatives of the rotation matrix can be computed quite easily as the following examples indicate.

@

@!x

(R0 expfJ(!)g)
�����
!=0

= R0

@

@!x

 
1X
n=0

f 1
n!
(J(!))ng

! �����
!=0

=R0J(x̂)

@

@!x@!y

(R0 expfJ(!)g)
�����
!=0

=
@

@!x@!y

R0

 
1X
n=0

f 1
n!
(J(!))ng

! �����
!=0

=R0

1

2
(J(x̂)J(ŷ) + J(ŷ)J(x̂))

Notice that these expressions are quite simple to compute, and they do not involve evaluating

any transcendental functions as an Euler parameterization would.

3 Further Applications

The following subsections describe how the the local parameterization of SO(3) described in

the previous section can be used to construct local parameterizations of several other manifolds

commonly used in vision and robotics. As in section 2, the Jacobian and Hessian of these param-

eterizations can be readily computed, and the optimization procedure described in section 1 can

be used to minimize objective functions over these manifolds.

3.1 The Group of Rigid Transformations SE(3)

Elements of the group of rigid transformations SE(3) are generally denoted by a tuple S = hR;T i
where R 2 SO(3) and T 2 IR3. Given a particular element of this group, we can construct a
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local parameterization S : IR6 ! SE(3) that maps elements from an open ball in IR6 onto a

neighborhood around hR0; T0i on the manifold as follows:

S(!; t) = hR0 expfJ(!)g; T0 + ti !; t 2 IR3 (10)

Where the tuple h!; ti can be viewed as an element of an open region in IR6.

3.2 The Surface of a Sphere

The parameterization of SO(3) described in the previous section can also be used to parameterize

various smooth manifolds in IR3. For example, the surface of the unit sphere in IR3 can be denoted

as follows : S2 = fv̂ : v̂ 2 IR3; v̂t
v̂ = 1g. Any element of this set can be expressed in terms of a

rotation matrix R 2 SO(3) : v̂ = Rẑ; ẑ = (0 0 1)t. 3

Given a particular element on the manifold, v̂0 = R0ẑ, we can construct a local parameteri-

zation v̂ : IR2 ! S2 that maps elements from an open region of IR2 onto a neighborhood of v̂0 on

the manifold as follows.

v̂(!x; !y) = R0 expfJ
0
B@
!x

!y

0

1
CAgẑ !2

x + !2

y < � (11)

It is trivial to show that the Jacobian of this local parameterization has rank 2 for all points

on the manifold. This parameterization can be used to carry out minimization operations over

the manifold. The update step at each iteration can be performed using quaternion multiplication

as described earlier.

3.3 The Set of In�nite Straight Lines

Every straight line in IR3 can be represented in terms of a unit vector v̂ which indicates the

direction of the line, and a vector d which designates the point on the line that is closest to the

origin. In other words, the set of straight lines in IR3 can be represented by the set of tuples

L = fhv̂;di 2 R3 � IR3 : v̂t
v̂ = 1, v̂t

d = 0g
This set of tuples de�nes an algebraic set which can be viewed as a 4 dimensional manifold

embedded in IR6. 4

3Note that for a given v̂ there is a one-dimensional subset of SO(3) that will satisfy this equation.
4A careful reader will notice that there is actually a two to one correspondence between points on this manifold

and the set of in�nite straight lines since hv̂;di and h�v̂;di denote the same line.
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Any point on this manifold can be represented in terms of a rotation matrixR 2 SO(3) and two
scalars a; b 2 IR as follows : v̂ = Rẑ, d = R(ax̂+ bŷ). We can construct a local parameterization

around any point hv̂;di 2 L that maps an open region on IR4 onto a neighborhood of hv̂;di on
the manifold (i.e. L : IR4 ! L) as follows.

L(!x; !y; �; �) = hR0 expfJ
0
B@
!x

!y

0

1
CAgẑ; R0 expfJ

0
B@
!x

!y

0

1
CAg((a+�)x̂+ (b+ �)ŷ)i : !2

x + !2

y < � (12)

Given a particular line represented by hR0; a; bi and a particular incremental step h!x; !y; �; �i

the new line will be represented by hR0 expfJ
0
B@
!x

!y

0

1
CAg; a+ �; b+ �i

4 Conclusion

This paper describes a novel approach to carrying out numerical optimization procedures over the

Lie group SO(3) and related manifolds. This technique exploits the fact that the group of rotations

has a natural parameterization based on the exponential operator associated with the Lie group.

This approach avoids the inevitable singularities associated with global parameterizations like

Euler angles. It should also prove more e�ective than other techniques that approximate gradient

descent on the tangent space to the manifold. It may be possible to apply similar techniques to

other Lie groups by taking advantage of their exponential operators.

All of the parameterizations described in this paper have been successfully implemented as

part of an actual structure from motion algorithm described in [TK94]. In this application, mini-

mization based on the \standard" global parameterizations failed to converge in some situations,

whereas the presented method never encounters the singularity issues that plagued these global

parameterizations.
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Appendix : Representations of SO(3)

A number of di�erent representations for the orthogonal group SO(3) are used in this paper,

this appendix describes how these representations are related to each other. The orthogonal group
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SO(3) is de�ned as a matrix subgroup of the general linear group GL(3).

SO(3) = fR 2 IR3�3 : RtR = I; det(R) = 1g (13)

Following [Cur79], the exponential map associated with this Lie group provides a surjective map

from IR3 to SO(3).

R(!) = expfJ(!)g =
1X
n=0

f 1
n!
(J(!))ng (14)

J(!) is the skew symmetric operator J : IR3 ! IR3�3 given by:

J(!) =

0
B@

0 �!z !y

!z 0 �!x

�!y !x 0

1
CA :

If the vector ! is rewritten in terms of a unit vector !̂ and a magnitude � we can explicitly

compute the sum of this in�nite series as shown below.

R(!) = R(�!̂) = I + sin �J(!̂) + (1� cos �)(J(!̂))2 (15)

This equation is usually referred to as the Rodrigues formula; the unit vector !̂ can be thought of

as the axis of rotation while the scalar variable � denotes the magnitude of the rotation in radians.

The group of unit quaternions Sp(1) is de�ned as a set of tuples Sp(1) = f(u0;u) : u0 2 IR;u 2
IR3; u2

0
+ u

t
u = 1g with the following group operation (quaternion multiplication):

(u0;u)(v0;v) = (u0v0 � u
t
v; J(u)v+ u0v + v0u) (16)

Given a quaternion q = (u0;u) its conjugate �q is given by �q = (u0;�u) . It is a straightforward

matter to show that q�q = �qq = (1;0), where (1;0) is the identity element of the group.

Sp(1) can also be thought of as the unit 3 sphere in IR4, in fact we can de�ne a surjective

mapping from IR3 to Sp(1) as follows.

q(!) = q(�!̂) = (cos(�=2); sin(�=2)!̂) (17)

Given the mappings de�ned in equations (15) and (17), it is possible to show that the following

equation must hold for every v 2 IR3 .

q(!)(0;v)�q(!) = (0; R(!)v) (18)
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This equation suggests a possible connection between SO(3) and Sp(1). In fact, we can use this

expression to de�ne a surjective homomorphism � : Sp(1) ! SO(3) that links the two groups.

�(q) = �((u0; (u1u2u3)
t) =

0
B@
2(u2

0
+ u2

1
)� 1 2(u1u2 � u0u3) 2(u1u3 + u0u2)

2(u1u2 + u0u3) 2(u2
0
+ u2

2
)� 1 2(u2u3 � u0u1)

2(u1u3 � u0u2) 2(u2u3 + u0u1) 2(u2
0
+ u2

3
)� 1

1
CA (19)

Note that this is not an isomorphism since the quaternions (u0;u) and (�u0;�u) are mapped

onto the same rotation matrix.

Since � is a homomorphism we know that it must preserve the group operation, that is

�(qv) = �(q)�(v) 8q; v 2 Sp(1). This means that we can represent elements of SO(3) by unit

quaternions in all of our calculations and replace the matrix multiplication operations with quater-

nion multiplications as de�ned in equation (16).
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