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Abstract

In this paper we explore approaches to accelerating seg-
mentation and edge detection algorithms based on the gPb
framework. The paper characterizes the performance of a
simple but effective edge detection scheme which can be
computed rapidly and offers performance that is competi-
tive with the pB detector. The paper also describes an ap-
proach for computing a reduced order normalized cut that
captures the essential features of the original problem but
can be computed in less than half a second on a standard
computing platform.

1. Introduction
Segmentation, the problem of breaking a given image

into salient regions, is one of the most fundamental issues
in Computer Vision and a number of approaches have been
advanced to accomplish this task. Among these schemes,
three methods have proven to be quite popular in practice
owing to their performance and/or their running time. The
Mean Shift method of Comaniciu and Meer [6], the Nor-
malized Cuts method developed by Shi and Malik [14] and
the graph based method of Felzenswalb and Huttenlocher
[8].

More Recently Arbelaez, Maire, Fowlkes and Malik
[3, 2] have proposed an impressive segmentation algorithm
that achieves state of the art results on commonly available
data sets. Their gPb method starts with a local edge ex-
traction procedure which has been optimized using learn-
ing techniques. The results of this edge extraction step are
then used as input to a spectral partitioning procedure which
globalizes the results using Normalized Cuts. This glob-
alization stage helps to focus attention on the most salient
edges in the scene.

The globalization procedure is very effective but it in-
volves the solution of a large, sparse eigensystem which can
be quite time consuming. Published results indicate that the
method requires a few minutes of computational time per
image.

In a subsequent paper Catanzaro et al. [5] describe how
the gPb method can be effectively parallelized and accel-
erated on a Graphics Processing Unit (GPU). Using their
implementation one can perform gPb edge detection on a
0.15 Megapixel images in 1.8 seconds using a NVidia GTX
280 GPU. A speed up of over two orders of magnitude over
a CPU based method.

This is an impressive result but it requires the use of
a fairly powerful GPU subsystem and many commonly
available computational platforms, such as laptops and cell
phones, do not yet have access to that level of accelera-
tion. The goal of this paper is to make accurate segmen-
tation schemes based on normalized cuts more efficient by
exploiting the structure of the underlying problem. The re-
sulting ideas could be used to accelerate implementations
on a variety of computational platforms including GPUs.

To this end this paper makes two distinct contributions
firstly we characterize the performance of an edge detec-
tion scheme based on normalized correlation which was
first proposed by Meer and Georgescu [11]. We propose a
scheme for tuning the parameters of this method using train-
ing data and show that the resulting tuned detector produces
results that are comparable to pB at a fraction of the com-
putational cost. Secondly this paper propose a new variant
of the normalized cuts segmentation scheme which solves
a reduced order eigensystem that captures the essential fea-
tures of the original problem. We show how to construct this
reduced order system, explain its computational advantages
and characterize its performance.

The remainder of this paper is organized as follows:
Section 2 describes the proposed segmentation scheme in
more detail while Section 3 presents experimental results
obtained with an implementation of this method. Finally
Section 4 discusses the conclusions that have been drawn
so far.

2. Technical Approach
The overall approach to image segmentation embodied

in this work is inspired by the work on gPb [3, 2] in that
it starts with a set of edges derived from local pixel dif-
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ferences and then invokes a globalization procedure which
strengthens or weakens those edges based on an analysis of
the eigenvectors produced by a normalized cuts procedure.

The procedure consists of three main processing stages:
an edge extraction phase, a normalized cuts phase and a re-
gion merging phase which produces a segmentation result
based on the local and global edge signals. The proposed
modifications to the edge extraction and normalized cuts
stages are discussed in the following subsections.

2.1. Normalized Edge Detection

The first step in the procedure is an edge extraction stage
which produces a set of edgels. This system employs a vari-
ant of the method proposed by Meer and Georgescu [11]
which can be thought of as computing the normalized cross
correlation between each pixel window and a set of oriented
edge templates.

Let wr
ij ∈ Rp denote the vector formed by stacking the

intensity values within a circle of radius r pixels centered at
pixel location, (i, j), and then subtracting the mean value.
Let trθ ∈ Rp denote the corresponding entries from an ori-
ented step edge template. The entries in the oriented edge
template are normalized so that the vector has unit length
and zero mean, ‖trθ‖ = 1, 1 · trθ = 0. The Normalized
Cross Correlation between the pixel window and the edge
template can be computed as follows.

erij =
|trθ ·wr

ij |
‖wr

ij‖
(1)

This signal will range between 0 and 1 with higher values
corresponding to windows which are well modeled by the
step edge. The advantage of this approach is that it nor-
malizes out the overall contrast associated with the window
which helps to eliminate spurious responses in textured re-
gions and amplify the response of low contrast step edges.

In this work we modify this edge detection scheme by
introducing an additional factor in the denominator which
is based on the average response to the template. Let µrθ de-
note a scalar representing the average response to the edge
template, |trθ · wr

ij | , over the entire image. The modified
edge response srij is then given by the following expression.

srij =
|trθ ·wr

ij |
(‖wr

ij‖+ βeµrθ)
(2)

The value of βe used in the experiments was 5.
This modification serves to reintroduce some contrast in-

formation into the edge response so that larger steps have a
greater response than smaller ones and slight variations in
low contrast regions are not unduly amplified. The edge
extraction procedure is applied to each channel of the Lab
image and within each color channel we consider 4 different
scales corresponding to radii of 2, 5, 10, and 20 pixels. This

analysis step produces a total of twelve edge signal values at
each pixel representing edge strengths in the different chan-
nels and scales. These values must then be combined into
a single composite edge strength value for the pixel. Here
we choose to compute a simple weighted sum of the edge
signals where the weights are chosen through a regression
procedure.

In the training phase we construct a labeled data set from
the training images provided in the Berkeley Segmentation
Database. We choose a subset of all of the pixels in the data
set that were marked as edges to represent positive exam-
ples and choose an equal number of non-edge pixels to act
as negative examples. An optimal set of weights was then
determined by applying logistic regression to this data set.

The second row of Figure 5 shows the results of ap-
plying the edge extraction procedure to some sample im-
ages. Since this edge extraction procedure considers multi-
ple scales it is able to give greater weight to more salient
edges which appear at several scales while still respond-
ing to more subtle features that only appear at finer scales.
These results are obtained by computing the maximum re-
sponse over all orientations to produce an edge strength
image and by applying non-maximal suppression to obtain
thinned edges.

2.2. Reduced Order Normalized Cuts

In the original formulation of the Normalized Cuts seg-
mentation procedure [14] the principal goal is to minimize
the Rayleigh quotient given in Equation 3

min
y

yT (D −W )y
yTDy

(3)

Where y ∈ Rn is a vector with one element for each of
the pixels in the image, W ∈ Rn×n is a sparse, symmetric
weight matrix whose entries reflect the affinities between
the pixels and D ∈ Rn×n is a diagonal matrix where the di-
agonal entries represent the sum of the weights of the edges
impinging on each pixel.

Following [3] we construct the matrix W using the in-
tervening contour cue. For each pixel, p, we consider every
other pixel, q, within a radius of 5 pixels and find the largest
edge signal value along the line connecting the two sites,
spq . This value is then converted into an entry in the weight
matrix via the following expression: Wpq = exp(−ρspq).
The parameter ρ was set to 25 in our experiments.

The problem described in Equation 3 is ultimately
solved, at least approximately, by finding the eigenvectors
of the following generalized eigensystem corresponding to
the k smallest eigenvalues where k is a constant on the order
of 20.

(D −W )y = λDy (4)
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Solving this generalized eigenvalue problem is typically
the major computational bottleneck in the normalized cuts
segmentation procedure. The prinicipal challenges are re-
lated to the size of the system and the fact that we are inter-
ested in recovering the smallest eigenvalues rather than the
largest. We propose to construct a reduced order normal-
ized cut system which will be easier to solve by replacing
the vector y in the previous equations with the vector Lx
where x ∈ Rm, L ∈ Rn×m and k � m� n. This leads to
a new optimization problem:

min
x

(Lx)T (D −W )(Lx)
(Lx)TD(Lx)

(5)

and a new generalized eigenvalue problem.

(LT (D −W )L)x = γ(LTDL)x (6)

First we note that if Lx is an eigenvector of the general-
ized eigensystem in Equation 4 then x will be an eigenvec-
tor of the system in Equation 6 with the same eigenvalue.
From this we can conclude that if the k relevant eigenvec-
tors of the original problem lie in the span of the matrix L
then our reduced eigenector problem will actually produce
exactly the same results as the original problem. That is the
k smallest eigenvalues of the reduced problem will be the
same as those of the original problem and the correspond-
ing vectors Lxi will match the eigenvectors of the original
problem modulo an irrelevant scale factor. More generally
if the k eigenvectors are well approximated by the span of
L then the eigenvectors of the reduced system will be good
approximations for those of the original system.

Figure 1. This figure shows the results of breaking an input image
into superpixels by applying the watershed algorithm to the edge
strength signal produced by the normalized edge detection stage.

Our aim then is to construct a matrix, L, whose column
span captures the variation we expect in the eigenvectors
of the orginal system. We do this by first considering the

edge strength signals produced in the edge detection phase.
We produce an edge strength image by simply recording
the max edge response over all orientations at each pixel as
described earlier. We then apply a watershed transform to
this edge strength image to produce a set of superpixels as
shown in Figure 1. In our experiments this step typically
broke the image into around 5000 segments.

The purpose of the L matrix is to assign a value to each
pixel based on the labels assigned in its neighborhood. The
simplest approach would be to assign each pixel the value
associated with its label, this would correspond to a binary
L matrix with a single 1 entry in each row. The approach
used in this paper is more nuanced, each pixel constructs
a weighted average of the values in the label vector, x, by
looking at its label and the labels assigned to its neighbors.
In the experiments we considered all of the neighbors that
fell within a radius of 3 pixels. Each of the neighbors is
assigned a weight based on its position, this weight falls of
exponentially with distance. Pixels that lie on watershed
boundaries are assigned zero weights. Weights associated
with neighbors that share the same label are summed. Fi-
nally the label weights associated with each pixel are nor-
malized so that they sum to 1. The end result is an L matrix
whose span produces images that are smooth in textureless
areas but can vary sharply near potential discontinuities. We
have found in practise that theLmatrices constructed in this
manner do a significantly better job of capturing the desired
eigenvectors than the binary versions.

Once the L matrix has been constructed we can turn
our attention to solving the reduced order eigensystem de-
scribed in Equation 6. We first note that this system is much
smaller than the original system since m is on the order of
5000 where n was on the order of 115000 for the images in
our test set.

The second reason that this system is more amenable to
analysis is more subtle. First we observe that the reduced
order eigensystem is still sparse, if we consider the matri-
ces W ′ = LTWL and D′ = LTDL we note that these
matrices will essentially capture the adjacency structure of
the watershed superpixels in the image.

Next observe that we are ultimately interested in finding
the eigenvectors associated with the smallest eigenvalues
of the generalized eigensystem. These eigenvectors can be
found using a variant of the Lanczos procedure [10] which
is related to the power method and proceeds by repeatedly
performing matrix vector multiplications to produce a set
of vectors that capture the desired portion of the spectrum.
Here we note that if we are interested in finding the small-
est eigenvalues of a symmetric positive semi definite matrix
A we can improve our convergence rate substantially if we
consider instead A−1 since the smallest eigenvalues of A
will correspond to the largest eigenvalues of A−1 and ap-
plying the power method to A−1 will quickly produce the
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eigenvectors and eigenvalues that we are most interested in.
Finally we note that the matrices (W ′ −D′) and D′ are

quite amenable to factorization using a modified Cholesky
decomposition. More specifically we have found that if we
use the Approximate Minimum Degree algorithm [1] to re-
order the rows and columns of these matrices they can be
factored quite readily into sparse Cholesky factors. This is
important because it means that we can apply the inverses
of (W ′−D′) and D′ very rapidly which is what is required
to apply the accelerated Lanczos method described above.
Note that we do not need to compute the actual inverses of
(W ′ − D′) or D′, we only need to be able to apply these
inverses to vectors, a task for which a sparse Cholesky de-
composition is ideally suited.

As an example consider the image shown in Figure 1.
The watershed algorithm produced a superpixel segmenta-
tion containing 4329 segments. The associated matrix W ′

had a total of 131943 entries. Our modified Cholesky fac-
torization produced a lower triangular matrix that had a total
of 290812 entries. Since the computational complexity of
our Lanczos procedure will be governed by the fill structure
of the Cholesky factors this is a quite advantageous result.

We note that the approach proposed here differs from
the scheme described by Fowlkes et al. [9]. The goal in
that work was to develop a scheme that could be used to
approximate the eigenvectors of a weight matrix that con-
sidered the association between every pair of pixels in the
image. Computing the eigenvectors of such a large system
was decidedly unappealing so the authors propose an ap-
proach wherein they randomly sampled a subset of the rows
of the affinity matrix to form a smaller, dense system in-
volving only a few hundred rows. They then analyzed the
spectral properties of that smaller system and used them to
approximate the full system.

The approach advocated in this paper leverages the ob-
servation that in this image segmentation task the edge sig-
nal provides useful information about the final structure of
the eigenproblem. By constructing a basis tailored to the
content of the image we are able to identify a subspace that
captures the nuances of the edges and the details found in
the full system.

Once the eigenvectors have been computed, the segmen-
tation scheme proceeds along the lines described in [3].
Each eigenvector is rescaled so that the maximum and min-
imum values correspond to 1 and 0. The vectors are then
scaled by the square root of the associated eigenvalue to
reflect their relative importance. Finally we compute the
absolute values of the directional derivatives of each of
the eigenimages and sum them to produce a spectral edge
strength signal, sg(x, y, θ). This spectral signal is com-
bined with the oriented edge strength signal produced in the
edge extraction phase, sncc(x, y, θ), to produce a final edge
strength signal. sf (x, y, θ) = σlsncc(x, y, θ) + sg(x, y, θ).

In our experiments we chose to recover the first 31 eigen-
vectors and σl was set to 400.

The resulting final oriented edge strength signal,
sf (x, y, θ), was passed to the contours2ucm routine pro-
vided as part of the Berkeley Segmentation Database to
compute the final ultrametic contour map.

3. Experimental Results

The proposed edge detection and segmentation schemes
were evaluated using the Berkeley Segmentation Database,
BSDS, with the methods described in [3]. The parameters
of the segmentation procedure were tuned using the 200 im-
ages in the training set and the final procedure was then ap-
plied to both the test and validation sets.

Figure 2 plots the precision recall curve for the Normal-
ized Edge Detection scheme proposed in Section 2.1 on
the BSDS300 data set and compares its response to that of
the Pb and mPb detectors described in [3]. Note that the
proposed scheme produces results which are comparable to
those of the Pb detector on aggregate on this dataset but at a
much lower computational cost. The mPb detector provides
somewhat better performance with an F score of 0.67.
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[F=0.67] mPb − Arbelaez, Maire, Fowlkes, Malik (2011)
[F=0.65] Pb − Martin, Fowlkes, Malik (2004)
[F=0.65] Proposed Method
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Figure 2. The precision recall curve of the proposed normalized
edge detection scheme on the boundary benchmark of the BSDS
300 evaluation test set.

Figures 3 and 4 compare the performance of the pro-
posed reduced order segmentation scheme to other segmen-
tation schemes in the literature on the BSDS 300 and BSDS
500 data sets. Table 1 compares the method to other state of
the art methods based on the precision recall performance
in identifying salient boundaries. Table 2 summarizes the
performance of the method using a variety of criterion in-
cluding the Covering of ground truth segments, the Proba-
blistic Rand Index (PRI) and the Variation of Information
(VI) measures.
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Figure 3. This graph compares the performance of the proposed re-
duced order normalized cuts segmentation scheme to other meth-
ods on the boundary benchmark of the BSDS 300 evaluation test
set.
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[F=0.61] Felzenswalb−Huttenlocher
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Figure 4. This graph compares the performance of the proposed re-
duced order normalized cuts segmentation scheme to other meth-
ods on the boundary benchmark of the BSDS 500 evaluation test
set.

Taken together, these results indicate that the perfor-
mance of the proposed method is significantly better than
every other method except the gPb-owt-ucm algorithm and
the recently proposed method of Ren and Bo [12].

Figure 5 shows the results of running the proposed
scheme on a few of the images in the data set. The first
row shows the input image, the second row shows the re-
sults of the normalized edge detection stage. The third row
shows the ultrametric contour maps produced by the con-
tours2ucm stage. The segmentation results at the optimal
data scale (ODS) and optimal image scale (OIS) are shown
in the final two rows.

BSDS 300 BSDS 500
ODS OIS AP ODS OIS AP

Human 0.79 0.74 - 0.80 0.80 -
Ren and Bo [12] 0.74 0.76 0.77
gPb-owt-ucm [3] 0.71 0.74 0.73 0.73 0.76 0.73
Proposed Method 0.67 0.72 0.73 0.68 0.72 0.74
Mean Shift [6] 0.63 0.66 0.54 0.64 0.68 0.56
NCuts [7] 0.62 0.66 0.43 0.64 0.68 0.45
Canny-owt-ucm [3] 0.58 0.62 0.53 0.60 0.64 0.58
Felz-Hutt [8] 0.58 0.62 0.53 0.61 0.64 0.56
SWA [13] 0.56 0.59 0.54 - - -
gPb 0.70 0.72 0.66 0.71 0.74 0.65
Canny 0.58 0.62 0.58 0.60 0.63 0.58

Table 1. Results obtained on the BSDS data set on the boundary
benchmarks using the evaluation methodology suggested in [3, 2].
The values in the table correspond to the optimal harmonic means
obtained over the precision recall. ODS refers to the optimal data
scale and OIS to the optimal image scale. AP refers to the average
precision. The values are reproduced from the tables in [3].

BSDS 300
Covering PRI VI

ODS OIS Best ODS OIS ODS OIS
Human 0.73 0.73 - 0.87 0.87 1.16 1.16
gPb-owt-ucm [3] 0.59 0.65 0.75 0.81 0.85 1.65 1.47
Proposed Method 0.56 0.62 0.72 0.79 0.84 1.74 1.53
Mean Shift [6] 0.54 0.58 0.66 0.78 0.80 1.83 1.63
Felz-Hutt [8] 0.51 0.58 0.68 0.77 0.82 2.15 1.79
Canny-owt-ucm [3] 0.48 0.56 0.66 0.77 0.82 2.11 1.81
SWA [13] 0.47 0.55 0.66 0.75 0.80 2.06 1.75
NCuts [7] 0.44 0.53 0.66 0.75 0.79 2.18 1.84
Chan Vese [4] 0.49 - - 0.75 - 2.54 -
Quad-Tree 0.33 0.39 0.47 0.71 0.75 2.34 2.22

BSDS 500
Covering PRI VI

ODS OIS Best ODS OIS ODS OIS
Human 0.72 0.72 - 0.88 0.88 1.17 1.17
gPb-owt-ucm [3] 0.59 0.65 0.74 0.83 0.86 1.69 1.48
Proposed Method 0.56 0.62 0.73 0.81 0.85 1.78 1.56
Mean Shift [6] 0.54 0.58 0.66 0.79 0.81 1.85 1.64
Felz-Hutt [8] 0.52 0.57 0.69 0.80 0.82 2.21 1.87
Canny-owt-ucm [3] 0.49 0.55 0.66 0.79 0.83 2.19 1.89
NCuts [7] 0.45 0.53 0.67 0.78 0.80 2.23 1.89

Table 2. Results obtained on the BSDS data set on the region
benchmark using the evaluation methodology suggested in [3, 2].
The first 3 columns report the score on the covering of the ground
truth segments at the optimal data scale (ODS), and the optimal
image scale (OIS). The next two columns report the score accord-
ing to the Probabilistic Rand Index (PRI). The final 2 columns
report the score with respect to the Variation of Information crite-
rion. The values are reproduced from the tables in [3].

Table 3 indicates the time taken by the four main phases
of the proposed segmentation scheme in seconds. The
scheme was implemented in Matlab with a combination
of Matlab functions and mex files. Importantly, the entire
computation can be carried out in under 10 seconds on a
standard laptop in Matlab without any GPU acceleration.
For comparison Table 4 summarizes the time required to
perform the major steps of the gPb-owt-ucm algorithm on
the same computer. Here the time taken to perform a seg-
mentation is on the order of 4 minutes. The timings were
performed on a Macbook Pro with a 2.2 GHz quad-core In-

4325



Figure 5. Segmentation results produced by the proposed method. The first row contains the input image, the second the results of the
Normalized Edge Detector, the third the ultrametric contour maps which include the globalized edge weights. The fourth and fifth rows
show segmentations at the ODS and OIS respectively.

tel Core i7 processor.

Note that the reduced order normalized cut scheme al-
lows us to compute the 31 smallest eigenvectors within 0.42
seconds in Matlab, this is markedly better than the 0.777
seconds reported to recover 17 eigenvectors with an opti-
mized GPU implementation [5].

In order to investigate how the reduced order approxi-
mation affected the quality of the final results. We ran an
experiment on a subset of the dataset without using this op-
timization. That is we computed the eigenvectors of the
original unreduced system and used those results for the
final segmentation. We then evaluated the quality of the
resulting image segmentations by computing the precision
recall curve for the boundary detection task. The scores,
curves and results were identical to those obtained with the
reduced order system. The only difference was time, find-

ing the eigenvectors of the full system required on average
430 seconds while solving the reduced system required only
0.4 seconds. This suggests that the reduced order system
effectively captures the essential structure of the full eigen-
problem for this task.

Further optimizations are certainly possible. The edge
detection scheme was implemented in a straightforward
manner using Matlab’s convolution routines. A better im-
plementation could make use of integral images which
would allow us to avoid convolutions entirely and would
drastically simplify the issue of computing responses over
multiple scales. A real time implementation of the normal-
ized edge detection scheme is a distinct possibility.

Similarly a more careful C implementation could avoid
some of the inefficiencies associated with Matlab’s sparse
matrix operations and would improve the running times of
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Phase mean median max
Normalized Edge Detection 2.0309 2.0245 2.2511
Computing Weight Matrix 2.5776 2.5738 2.7515
Reduced Order Normalized Cuts 0.4171 0.4039 1.6866
contour2ucm 6.5531 6.5668 11.0380

Table 3. This table shows the mean, median and maximum time
spent in seconds on each of the four major computational phases
when the proposed segmentation procedure was run on the 200
images in the BSDS 500 test set.

Phase mean time in seconds
mPb - computing local cues 61.13
mPb - smoothing cues 8.50
Spectral Pb 162.75

Table 4. This table shows the average time spent in seconds on
each of the major computational phases of the gPb segmentation
algorithm

the weight matrix construction phase considerably.

4. Conclusions and Future Work
The goal of this paper has been to explore approaches

to accelerating edge detection and segmentation schemes
based on the gPb framework by exploiting the underlying
structure of the problem. To this end we have investigated
the performance of an edge extraction scheme based on nor-
malized correlation and shown that, with appropriate tun-
ing, the scheme can be made to produce competitive results
without excessive computation.

This paper also presents ideas for tackling the key bottle-
neck in the normalized cuts procedure, the computation of
generalized eigenvectors. We propose a reduced order nor-
malized cut problem which is designed to capture the essen-
tial features of the full scale problem. The key to this ap-
proach is the construction of an appropriate matrix L whose
columns provide a good approximation for the eigenvectors
of the original system. We propose a scheme for construct-
ing such a matrix using an initial superpixel segmentation
of the frame and note that the resulting reduced systems ex-
hibit special structure which can be exploited in the eigen-
vector analysis procedure to further accelerate convergence.
Timing results show that this approach can provide a dra-
matic improvement in performance.

Note that the ideas presented in this paper could be
employed independently. The normalized edge detection
scheme could be used for purposes other than segmentation
and the reduced order acceleration could be applied to the
output of other edge detectors. As an example it would be
entirely possible to use the output of the mPb detector as
an input to a reduced order normalized cuts system. Simi-
larly one can imagine using other superpixel segmentation
schemes to construct appropriate L matrices that may pro-
vide other benefits. We plan to explore such combinations
in future work.
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