1. For each of the following operations, is the class of decidable languages closed under the operation? Prove each claim.
 (a) Intersection
 (b) Complement
 (c) Concatenation
 (d) Kleene star

2. Let $L = \{ \langle D \rangle \mid D$ is a DFA accepting at least one odd-length string$\}$.
 (a) Prove that L is recognizable.
 (b) Given that \bar{L} is recognizable (you need not prove this), prove that L is decidable.

3. Let $L = \{ \langle D \rangle \mid D$ is a DFA that accepts no strings$\}$. We’ll break the process of proving that L is decidable into the steps below.
 (a) Let D be a DFA with exactly n states. Prove that if D does not accept any string of length $\leq n$ then $L(D) = \emptyset$.
 (b) Use (a) to prove that L is decidable.

4. (Sipser 3.13) A Turing machine with stay put instead of left (TMSP) is similar to an ordinary Turing machine, but the transition function has the form

 $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times \{ R, S \}$.

 At each point, the machine can move its head right or let it stay in the same position. Prove that TMSPs recognize exactly the class of regular languages.