The Linux Random Number Generator (LRNG) is the primary source for random number generation on devices running Linux-based operating systems.

Our goals are to create a tool that allows researchers and kernel developers to profile the LRNG without intervening with its functionality, and to use this tool to gather and analyze data from multiple real-world workflows.

Random Numbers

- Unpredictable random numbers are necessary to maintain privacy and security
 - Cryptographic key generation
 - Execution stack management
- Generating unpredictable values from a deterministic process is difficult
- Defenses are useless if ‘random’ numbers are actually predictable

Entropy

- Entropy is a measure of unpredictability
- LRNG harvests entropy from its environment, such as user input
 - Entropic events are mixed into pools
 - Random numbers extracted from pools
- User input may be an attack vector

Analytical Results

- get_random_bytes() is called every time a new application is executed (for ASLR)
- GPG key generation was the only program tested that requested from /dev/random
- The privacy-minded TOR browser requested approximately the same number of bytes as the Firefox browser
- Newer versions of the Linux kernel finish the boot process with more entropy than older versions (notably, v 3.5)