GPU Acceleration for the C++ Standard Template Library

Christian DeLozier
delozier@cis.upenn.edu
University of Pennsylvania

Abstract

Modern programmers must exploit parallelism for performance
gains, possibly through the use of an attached or on-chip GPU.
To take advantage of the GPU in C++ programs, the programmer
must use either a new language (CUDA or OpenCL) or an exter-
nal library (Thrust). Rather than requiring that programmers learn
new tools, modify existing code, and change software development
practices, the C++ Standard Template Library (STL) can be modi-
fied to automatically accelerate common algorithms using the GPU.
This paper presents a GPU accelerated version of the C++ STL,
libcxxgpu. Using the thrust library, function calls to the algorithms
provided by the C++ STL are executed on the GPU, depending on
a set of heuristics that determine when to use the CPU and when to
use the GPU. In this paper, we detail the implementation of the ac-
celerated library, highlight challenges encountered, and analyze the
performance factors that determine which device should be used.

CR Categories: D.1.3 [Programming Techniques]: Concurrent
Programming—Parallel Programming D.2.2 [Software Engineer-
ing]: Design Tools and Techniques—Software Libraries

Keywords: GPGPU, C++, STL, performance, parallel

1 Introduction

Due to the lack of frequency scaling in modern processors, appli-
cations must exploit parallelism for increased performance. For
massively parallel algorithms, an attached or on-chip Graphics Pro-
cessing Unit (GPU) can enable large performance gains (as much as
100x in some cases). Unfortunately, many applications have been
developed for sequential execution and do not take advantage of
parallel execution, which would otherwise provide increased per-
formance.

The C++ Standard Template Library (STL) provides common con-
tainers and algorithms, which have been heavily optimized for se-
quential execution. Using STL functions, C++ programmers can
avoid implementing and optimizing complex algorithms, such as
sort. Though these algorithms may benefit from parallel execu-
tion, the STL versions of these algorithms are sequential, which
limits their performance.

To maintain its reputation as a high-performance language, C++
must allow programs to take advantage of GPU execution. To en-
able GPU acceleration in C++ programs, the thrust library imple-
ments matching GPU algorithms for the algorithms provided by the

This paper was written for the final project of CIS 565: GPU
Programming and Architecture in the Spring 2012 semester.

template <typename T>
void
sort (Iterator<T> first, Iterator<T> last) {

if (should_use_gpu(last - first, sizeof (T))) {

gpu_sort (first, last);
lelse{
Perform Sequential Sort

}

}

template <typename T>

void

gpu_sort (Iterator<T> first, Iterator<T> last) {
device_vector<T> device (last-first);
copy_to_gpu(first, last, device);
thrust::sort (device.begin(),device.end());
copy_from_gpu(first, last,device);

}
Figure 1: Simplified Implementation of GPU Accelerated sort

STL [Hoberock and Bell 2012]. Thrust abstracts away the details of
low-level CUDA function calls, such as cudaMemCpy. However,
to use thrust, programmers must modify existing code, call thrust
functions instead of STL functions, and tune programs to determine
when the use of thrust will be beneficial for performance.

Rather than require that programmers use thrust directly in C++
programs, libcxxgpu provides a version of the STL that automati-
cally (1) determines when GPU acceleration will be beneficial and
(2) uses thrust to execute STL algorithms on the GPU. Through
a comparison of the performance of CPU and GPU execution of
STL algorithms, we have identified heuristics that inform the run-
time decision of which device to use. This paper describes how an
implementation of the STL can be modified for GPU acceleration
using thrust and analyzes the performance of GPU acceleration for
STL algorithms, including some cases in which GPU acceleration
was not beneficial.

2 Approach

Ideally, GPU acceleration would be applied to a single implemen-
tation of the C++ STL and used for all platforms. Though the be-
havior of the STL is standardized [International Standard ISO/IEC
14882:2011. 2011], multiple implementations of the STL exist for
various operating systems and compilers. Therefore, libcxxgpu at-
tempts to minimize the amount of invasive code changes necessary
to GPU accelerate each implementation of the STL. Figure 1 shows
an example of the basic code modifications applied to each acceler-
ated STL function. The functions provided in the libcxxgpu headers
can be separated into algorithms and utilities.

Algorithms The gpu_algo header provides functions like
gpu-sort, gpu-find, and gpu-transform. In general, the
GPU accelerated functions simply create a device_vector,
copy the input data to the GPU, execute a thrust function
on the data, and copy the output data back to the CPU. At


Christian
Text Box

Christian
Text Box
This paper was written for the final project of CIS 565: GPU Programming and Architecture in the Spring 2012 semester.


this time, the functions sort, find, min_element, max_—
element, transform, set_union, set_intersection,
set_difference, and set_symmetric_difference have
been implemented and evaluated.

Heuristics The gpu_util header provides the should use_-
gpu function which uses runtime heuristics to determine whether
to execute an algorithm using the CPU or the GPU. Overall, these
heuristics must accomplish three goals. First, the heuristics must
execute efficiently to minimize their impact on the runtime of CPU
execution. Second, the heuristics must accurately predict whether
CPU or GPU execution will be more efficient. Finally, the heuris-
tics must be conservative to ensure that GPU execution will never
diminish the performance of STL algorithms.

The heuristics are based on two factors, referred to as the
bandwidth_factor and the instruction_factor. We de-
scribe the performance results that motivated these heuristics in
Section 3. The bandwidth_factor approximates the work re-
quired to copy data between the CPU and GPU, which was found to
be a major bottleneck for GPU execution. The instruction_—
factor approximates the total amount of work done on the input
data, which was found to be the major bottleneck for CPU execu-
tion. To determine whether or not to use the GPU, libcxxgpu com-
putes the difference between the two factors and chooses the GPU
if the instruction_factor is greater than the bandwidth_—
factor. These factors are computed as follows, where bandwidth,
cores, and clock are normalized to the attributes of the GTX 570.
Instructions is an approximation of the number of instructions exe-
cuted per input data element. This value can be found through ex-
perimentation and should remain constant across all hardware and
software platforms. Size and Element_Size are determined from the
iterator arguments to the called STL function.

instruction_factor = Size x Instructions
bandwidth_factor = Element_Size x GPU_factor
GPU _factor = DF x SF * bandwidth * cores * clock
DF = GPU_factor(GTX 570)
S F = Default Size Factor (constant)

Before computing and comparing both factors, the should_use_—
gpu function first checks whether Instructions is less than a min-
imum cutoff. For the evaluated GPUs, the minimum cutoff was
placed at fifteen instructions per element. As a motivation for this
early cutoff, the £ind algorithm executes approximately three in-
structions per data element (two compares and an increment). In the
isolation of a single STL function call, GPU acceleration is not ben-
eficial for such a small number of instructions per element. After
computing the instruction_factor, a second early cutoff is
applied for values less than a minimum total number of instructions.
For the evaluated GPUs, the minimum instruction_factor
was set at three-million.

3 Evaluation

The performance of CPU and GPU execution of the implemented
STL functions was evaluated on two systems, one with an Intel
Core2 processor and an NVIDIA 9600 GT GPU and another with
an Intel Core i7 processor and an NVIDIA GTX 570 GPU. The
9600 GT has a bus bandwidth of 58 GB/s and 64 cores with a clock
of 1625 MHz. The GTX 570 has a bus bandwidth of 152 GB/s and
480 cores with a clock of 1464 MHz. To test the performance of
STL functions, we developed a set of microbenchmarks that time

W vector<int=
W vector<long=
list<int=

M list<long>

Speedup
=

20 2

r
=)
[
i

fog 2 input Size

Figure 2: Comparison of GPU acceleration gains for sort on
vectorand 1ist onthe GTX 570

40 M GTX570
vector=float>
W GTX 570
20 list=float=
9600 GT
= vector<float=
B 20 W 9600 GT
@O
% list=float=
10
0
18 18 20 22 24
log_2 Input Size

Figure 3: Comparison of sort on 9600 GT and GTX 570

the execution of multiple iterations of STL algorithms on a con-
tainer with a specified number of elements. All microbenchmarks
were compiled with O3 optimizations using the nvce compiler.

sort In Figure 2, we demonstrate the performance benefits of vec-
tor and list sorting on the GTX 570. Though copying between de-
vices takes longer for a list than a vector, the increase in perfor-
mance for GPU acceleration is greater for lists because the STL
sort function is better optimized for random-access containers,
such as vectors and arrays, than for linked containers, such as lists.

In Figure 3, we compare the speedups provided by GPU accelera-
tion on both evaluated systems. On the GTX 570, vector sort is
beneficial for any container size larger than 128,000 elements. At a
maximum size of 32,000,000 elements, GPU acceleration provides
a speedup of 32.9x for vector sort and 37.7x for list sort. On
the 9600 GT, vector sort is beneficial for any container size larger
than 1,000,000 elements. At the maximum tested size, GPU accel-
eration provides a speedup of 11.7x for vector sort and 27.5x for
list sort.

transform The transform function accepts a user-defined
functor that is executed for each input element. Using this capabil-
ity, we tested the t rans form function with various functor sizes
to determine how large a functor must be to benefit from GPU ac-
celeration. In Figure 4, we show the speedup from GPU acceler-



W 20 Ops
W 40 Ops

60 Ops
W 20 0ps
W 100 Qps

Speedup (1.0x fs equal)
'

16 18 20 22 24

log 2 of input Size (# of floats)

Figure 4: GPU Speedup of std::transform with N floating-point
additions on a GTX 570

ation for functor sizes ranging from 20 to 100 floating-point addi-
tions. As the instruction size of the functor increases, the speedup
due to GPU acceleration also increases. Therefore, the runtime of
transformunder CPU execution is more dependent on the num-
ber of instructions in the user-defined functor than the runtime for
GPU execution. We found similar results for experiments involving
functors using integer addition and floating-point multiplication as
well.

We note that, to accurately choose which device to execute
transform on, the programmer or compiler must provide the
approximate number of functor instructions as an argument to the
transform function. This is required because C++ does not pro-
vide a reliable mechanism for determining the number of instruc-
tions in a functor at runtime. In some cases, the number of instruc-
tions in a function can be determined by iterating through memory
until a RET opcode is found, but this is not possible for functors
because the address-of operator is not valid for functors.

Device Data Transfer We calculated the device data transfer
overheads for gpu_transform with a functor of 100 floating-
point multiplies. On the GTX 570, the data transfer overheads for
input sizes above 1 million elements ranged from 50% to 81% of
the total runtime. Thus, for large inputs, a system-on-a-chip design
could yield even greater speedups due to the elimination of costly
data transfer.

Other Algorithms Though we observed large performance in-
creases for some algorithms, other functions, such as find, set_—
union, and min_element, did not benefit from GPU accelera-
tion. These functions execute a small number of instructions per
data element, which leaves less room to amortize the cost of copy-
ing data to and from the GPU and starting kernels. For these func-
tions, another parallel approach, such as vectorization [Mytkowicz
and Marron 2011], may provide performance benefits in place of
GPU acceleration.

4 Related Work

Many prior efforts have explored GPU acceleration for specific al-
gorithms, often yielding large performance increases. Bakkum and
Skadron implemented a GPU accelerated version of SQLLite that
required no application code modifications [Bakkum and Skadron
2010]. On an NVIDIA Tesla GPU, the accelerated version of
SQLLite achieved speedups between 20x and 70x.

MCSTL provides a multi-core parallel implementation of some al-
gorithms using OpenMP and achieves a speedup of up to 21x for
sorting on an §-core machine [Putze et al. 2007]. A vectorized ver-
sion of the STL has also been developed [Mytkowicz and Marron
2011]. Vectorized STL algorithms can provide speedups of up to
20x for functions that execute a small number of instructions per
element, such as binary_search.

5 Future Work

For this project, two CPU and GPU combinations were evaluated
to determine heuristics for CPU and GPU execution. Due to the
small sample size, the heuristics may overfit the results of the ex-
perimental data and not perfectly apply to other systems. Further
experimentation is required to ensure that the heuristics correctly
predict which device to use for as many systems as possible.

At the time of this paper, the LLVM version of the C++ STL,
libcxx, only supports Mac OS X. The linux systems evaluated pro-
vide the libstdc++ STL implementation, which is generally cou-
pled to a specific version of gcc. Reimplementing GPU acceleration
for each version of libstdc++ is tedious, but once libcxx supports
Linux, libcxxgpu could be implemented on top of libcxx for a cross-
platform GPU accelerated implementation of the STL.

Finally, certain algorithms, such as £ind, cannot realize a speedup
from GPU acceleration due to the need to copy data to the GPU
before each function call. To enable speedups on these low instruc-
tion algorithms, it may be possible to provide constructs to combine
multiple algorithms into a single copy and multiple GPU function
calls. However, this project was focused on acceleration without
code changes, which would be required for this type of mecha-
nism. Another approach to accelerating low instruction algorithms
might be to use vectorization for low instruction count algorithms
and GPU acceleration for high instruction count algorithms.

6 Conclusion

Using libcxxgpu, C++ programs that use certain STL algorithms
can be automatically accelerated through GPU execution. Through
experimentation, device data transfer and kernel startup costs were
identified as the major bottleneck for GPU execution and the num-
ber of instructions per data element was identified as the major bot-
tleneck for CPU execution. In the future, a combination of vec-
torization and GPU acceleration may provide a high-performance,
parallel STL for C++ applications.

References

BAKKUM, P., AND SKADRON, K. 2010. Accelerating sql database
operations on a gpu with cuda. In GPGPU 10, ACM, 94-103.

HOBEROCK, J., AND BELL, N. 2012. Thrust: Code at the Speed
of Light. Thrust. http://code.google.com/p/thrust/.

INTERNATIONAL STANDARD ISO/IEC 14882:2011. 2011. Pro-
gramming Languages — C++. International Organization for
Standards.

MyTKOWICZ, T., AND MARRON, M. 2011. Single-core perfor-
mance is still relevant in the multi-core era. In In the PLDI Fun
Thoughts and Ideas Session, ACM.

PUTZE, F., SANDERS, P., AND SINGLER, J. 2007. Mcstl: The
multi-core standard template library. In Proceedings of the 12th
ACM SIGPLAN Symposium on Principles and Practice of Par-
allel Programming, ACM, 144-145.





