Agenda

• Steerable filters (recap)
• Harris corner detector
• Binomial filters
Steerable filters

Definition: Steerable filters are a class of filters where a filter of arbitrary orientation is synthesized as a linear combination of a set of basis filters [Freeman and Adelson, 1991].
Steerable filters

Definition: Steerable filters are a class of filters where a filter of arbitrary orientation is synthesized as a linear combination of a set of basis filters [Freeman and Adelson, 1991].

second derivative of Gaussian
Steerable derivatives of Gaussian
Steerable filter architecture

\[
\left(\sum_i k_i(\theta)B_i \right) \ast I \equiv \sum_i k_i(\theta)I_i^B
\]
Derivatives of Gaussian frequency spectrum

\[G_n(x) \leftrightarrow (j\omega)^n \hat{G}(\omega) \]

normalized magnitude spectrum
Agenda

- Steerable filters (recap)
- Harris corner detector
- Binomial filters
Motivation

“What stuff in one image matches with stuff in another?”
Motivation

“What stuff in one image matches with stuff in another?”
What makes a good feature?

Repeatability
Same feature can be found in other images despite geometric and photometric transformations.

Saliency
Each feature is distinctive.

Compactness and efficiency
Many fewer features than image pixels.

Locality
Feature occupies a relatively small area of the image; robust to clutter and occlusion.
Detectors

<table>
<thead>
<tr>
<th>Method</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moravec</td>
<td>[Moravec ‘77]</td>
</tr>
<tr>
<td>Hessian</td>
<td>[Beaudet ‘78]</td>
</tr>
<tr>
<td>Harris/Forstner</td>
<td>[Harris ‘88, Forstner ‘87]</td>
</tr>
<tr>
<td>Laplacian</td>
<td>[Lindeberg ‘98]</td>
</tr>
<tr>
<td>DoG</td>
<td>[Lowe 1999]</td>
</tr>
<tr>
<td>Harris-/Hessian-Laplace</td>
<td>[Mikolajczyk & Schmid ‘01]</td>
</tr>
<tr>
<td>Harris-/Hessian-Affine</td>
<td>[Mikolajczyk & Schmid ‘04]</td>
</tr>
<tr>
<td>EBR and IBR</td>
<td>[Tuytelaars & Van Gool ‘04]</td>
</tr>
<tr>
<td>MSER</td>
<td>[Matas ‘02]</td>
</tr>
<tr>
<td>Salient Regions</td>
<td>[Kadir & Brady ‘01]</td>
</tr>
<tr>
<td>FAST</td>
<td>[Rosten et al. ‘2010]</td>
</tr>
</tbody>
</table>

Many Others…
Detectors

<table>
<thead>
<tr>
<th>Detector</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moravec</td>
<td>Moravec ‘77</td>
</tr>
<tr>
<td>Hessian</td>
<td>Beaudet ‘78</td>
</tr>
<tr>
<td>Harris/Forstner</td>
<td>Harris ‘88, Forstner ‘87</td>
</tr>
<tr>
<td>Laplacian</td>
<td>Lindeberg ‘98</td>
</tr>
<tr>
<td>DoG</td>
<td>Lowe 1999</td>
</tr>
<tr>
<td>Harris-/Hessian-Laplace</td>
<td>Mikolajczyk & Schmid ‘01</td>
</tr>
<tr>
<td>Harris-/Hessian-Affine</td>
<td>Mikolajczyk & Schmid ‘04</td>
</tr>
<tr>
<td>EBR and IBR</td>
<td>Tuytelaars & Van Gool ‘04</td>
</tr>
<tr>
<td>MSER</td>
<td>Matas ‘02</td>
</tr>
<tr>
<td>Salient Regions</td>
<td>Kadir & Brady ‘01</td>
</tr>
<tr>
<td>FAST</td>
<td>Rosten et al. ‘2010</td>
</tr>
</tbody>
</table>

Many Others…
Harris corner?
Harris detector: Intuition

- Analyze local variation of signal.
- “Corner”: Shifting window in any direction yields a large change in appearance.
Harris detector: Intuition

- Analyze local variation of signal.
- "Corner": Shifting window in any direction yields a large change in appearance.
Harris detector: Intuition

- Analyze local variation of signal.
- "Corner": Shifting window in **any direction** yields a **large change** in appearance.

"flat" region: no change in all directions

"edge": no change along the edge direction
Harris detector: Intuition

- Analyze local variation of signal.
- "Corner": Shifting window in any direction yields a large change in appearance.

"flat" region: no change in all directions

"edge": no change along the edge direction

"corner": significant change in all directions
Harris detector: Derivation

Variation of intensity for the shift \((\Delta x, \Delta y)\):

\[
E(\Delta x, \Delta y) = \sum_{x,y} w(x, y) [I(x, y) - I(x + \Delta x, y + \Delta y)]^2
\]
Harris detector: Derivation

Variation of intensity for the shift \((\Delta x, \Delta y)\):

\[
E(\Delta x, \Delta y) = \sum_{x,y} w(x, y)[I(x, y) - I(x + \Delta x, y + \Delta y)]^2
\]

For nearly constant patches:

\[
E(\Delta x, \Delta y) \approx 0
\]
Harris detector: Derivation

Variation of intensity for the shift \((\Delta x, \Delta y)\):

\[
E(\Delta x, \Delta y) = \sum_{x,y} w(x, y)[I(x, y) - I(x + \Delta x, y + \Delta y)]^2
\]

For “edge” patches:

\[
E(\Delta x, \Delta y)
\] variation large along one orientation
Harris detector: Derivation

Variation of intensity for the shift \((\Delta x, \Delta y)\):

\[
E(\Delta x, \Delta y) = \sum_{x,y} w(x, y)[I(x, y) - I(x + \Delta x, y + \Delta y)]^2
\]

For “corner” patches:

\[
E(\Delta x, \Delta y)
\]

variation large along two orientations
Review: Taylor series

\[f(x + u, y + v) = f(x, y) + f_x(x, y)u + f_y(x, y)v \]

\[+ \frac{1}{2} \left[f_{xx}(x, y)u^2 + f_{xy}(x, y)uv + f_{yy}(x, y)v^2 \right] \]

\[+ \text{h.o.t.} \]
Review: Taylor series

\[f(x + u, y + v) \approx f(x, y) + f_x(x, y)u + f_y(x, y)v \]

\[+ \frac{1}{2} [f_{xx}(x, y)u^2 + f_{xy}(x, y)uv + f_{yy}(x, y)v^2] \]

+ h.o.t.
Harris detector: Derivation

\[E(\Delta x, \Delta y) = \sum_{x,y} [I(x, y) - I(x + \Delta x, y + \Delta y)]^2 \]
Harris detector: Derivation

\[
E(\Delta x, \Delta y) = \sum_{x,y} [I(x, y) - I(x + \Delta x, y + \Delta y)]^2
\]

Taylor series expansion

\[
\approx \sum_{x,y} [I(x, y) - I(x, y) - I_x(x, y)\Delta x - I_y(x, y)\Delta y]^2
\]
Harris detector: Derivation

\[E(\Delta x, \Delta y) = \sum_{x,y} [I(x, y) - I(x + \Delta x, y + \Delta y)]^2 \]

Taylor series expansion

\[\approx \sum_{x,y} [I(x, y) - I(x, y) - I_x(x, y) \Delta x - I_y(x, y) \Delta y]^2 \]
Harris detector: Derivation

\[E(\Delta x, \Delta y) = \sum_{x,y} [I(x, y) - I(x + \Delta x, y + \Delta y)]^2 \]

Taylor series expansion

\[\approx \sum_{x,y} [I(x, y) - I(x, y) - I_x(x, y)\Delta x - I_y(x, y)\Delta y]^2 \]

expand

\[= \sum_{x,y} [I_x(x, y)^2\Delta x^2 + 2I_x(x, y)I_y(x, y)\Delta x\Delta y + I_y(x, y)^2\Delta y] \]
Harris detector: Derivation

\[E(\Delta x, \Delta y) = \sum_{x,y} [I(x, y) - I(x + \Delta x, y + \Delta y)]^2 \]

- Taylor series expansion

\[\approx \sum_{x,y} [I(x, y) - I(x, y) - I_x(x, y)\Delta x - I_y(x, y)\Delta y]^2 \]

- Expand

\[= \sum_{x,y} [I_x(x, y)^2\Delta x^2 + 2I_x(x, y)I_y(x, y)\Delta x\Delta y + I_y(x, y)^2\Delta y] \]

- Rewrite as matrix
Harris detector: Derivation

\[E(\Delta x, \Delta y) = (\Delta x \quad \Delta y) M \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} \]

where

\[M = \sum_{x,y} w(x,y) \begin{pmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{pmatrix} \]

\(M \) captures the variation of the gradients within the local patch

Thursday, February 9, 2012

M is generally a positive definite matrix

Note: Windowing function reintroduced and products of derivatives NOT second derivatives
M: second-order moment, covariance matrix or scatter matrix
Back to intuition

1. Treat gradient vectors as a set of 2D points, (I_x, I_y).
2. Compute scatter matrix/ellipse.
3. Analyze scatter matrix/ellipse shape.
Intuition

“Flat”

“Edge”

“Corner”

notice distribution of gradients vary for different types of patches
Intuition

“Flat”

\[\lambda_1 \approx \lambda_2 \]
small

“Ix

“Iy

“Edge”

\[\lambda_1 \gg \lambda_2 \]

“Corner”

\[\lambda_1 \approx \lambda_2 \]
large

Eigenvalues, \(\lambda_1 \) and \(\lambda_1 \), of scatter matrix, \(M \), quantify variation in the principle directions (i.e., eigenvectors of \(M \)) of the data.

Thursday, February 9, 2012
Corner response function

\[r = \det \mathbf{M} - k(\text{trace } \mathbf{M})^2 \]

where

\[\det \mathbf{M} = ? \quad \text{trace } \mathbf{M} = ? \]

\(k \) is empirically set constant: 0.04 - 0.06
Corner response function

\[r = \det M - k (\text{trace } M)^2 \]

where

\[\det M = \lambda_1 \lambda_2 \quad \text{trace } M = ? \]

\(k \) is empirically set constant: 0.04 - 0.06
Corner response function

\[r = \det \mathbf{M} - k (\text{trace } \mathbf{M})^2 \]

where

\[\det \mathbf{M} = \lambda_1 \lambda_2 \quad \text{trace } \mathbf{M} = \lambda_1 + \lambda_2 \]

\[k \text{ is empirically set constant: } 0.04 - 0.06 \]
Classification of image patches

Classification of image points using eigenvalues of \mathbf{M} (or r)
Classification of image points using eigenvalues of \mathbf{M} (or r)

- E is almost constant in all directions
- λ_1 and λ_2 are small
- $|r|$ small

Thursday, February 9, 2012
Classification of image patches

Classification of image points using eigenvalues of \mathbf{M} (or r)

- E increases about the horizontal orientation
 - $\lambda_2 \gg \lambda_1$
 - $r < 0$

- E is almost constant in all directions
 - λ_1 and λ_2 are small
 - $|r|$ small

- E increases about the vertical orientation
 - $\lambda_1 \gg \lambda_2$
 - $r < 0$
Classification of image patches

Classification of image points using eigenvalues of \mathbf{M} (or r)

- E increases about the horizontal orientation
 - $\lambda_2 \gg \lambda_1$
 - $r < 0$

- E is almost constant in all directions
 - λ_1 and λ_2 are small
 - $|r|$ small

- E increases in all directions
 - $\lambda_1 \approx \lambda_2$
 - λ_1 and λ_2 are large,
 - $r > 0$ and $|r| >> 0$

- E increases about the vertical orientation
 - $\lambda_1 >> \lambda_2$
 - $r < 0$
Harris corner example
Extension to video

Feature detectors operating at multiple scales
Agenda

- Steerable filters (recap)
- Harris corner detector
- Binomial filters
Binomial filter

- Class of smoothing filter (\(\approx\) Gaussian).
- Attenuates high-frequencies and retains low frequencies.
- Filter set generated by a single filter combined with itself.
Starting point

• Generating filter: \(B_1 = \frac{1}{2} \begin{bmatrix} 1 & 1 \end{bmatrix} \)

• Binomial filter set:

\[
\left\{ B_R = \frac{1}{2} \begin{bmatrix} 1 & 1 \end{bmatrix} \ast \frac{1}{2} \begin{bmatrix} 1 & 1 \end{bmatrix} \ast \ldots \ast \frac{1}{2} \begin{bmatrix} 1 & 1 \end{bmatrix} \right\}
\]

• By the Central-Limit Theorem, the shape of the Binomial filters tend to a Gaussian as \(R \) increases.

Thursday, February 9, 2012

Notice that the binomial filters are closed under convolution.

Sum of iid random variables tend to a Gaussian (or normal distribution) as the number of random variables gets larger.
Binomial filter: Spatial domain

\[n \]

\[n \neq 0 \]
Binomial filter: Spatial domain

\[B_2 = 0.5^2 [1 1]^2 \]
Equivalence to ...

\[
\begin{array}{cccccc}
\mathbf{B}_1 & 1 & 1 \\
\mathbf{B}_2 & 1 & 2 & 1 \\
\mathbf{B}_3 & 1 & 3 & 3 & 1 \\
\mathbf{B}_4 & 1 & 4 & 6 & 4 & 1 \\
\mathbf{B}_5 & 1 & 5 & 10 & 10 & 5 & 1 \\
\mathbf{B}_6 & 1 & 6 & 15 & 20 & 15 & 6 & 1 \\
\end{array}
\]

...
B₁	1 1
B₂	1 2 1
B₃	1 3 3 1
B₄	1 4 6 4 1
B₅	1 5 10 10 5 1
B₆	1 6 15 20 15 6 1

...
Equivalence to ...

\[\begin{array}{c}
B_1 \\
B_2 \\
B_3 \\
B_4 \\
B_5 \\
B_6
\end{array}\]

\[
\begin{array}{cccc}
1 & 1 \\
1 & 2 & 1 \\
1 & 3 & 3 & 1 \\
1 & 4 & 6 & 4 & 1 \\
1 & 5 & 10 & 10 & 5 & 1 \\
1 & 6 & 15 & 20 & 15 & 6 & 1 \\
\end{array}
\]

\[\begin{array}{c}
Pascal's Triangle \\
\end{array}\]

\[
\binom{n}{r}
\]

nth row
rth element

Thursday, February 9, 2012
Binomial derivatives

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
...
Binomial derivatives

-1 1
-1 0 1
-1 -1 1 1
-1 -2 0 2 1
-1 -3 -2 2 3 1
-1 -4 -5 0 5 4 1
...

Thursday, February 9, 2012
Frequency domain

$B_2 = (1 \ 2 \ 1)$ (not normalized)

DTFT:
Frequency domain

\[\mathbf{B}_2 = (1 \ 2 \ 1) \quad \text{(not normalized)} \]

DTFT:
\[\hat{\mathbf{B}}(\omega) = \sum_{n=-\infty}^{\infty} \mathbf{B}_2[n]e^{-i\omega n} \]

Note: using i instead of j for complex number representation
Frequency domain

\[B_2 = (1 \ 2 \ 1) \quad \text{(not normalized)} \]

DTFT:

\[\hat{B}(\omega) = \sum_{n=-\infty}^{\infty} B_2[n] e^{-i\omega n} \]

\[= \sum_{n=-\infty}^{\infty} \left(\delta[n + 1] + 2\delta[n] + \delta[n + 1] \right) e^{-i\omega n} \]

Note: using \(i \) instead of \(j \) for complex number representation
Frequency domain

\[\mathbf{B}_2 = \begin{pmatrix} 1 & 2 & 1 \end{pmatrix} \] (not normalized)

DTFT:

\[
\hat{\mathbf{B}}(\omega) = \sum_{n=-\infty}^{\infty} \mathbf{B}_2[n] e^{-i\omega n}
\]

\[
= \sum_{n=-\infty}^{\infty} \left(\delta[n+1] + 2\delta[n] + \delta[n+1] \right) e^{-i\omega n}
\]

\[
= \sum_{n=-\infty}^{\infty} \delta[n+1] e^{-i\omega n} + \sum_{n=-\infty}^{\infty} 2\delta[n] e^{-i\omega n} + \sum_{n=-\infty}^{\infty} \delta[n+1] e^{-i\omega n}
\]

Thursday, February 9, 2012

Note: using \(i \) instead of \(j \) for complex number representation
Frequency domain

\[\hat{\mathbf{B}}(\omega) = \sum_{n=-\infty}^{\infty} \mathbf{B}_2[n] e^{-i\omega n} \]

\[= \sum_{n=-\infty}^{\infty} (\delta[n + 1] + 2\delta[n] + \delta[n + 1]) e^{-i\omega n} \]

\[= \sum_{n=-\infty}^{\infty} \delta[n + 1] e^{-i\omega n} + \sum_{n=-\infty}^{\infty} 2\delta[n] e^{-i\omega n} + \sum_{n=-\infty}^{\infty} \delta[n + 1] e^{-i\omega n} \]

\[= 2 + e^{-i\omega} + e^{i\omega} \]

\[\mathbf{B}_2 = (1 \ 2 \ 1) \quad \text{(not normalized)} \]
Frequency domain

\[\mathbf{B}_2 = (1 \ 2 \ 1) \quad \text{(not normalized)} \]

DTFT:

\[
\hat{\mathbf{B}}(\omega) = \sum_{n=-\infty}^{\infty} B_2[n] e^{-i\omega n}
\]

\[
= \sum_{n=-\infty}^{\infty} (\delta[n + 1] + 2\delta[n] + \delta[n + 1]) e^{-i\omega n}
\]

\[
= \sum_{n=-\infty}^{\infty} \delta[n + 1] e^{-i\omega n} + \sum_{n=-\infty}^{\infty} 2\delta[n] e^{-i\omega n} + \sum_{n=-\infty}^{\infty} \delta[n + 1] e^{-i\omega n}
\]

\[
= 2 + 2 \cos(\omega) \quad \text{Euler’s formula}
\]
Binomial filter
frequency domain

ω

0
Binomial filter
frequency domain

\[B_2 = \frac{1}{4^1}[1 \ 2 \ 1]^1 \]
2D Binomial filter

- 2D Binomial filters are constructed by 1D horizontal and vertical filters.

\[B_{2D}^2 = B_x^R \ast B_y^R \]

Example:

\[B_{2D}^2 = \frac{1}{4} \begin{pmatrix} 1 & 2 & 1 \end{pmatrix} \ast \frac{1}{4} \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} = \frac{1}{16} \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix} \]
2D Binomial filter smoothing example
2D Binomial filter smoothing example