PIDGIN: Ontology Alignment using Web Text as Interlingua
Derry Wijaya, Partha Talukdar, Tom Mitchell
Language Technologies Institute, Carnegie Mellon University

Motivation, Goal and Contributions

- **Motivation:** There are many knowledge sources independently developed, using different terminologies, coverage, and ontological structures in the semantic web: e.g., Wikipedia, Freebase, IMDB, NELL, Yago, etc.
- **Goal:** There is a need to automatically align categories and relations across these knowledge bases (KBs): e.g., Yago: wasBornIn => NELL: person:bornIn
- **Contributions:**
 - PIDGIN - a novel graph-based ontology aligner that uses natural language text as an interlingua to align ontologies
 - self-supervised and does not require human labeled data
 - outperforms state-of-the-art ontology alignment system
 - also learns verb phrases to identify relations and can type arguments of relations of different KBs

Motivating Example

- **Examples of relation alignments:**
 - Freebase: /medicine/medical_treatment/side_effects
 - NELL: drughassideeffect
 - Freebase: /sports/league/arena_stadium
 - NELL: leaguestadium

- **Examples of category alignments:**
 - Yago2: wordnet_actor_109765278 => NELL: actor
 - Yago2: yagoURL => NELL: website
 - Yago2: yagoLegalActor => NELL: agent

Learned Verbs that Identify Relations

- **Motivation:**
 - There are many knowledge sources independently developed, using different terminologies, coverage, and ontological structures in the semantic web: e.g., Wikipedia, Freebase, IMDB, NELL, Yago, etc.

- **Goal:**
 - There is a need to automatically align categories and relations across these knowledge bases (KBs): e.g., Yago: wasBornIn => NELL: person:bornIn

- **Contributions:**
 - PIDGIN - a novel graph-based ontology aligner that uses natural language text as an interlingua to align ontologies
 - self-supervised and does not require human labeled data
 - outperforms state-of-the-art ontology alignment system
 - also learns verb phrases to identify relations and can type arguments of relations of different KBs

Experiments

- We conduct experiments on several large scale, open domain, publicly available real world KBs:
 - NELL: a large scale KB extracted automatically from web text
 - Yago2: a large scale KB extracted automatically from semi-structured text of Wikipedia infoboxes
 - Freebase: a large scale KB created collaboratively and manually by humans
 - KB Population (KBP): a smaller scale, manually constructed dataset used in the 2012 Text Analysis Conference for entity-linking, slot-filling and KB population tasks

- We compare Precision, Recall, and F1-score of resulting alignments with that of:
 - PARIS (Probabilistic Alignment of Relations, Instances, and Schemas), a state-of-the-art ontology alignment system
 - JACCARD (inst), a baseline that computes the equivalence of relations using Jaccard similarity measures based on the number of overlap instances that the relations have

- We ask the questions:
 - Whether PIDGIN improves precision, recall, and F1-score of relation and category alignments
 - Whether adding more resources from text and more KBs as background knowledge in the graph improves alignment accuracy
 - Whether PIDGIN is tolerant to noise
 - What useful by-products of PIDGIN are
 - learn verb phrases to identify relations
 - type argument relations of different KBs
 - learn new relation instances

Conclusion and Future Works

- PIDGIN improves recall using text-based interlingua to establish alignments when there are few or no shared relation instances between the KBs
- PIDGIN automatically learns verbs to identify relations that can be used to extract new instances to populate the KB or identify relations between two entities in a document
- PIDGIN automatically types arguments of relations e.g., Freebase:/business/industry/name is typed with NELL <company, economicsector>. Argument typing can improve the accuracy of extraction of new relation instances by constraining the instances to have the correct types