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ABSTRACT The heterotypic aggregation of cell mixtures or colloidal particles such as proteins occurs in a variety of settings
such as thrombosis, immunology, cell separations, and diagnostics. Using the set of population balance equations (PBEs) to
predict dynamic aggregate size and composition distributions is not feasible. The stochastic algorithm of Gillespie for
chemical reactions (Gillespie, 1976. J. Comput. Phys. 22:403–434) was reformulated to simulate the kinetic behavior of
aggregating systems. The resulting Monte Carlo (MC) algorithm permits exact calculation of the decay rates of monomers and
the temporally evolving distribution of sizes and compositions of the aggregates. Moreover, it permits calculation of all
moments of these distributions. Using this method, we explored the heterotypic aggregation of fully activated platelets and
neutrophils in a linear shear flow of shear rate G � 335 s�1. At plasma concentrations, the half-lives of homotypically
aggregating platelet and neutrophil singlets were 8.5 and 2.4 s, respectively. However, for heterotypic aggregation, the
half-lives for platelets and neutrophils decreased to 2.0 and 0.11 s, respectively, demonstrating that flowing neutrophils
accelerate capture of platelets and growth of aggregates. The required number of calculations per time step of the MC
algorithm was typically a small fraction of �1/2, where � is the initial number of particles in the system, making this the fastest
MC method available. The speed of the algorithm makes feasible the deconvolution of kernels for general biological
heterotypic aggregation processes.

NOMENCLATURE

a(i, j, t) Population-weighted probability of an i–j
aggregation

Ak Initial concentration of species k
B, b, C Constants in the sum, product, and constant

kernels, respectively
c(i, j, t) Probability frequency of an i–j aggregation

C Coefficients for efficiency fitting polynomial
F Cumulative volume distribution
G Shear rate

i, j Species indices
k(i, j, t) Second-order rate constant for aggregation

m Number of species in a system
n Volume distribution of particle concentrations
N Particle concentration

N0 Initial monomer concentration
P(�, �) Aggregation probability density function

P1(�) Probability of an interval of quiescence �
P2(���) Probability of the �th aggregation event

given an interval of quiescence �
� Volume of an aggregate contributed by

platelets
� Volume of an aggregate contributed by

neutrophils
� The set of real numbers

r1, r2 Random numbers

s Parametric argument of �r�h

t Time
T Dimensionless time for the solution of the

PBE for the product and constant kernels
u, v Volumes of aggregating particles

u0 Volume of a monomer
uk Volume of kth species
x Volume distribution of particle population

Xi Number of particles of the ith species
V Bulk volume
y Volume fraction of platelets

Greek letters

� Total aggregation probability density
�G Smoluchowski aggregation kernel

�(i, j, t) Coagulation kernel
�(u) Dirac’s delta function

�i,j Kronecker delta function
� Dimensionless time for the sum kernel
�h Hydrodynamic efficiency of collision

�plat �r�h for homotypic platelet aggregation
�plat-neut �r�h for heterotypic platelet-neutrophil

aggregation
�neut �r�h for homotypic neutrophil aggregation
�r�h Overall efficiency of aggregation

�r Sticking probability (receptor efficiency)
� Dimensionless time for the solution of the

PBE for the sum kernel
�(i) Gamma function of argument i

� Critical reaction index
	 Reaction index
� Time step and interval of quiescence

 Number of particles in a system
� Initial number of particles in bulk
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INTRODUCTION

Aggregating cellular or colloidal systems, when studied
under defined transport conditions of two- and three-dimen-
sional Brownian diffusion, constant shear rate, or laminar
tube flow, can provide important information about the
kinetics and strengths of chemical interaction. The Popula-
tion Balance Equation (PBE) (Smoluchowski, 1917) has
been used to predict the size distributions of several homo-
typic aggregations of biological interest. Among these are
platelet aggregation in shear fields (Bell, 1979, 1981; Belval
and Hellums, 1986; Bell et al., 1989a,b; Huang and Hel-
lums, 1993a–c; Tandon and Diamond, 1997), neutrophil
aggregation in linear shear fields (Taylor et al., 1996; Neel-
amegham et al., 1997; Tandon and Diamond, 1998), lym-
phocyte aggregation via 2D Brownian diffusion (Neel-
amegham and Zygourakis, 1997), rouleaux formation of red
blood cells (Samsel and Perelson, 1982), receptor clustering
on cell surfaces (Delisi, 1980), and antigen-antibody reac-
tions (Von Schulthess et al., 1983). In an isotropic medium,
the discrete form of the PBE describes the temporal change
of the concentrations of aggregates composed of i mono-
mers, N(i, t):

�N�i, t�

�t
� 1

2 �
j�1

i�1

��j, i 
 j, t�N�j, t�N�i 
 j, t�


 �
j�1

	

��i, j, t�N�i, t�N�j, t� (1)

The first term on the right-hand side of Eq. 1 represents
the generation of i-mers by the aggregation of smaller
particles. The second term represents consumption of i-mers
by aggregation with other particles. The coagulation kernel,
�(i, j, t), contains the probability of an adhesion event
between an i-mer and a j-mer. Although fragmentation of
aggregates may be accounted for within this framework,
such terms are omitted here. Equation 1 represents a poten-
tially infinite, yet countable set of highly coupled PDEs,
inasmuch as there is one equation for each i-mer.

Assuming that all aggregation events result from binary
collisions, the PBE may be derived by treating all such
events as elementary chemical reactions. In this context, the
coagulation kernel �(i, j, t) is much like a rate constant for
an elementary second-order “chemical reaction” between an
i-mer and a j-mer. As we will show, it is proportional to the
probability of such a “reaction” occurring. Furthermore, the
kernel may be a function of time when particle reactivity
increases or decreases in time (e.g., up-regulation or down-
regulation of receptors during cellular aggregation). For
cellular aggregation, approximate methods are available to
make an a priori prediction of �(i, j, t) if dynamic receptor
stoichiometries and kinetics are known (Bell, 1981; Tandon
and Diamond, 1997, 1998; Long et al., 1999).

By treating aggregation as a process akin to chemical
reaction, the stochastic formulation of chemical kinetics

may be modified to become the mathematical formalism of
aggregation, eliminating the need to solve the set of the
deterministic PBEs. This is of particular importance in
biological and biomolecular aggregation, where the stochas-
tic variation of such events can be significant. Moreover, the
stochastic formulation permits a simple description of het-
erotypic aggregation, such as that of platelets and neutro-
phils. The aggregation of these cell types (Hamburger and
McEver, 1990; Rinder et al., 1991; Evangelista et al., 1996;
Konstantopoulos et al., 1998) is relevant to the progression
of thrombosis (Bednar et al., 1985; Palabrica et al., 1992;
Elizalde et al., 1997; Minamino et al., 1998), unstable
angina (Ott et al., 1996), acute myocardial infarction (Neu-
mann et al., 1997), and complications associated with ex-
tracorporeal circulation during surgery (Rinder et al., 1992).

We present an efficient Monte Carlo algorithm for sim-
ulating both homotypic and heterotypic aggregation pro-
cesses. The MC algorithm is exact and is limited only by the
accuracy of the coagulation kernel, �(i, j, t). Furthermore,
we show that this method is more efficient than earlier
methods (Gillespie, 1975; Shah et al., 1977; Smith and
Matsoukas, 1998) in computational speed and data storage,
making it the fastest general solution method for heterotypic
aggregation to date.

THEORY

On the population balance equation

The PBE (Eq. 1) may be derived by treating aggregation as
a system of chemical reactions. For example, considering
each interaction between an i-mer and j-mer to be an ele-
mentary reaction step, the following equations may be writ-
ten for monomers, N(1, t) and dimers, N(2, t):

�N�1, t�
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 2k�2, 2, t�N�2, t�N�2, t�
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j�3

	

k�2, j, t�N�2, t�N�j, t� (3)

Although Eqs. 2 and 3 follow directly from the mathe-
matical formalism of chemical kinetics, the discrepancy
between them and Eq. 1 is clear. The stoichiometric coef-
ficients of the first term of Eq. 2 and the third term of Eq.
3 do not appear in the PBE. Moreover, the expansion of Eq.
1 for i � 2 would place a factor of 1

2
on the first term of Eq.

3. A general form of the discrete PBE (neglecting fragmenta-
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tion) properly accounting for stoichiometry can be written as
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�1 � �j,i�k�i, j, t�N�i, t�N�j, t�

(4)

Equation 4 establishes the relationship between the de-
terministic second-order rate constant k(i, j, t) and the co-
agulation kernel �(i, j, t). That is,

��i, j, t� � �1 � �i,j�k�i, j, t� (5)

Equation 5 shows that the coagulation kernel �(i, j, t) is
not the second-order rate constant for the interaction be-
tween i-mers and j-mers, but that they are related. Further-
more, Eq. 5 is true regardless of whether one is character-
izing the interaction of i-mers and j-mers or arbitrary
species of indices i and j.

Insofar as it accounts for the number of monomers in
aggregates, the PBE as expressed in Eq. 1 is limited to
describing aggregations of volumetrically monodisperse
monomers. A more general form is available, which ac-
counts explicitly for the potentially polydisperse volume
distributions of monomers and their aggregates. The con-
tinuous PBE describes the time rate of change of the distri-
bution of volumes occupied by aggregates, n(u, t):
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��u, v, t�n�v, t�n�u, t�dv

(6)

To compute the concentration of particles with volumes u
in a range (v, v
), n(u, t) must be integrated as follows:

N�v � u � v
, t� � �
v

v


n�u, t�du (7)

Therefore, when n(u, t) is a continuous function of particle
volume u, the concentration of particles with volume ex-
actly equal to u
 (i.e., v � v
 � u
) is zero for all u
. This
apparent paradox may be resolved by noting that all real
systems possess only a finite number of particles. Therefore,
n(u, t) cannot be a continuous function because no finite set
of particles can occupy the infinite set of volumes in any
range (v, v
) � �. In the language of set theory, the set of
particles is of a lower cardinality than the set of volumes on
which they reside. That is, whereas the number of particles
and their combinations is only potentially infinite, the num-
ber of volumes on any finite range (v, v
) is always infinite.
Consequently, Eq. 6 is not physically meaningful when
n(u, t) is a continuous function of u. However, it is more

general than Eq. 1, inasmuch as it explicitly permits poly-
dispersity of monomers.

Equation 6 can be solved for finite systems of particles
when n(u, t) is a function of Dirac’s delta function, circum-
venting the N(u, t) paradox. This is a consequence of the
countability of a discrete set. In this case, n(u, t) will be zero
at all but a countable set of particle volumes u, and the
concentrations of particles of those sizes, N(u, t), may be
computed. In aggregations starting with monodisperse
monomers at concentration N0, n(u, 0) � N0u0

�1�(u/u0 � 1),
where u0 is the volume of a monomer. More generally, if the
initial particles are polydisperse in volume but occupy a
countable set of volumes (such as cells and emulsions), the
initial conditions for Eq. 2 would be n(u, 0) � � Akuk

�1�(u/
uk � 1), where {Ak} are the concentrations of particles of
volumes {uk} at the beginning of the aggregation. We
denote this a type 1 initial condition. If uk � u0k, all
particles are initially composed of monodisperse monomers
(such as in molecular aggregations), and we denote this a
type 2 initial condition. It is worth noting that type 2 initial
conditions always reduce Eq. 6 to Eq. 1. We will use these
definitions to distinguish simulations of volumetrically
polydisperse and monodisperse cells.

The aggregation probability density function

As particles aggregate in time, the populations of particles
of a given size and composition will change. The instanta-
neous abundance of different types of particles within a
population may be characterized by their joint distribution.
For example, the extent of homotypic aggregation may be
quantified by a size distribution of the aggregates formed,
be it based on particle volume or number of monomers.
Likewise, the extent of heterotypic aggregation may be
quantified by the joint distribution of the sizes and compo-
sitions of the aggregates. In view of the fact that the size-
composition distribution defines the state of aggregation,
we define a species as a type of aggregate with a specific
size and composition.

Species definition is implicit in the PBE. In Eq. 1, N(i, t)
represents the concentration of a species with i monomers.
Using platelets and neutrophils as an example of heterotypic
aggregation, the concentration of a species of particles with
k platelets and l neutrophils is N(k, l, t). Alternatively, the
formalism of the continuous PBE may be followed,
whereby the concentration of a species of aggregate com-
posed of � fl of platelets and � fl of neutrophils is defined
as N(�, �, t). The discretization of volumes may be spec-
ified arbitrarily (as in size binning in Coulter counting), as
long as the volume distributions of platelet and neutrophil
singlets are appropriately represented at the beginning of a
simulation. Naturally, the population of a species is re-
stricted to the integers, regardless of how that species is
defined.

With the distribution of sizes and compositions of the
aggregates defined implicitly by the distribution of species,
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the fundamental hypothesis of the stochastic formulation of
chemical kinetics may be applied to aggregation phenom-
ena. Reformulating the definition of Gillespie (1977), the
average probability at time t that the ith and jth species will
aggregate inside a bulk volume V within the next infinites-
imal time interval dt is

c�i, j, t�dt (8)

The isolated aggregation probability frequency c(i, j, t) is
a species average. For example, fractal densities within
porous aggregates, specific topographies, hydrodynamic in-
teractions, and receptor-ligand reactions of a given pair of
aggregating particles are treated as their species averages.
Moreover, c(i, j, t), like �(i, j, t) and k(i, j, t), depends on the
relative transport of the two aggregates (diffusion, shear,
electrostatic attraction, etc.). Given Xi aggregates of species
i and Xj of species j (j � i), the total number of combinations
of species i and j is XiXj. Thus, the probability at time t that
a particle of species i and a particle of species j will
aggregate inside V within dt is

a�i, j, t�dt � c�i, j, t�XiXj dt (9)

Moreover, if two particles of the same species aggregate,
the number of combinations is Xi(Xi � 1)/2!. Thus, for like
interactions, the probability that two particles of species i
will aggregate inside V within dt is

a�i, i, t�dt � 1
2

c�i, i, t�Xi�Xi 
 1�dt (10)

A system of m species can have at most m like interac-
tions and m(m � 1)/2! unlike interactions, for a total of
m(m � 1)/2 interactions. To simplify the reaction account-
ing, we define an index v for each i, j pair that may react
(v � [1, m(m � 1)/2]). The set {v} defines the total
“aggregation space” of the mixture, whose size is equal to
the total number of possible interactions. With this set
defined, one can determine the probability P(�, �)d�, that
given a state {Xi} at time t, the next aggregation event will
occur within the time interval (t � �, t � � � d�) and will
be the �th reaction in {v}. P(�, �) is the “aggregation
probability density function.” Gillespie (1976) has rigor-
ously derived this probability function for a system of m
species as

P��, �� � a�exp�� �
v�1

m(m�1)/2

av��
� � 
0, 00�, � � 
1, m�m � 1�/2� (11)

The stochastic aggregation algorithm

The aggregation probability density function P(�, �) is the
basis of the stochastic simulation algorithm. However, to
stochastically generate both � and �, two random numbers
must be generated. Consequently, Eq. 11 must be turned
into two probability functions that generate � and � sepa-

rately. Using the fact that a p-fold probability distribution
gives the probability of the union of p events, the definition
of conditional probability can be invoked, giving

P��, �� � P�� � �� � P1���P2����� (12)

The restriction to two-body aggregation events causes the
set of all possible aggregation events to be mutually exclu-
sive. Thus P1(�) may be determined by summing over all
possible aggregation types:

P1��� � �
��1

m(m�1)/2

P��, �� � � exp����� (13)

� � �
��1

m(m�1)/2

a� (14)

P1(�) is the probability that an aggregation event will take
place in the interval (t, t � �), regardless of its type. � is the
total aggregation probability frequency, defined as the
change in probability of an aggregation event taking place
inside the bulk volume V per infinitesimal time segment dt.

Subsequently, the probability of a particular type of ag-
gregation given an interval (t, t � �) is given as

P2����� � a�/� (15)

The nature of Eq. 11 is elucidated when expressed
through Eqs. 12–15. Eq. 13 shows that the probability of an
aggregation event in time follows the exponential distribu-
tion, a characteristic of a process in which events occur
randomly in time. Equation 15 demonstrates that the par-
ticular type of aggregation occurs randomly, depending
only on its relative probability of occurring.

Equation 13 gives the probability distribution through
which a Monte Carlo algorithm may stochastically deter-
mine the time step �. A random number, r1, generated on the
interval [0, 1], is taken as the probability of a reaction in the
time period � according to P1(�). As Eq. 13 is a continuous
distribution on �, it must be integrated over � to give the
probability of an aggregation within t and t � �:

r1 � �
0

�

P1��*�d�* � �
0

�

� exp����*�d�* � 1 
 exp�����

(16)

Noting that 1 � r1 is stochastically equivalent to r1, the time
step � as defined in Eq. 16 may be calculated as

� �
1
�

ln�1
r1
� (17)

The reaction number � may be determined in a similar
way. However, since Eq. 15 is a discrete distribution, �
must be selected by summing the probabilities P2(v��) over
v until the addition of the �th probability exceeds a random
number r2 � [0, 1]. That is, the �th reaction must be
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selected, using the following inequality (Gillespie, 1976):

�
v�1

��1

av � r2� � �
v�1

�

av (18)

Although Eq. 18 follows directly from the mathematical
formulation, it should be noted that inasmuch as {av} rather
than {cv} is used in the selection process, Eq. 18 weights the
reaction probability on both the population levels and the
average aggregation probability between a pair of aggre-
gates. That is, fast aggregations and those with more abun-
dant reactants are more likely to occur because they con-
tribute the most to �. Equation 18 naturally and rigorously
balances the kinetics of rare fast aggregations and slow
abundant aggregations.

Fig. 1 outlines the Monte Carlo algorithm. First, the
initial distribution of species is given as a type 1 or type 2
initial condition, whereby each species i is defined by a
platelet volume � and neutrophil volume �. After all reac-
tion probabilities c(i, j, t) and total reaction probability � are
calculated, two random numbers r1 and r2 are generated.
From these, the time step � and aggregation event � are
determined using Eqs. 17 and 18. If the product species k is
new, its properties are calculated from those of the reactant
species, and c(k, l, t) are calculated for all l � [1, k]. Last,
species populations are adjusted, � is recalculated, and the
time is updated by �. The process continues until a prespeci-
fied time is reached or until all particles coalesce, at which
point � � 0. Although we have used the heterotypic aggre-
gation of platelets and neutrophils as an example of binary
heteroaggregation, this algorithm is general for aggrega-
tions of particles of arbitrarily complex composition by
binary collisions.

On the relationship of �(i, j, t) to c(i, j, t)

The coagulation kernel �(i, j, t) is intimately related to the
isolated aggregation probability frequency c(i, j, t). The
average rate of aggregation per unit volume is the bridge
through which the two may be related. According to Eq. 9,
the average rate of aggregation between species i and j (i �
j) per unit volume is c(i, j, t)XiXj/V � c(i, j, t)XiXj/V, where
again, V represents the bulk volume. According to the
deterministic formulation of kinetics, this quantity is k(i, j,
t)N(i, t)N(j, t). Noting that the concentrations and popula-
tions of species i and j are related by N(i, t) � X� i/V and
N(j, t) � X� j/V, the relationship between k(i, j, t) and c(i, j, t)
is (i � j)

k�i, j, t� �
XiXj
�

X� iX� j

Vc�i, j, t� � Vc�i, j, t� (19)

Likewise, for aggregation between particles of the same
species, the average aggregation rate per unit volume is
1
2

c(i, i, t)Xi(Xi � 1)/V � 1
2

c(i, i, t)Xi(Xi � 1)/V. Because the

deterministic formulation does not change for like aggrega-
tion, the relationship between k(i, i, t) and c(i, i, t) is

k�i, i, t� �

1
2

Xi�Xi 
 1��

X� iX� i

Vc�i, i, t� � 1
2

Vc�i, i, t� (20)

FIGURE 1 The stochastic aggregation algorithm for homotypic and het-
erotypic aggregations of species with time-dependent reactivities.
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Equations 19 and 20 show that c(i, j, t) � (1 � �ij)k(i, j,
t)/V, a relationship established for chemical reactants
(Gillespie, 1976). Considering Eq. 5, the relationship be-
tween the aggregation probability frequency c(i, j, t), the
coagulation kernel �(i, j, t), and the deterministic second-
order rate constant k(i, j, t) is

c�i, j, t� �
��i, j, t�

V
�

�1 � �ij�k�i, j, t�

V
(21)

Thus, when aggregations are simulated, where �(i, j, t) is
known (from experiment, for example), Eq. 21 should be
used to find c(i, j, t). Consideration of Eqs. 21 and 9 shows
that �(i, j, t) is the average probability at time t that the ith
and jth species will aggregate inside any bulk volume per
infinitesimal time interval dt.

Consideration of Eq. 21 explains the underlying mathe-
matics of Eqs. 1, 5, and 6. When j � i/2 in Eq. 1 (or v � u/2
in Eq. 2), the factor of 1

2
serves to prevent double counting.

However, when j � i/2 (or v � u/2), the factor of 1
2

is a
consequence of the combinations of species. Equations 1
and 6 are deterministic equations based on a stochastic
foundation. Based upon the preceding arguments, they may
be written as

�X� �i, t�

�t
� 1

2 �
j�1

i�1

c�j, i 
 j, t�X� �j, t�X� �i 
 j, t�


 �
j�1

	

c�i, j, t�X� �i, t�X� �j, t�

(22)

�x��u, t�

�t
� 1

2 �
0

u

c�v, u 
 v, t�x��v, t�x��u 
 v, t�dv


 �
0

	

c�u, v, t�x��v, t�x��u, t�dv

(23)

In these equations, x�(u, t) is the volume distribution of
particle population, the analog of n(u, t) for concentration.
These are the discrete and continuous forms of the PBE,
derived independently by Gillespie (1972) and Ramkrishna
(1973).

Equations 22 and 23 only predict properties of the mean
behavior of an aggregation. Furthermore, there are implicit
assumptions regarding the equality of the products of aver-
ages and averages of products. Thus, the stochastic aggre-
gation algorithm is more exact than the PBE, because it does
not predict the approximate mean properties of a set of
experiments but the properties of a single experiment, and
the assumptions regarding averages are circumvented. The
average results of an experiment and its moments may be
computed from the results from several MC simulations.
These moments correspond to those statistical moments of
experimental data. The statistics that follow from the sim-

ulated aggregations allow one to predict the measured vari-
ation in experimental data.

RESULTS

Simulation of ideal kernels

Three aggregations with simple kernels �(i, j, t) were sim-
ulated by MC and compared with analytical solutions of the
PBE. Using the methods of Scott (1965), the concentrations
of i-mers for the sum kernel, product kernel, and constant
kernel were analytically calculated with monodisperse ini-
tial conditions for the purpose of comparing the results of
the stochastic aggregation algorithm with the PBE.

The sum kernel is defined as �(u, v) � B(u � v), where
B is a constant. Solution of the PBE (Eq. 1 or 6) gives the
concentration of i-mers N(i, �) as

N�i, �� � N0�1 
 ��
�i��i�1

��i � 1�
exp��i��

for � � 1 
 exp��BN0u0t� (24)

where N0 is the initial concentration of monomers and u0 is
the volume of a monomer. The discrete solution is a con-
sequence of the monodisperse type 2 initial condition. Like-
wise, for the product kernel, where �(u, v) � b(uv), and b is
a constant, the analytical solution for the concentration of
i-mers is

N�i, T� � N0

�iT�i�1

i��i � 1�
exp��iT� for T � bN0u0

2t (25)

Last, the constant kernel (�(u, v) � C � constant) has an
analytical solution of the form

N�i, T� � 4N0

�T�i�1

�T � 2�i�1 for T � CN0t (26)

As Fig. 2 shows, simulations of 10,000 monomers yielded
the same results as the analytical solutions of the PBE. The
small variation observed is the stochastic noise one would
observe experimentally in systems described by these
kernels.

Heterotypic aggregation of platelets and
neutrophils in a linear shear field

The heterotypic aggregation of platelets and neutrophils by
shear flow represents a complex and important biological
system (Rinder et al., 1991; Ott et al., 1996; Konstanto-
polous et al., 1998; Brown et al., 1998) for demonstrating
the stochastic aggregation algorithm. Assuming no hydro-
dynamic interactions between particles (i.e., linear trajecto-
ries), the kernel for orthokinetic aggregation is (Smolu-
chowski, 1917)

�G�u, v� �
G

�
�u1/3 � v1/3�3 (27)
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The Smoluchowski kernel can be corrected for 1) hydrody-
namic interactions between particles following curvilinear
trajectories and 2) receptor bonding kinetics by introducing
two factors, �h and �r (Tandon and Diamond, 1997, 1998):

��u, v� � �r�h�G�u, v� � �r�h�G�u, v� (28)

These factors have probabilistic significance. The prod-
uct of the hydrodynamic efficiency �h and (�G(u, v)/V)d� is
the probability of a collision of two particles of volumes u
and v in time d�. The probability that the two particles stick
together upon collision is �r, termed the receptor efficiency.
The overall efficiency, �r�h, has been determined experi-
mentally for homotypic aggregations. Partly because of the
difficulty of deconvolution of size-composition data, exper-
imentally determined �r�h are not yet available for hetero-
typic biological aggregation.

Two types of MC simulations were performed. The first
of these was analogous to a solution of the PBE with a type
1 initial condition, allowing for polydispersity in the initial
singlet volume of each cell type. Consequently, species
were defined as aggregates with specific volumes of platelet
and neutrophil content as discussed previously. To obtain
physiological initial conditions, human platelets and neutro-
phils were obtained from healthy donors, isolated, sus-
pended in isotonic buffer, and analyzed using a Coulter
counter to obtain their volume distributions. The initial
conditions used in the simulations are given in Fig. 6 A. The
second type of simulation utilized a type 2 initial condition,
whereby species were defined as aggregates with specific
numbers of volumetrically monodisperse platelets and neu-
trophils. Singlet volumes were taken as the population
means of the aforementioned Coulter distributions: 7.682 fl
for platelets and 290.1 fl for neutrophils. All simulations
were performed at typical plasma concentrations of platelets
and neutrophils: 300,000/�l and 5,000/�l, respectively. Be-
cause of the available measurement of �r�h for homotypic
platelet aggregation (Bell et al., 1989a,b), simulations were
performed at a shear rate G � 335 s�1.

In Fig. 3 we present the results of four MC simulations of
homotypic aggregation of platelets, using �r�h � 0.05 (Bell
et al., 1989a,b). Simulations were performed with an initial
population of 12,000 singlets. In Fig. 3 A, the time course of
the aggregation is shown for both type 1 and type 2 simu-
lations. Because of the fact that singlets in a type 1 simu-
lation occupied �90 species, in contrast to one species in a
type 2 simulation, the aggregation spaces of the two types of
simulation are quite different. However, there was only a
5–6% difference in the fraction of singlets aggregated be-
tween the two types of simulation. Maximally activated

to time by the relation � � 1 � exp(�BN0u0t), u0 is the volume of a
monomer, and N0 is the initial number of monomers. The product kernel is
represented in B, where N(i, T) is the concentration of i-mers, and T �
bN0u0

2t. Last, the time course of aggregation of a system described by the
constant kernel is displayed in C, where T � CN0t.

FIGURE 2 Time courses of aggregation for systems modeled by the sum
kernel �(u, v) � B(u � v) (A), product kernel �(u, v) � b(uv) (B), and
constant kernel �(u, v) � C (C). The kernel is related to the probability of
two particles of volumes u and v colliding and successfully aggregating.
The solid lines are the analytical solutions of the PBE. Both the PBE and
the MC simulation were performed for volumetrically monodisperse
monomers and monodisperse initial conditions. In A, N(i, �) represents the
concentration of i-mers aggregating by the sum kernel, where � is related
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platelet singlets undergoing homotypic aggregation in
plasma levels of fibrinogen at G � 335 s�1 have a predicted
half-life of 8.5 s.

In Fig. 3 B we present the size distributions of the
aggregates resulting from type 1 simulations. The platelet
volume distribution did not show peaks representing dou-
blets, triplets, etc., but exhibited a subtle spreading to larger
volumes as the peak height decreased in magnitude. The
failure of the system to produce distinct peaks for each type
of aggregate results from the concentration of platelets and
the spread of the initial distribution. Initially, when such
events are most likely to be directly observed, doublets were
relatively rare in comparison to singlets and were hidden in
the fluctuations of the overall size distribution. The shift in
the mean aggregate volume was more visible in the normal-
ized cumulative size distribution of the aggregates (Fig. 3
C). Whereas size distributions represent N(u, t), the cumu-
lative volume distribution F is defined as �u

v N(u, t)/
�uN(u, t). As the aggregation progressed, the average ag-
gregate volume shifted to the right and spread as expected.
After 30 s, size states were distributed nonuniformly over
three decades. The MC resolved size states with equal
accuracy and resolution with remarkably small stochastic
fluctuation.

Fig. 4 shows the analogous results for simulations of
homotypic aggregation of fully activated neutrophils, using
�r�h � 0.31 (Taylor et al., 1996; Tandon and Diamond,
1998). Simulations were carried out with an initial popula-
tion of 12,000 singlets. In Fig. 4 A, the fraction of the
neutrophils aggregated is shown. The half-life of fully ac-
tivated neutrophil singlets was 2.0 s for G � 335 s�1.
Owing to the initial size distribution of the neutrophils and
their relative dilution in comparison with platelets, the vol-
ume distributions in Fig. 4 B show the appearance of distinct
doublets and triplets. Consequently, these species should be
observable in size distributions obtained in experimental
aggregations. In fact, Neelamegham et al. (1997) clearly
resolved 2-mers through 4-mers via autofluorescence of
fixed neutrophils (a volumetric signal) analyzed by flow
cytometry. These peaks in the size distribution cause dis-
tinct plateaus in the normalized cumulative distribution
(Fig. 4 C). The rightward shift in aggregate volume with
time was clear, and again, the MC simulation resolved the
smallest and the largest volume states equally well.

In Fig. 5 we present the kinetic behavior of heterotypic
aggregation of fully activated platelets and neutrophils at
G � 335 s�1. This is the first report of simulation of
heterotypic aggregation of platelets and neutrophils. The
lack of measurement of heterotypic aggregation efficiencies
is a direct result of the absence of a feasible solution method
for the heterotypic PBE. We have formulated an estimate of

platelet singlets. The increase in the mean aggregate volume is seen in C,
which shows the evolution of the cumulative volume distribution (F �
�u

v N(u, t)/�uN(u, t)) of the aggregates as time progresses.

FIGURE 3 Behavior of the homotypic aggregation of fully activated
platelets in a linear flow field of 335 s�1 (�r�h � 0.05 for 50,000
CD41/CD61/platelet and 3 mg/ml fibrinogen). The average of four MC
simulations (12,000 platelets/simulation) is shown. The stochastic variation
between runs is small and is not visible in A. The fraction of platelet
singlets that have aggregated in time is defined as 1 � N(1, t)/N(1, 0),
where N(1, t) is the concentration of platelet singlets at time t. Size
distributions from the simulations are represented at the resolution of a
Coulter counter with a 50-�m aperture (0.2 fl resolution) (B). The decrease
in the height of the major peak is a consequence of the aggregation of
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the heterotypic kernel based upon experiments in the liter-
ature (see Appendix) to conduct our MC simulations of this
phenomenon.

The adhesive interaction of the two cell types yielded
dramatic effects: the half-lives of platelets and neutrophils
dropped to 2.4 and 0.11 s, respectively, a 3.5-fold reduction
for platelets and a 18-fold reduction for neutrophils. Further
study showed that this is a population-driven phenomenon.

of neutrophil singlets. The peaks to the right of the major peak represent
doublets and triplets. The cumulative volume distribution F of neutrophil
aggregates is presented in C.

FIGURE 4 Behavior of the homotypic aggregation of fully activated
neutrophils in a linear flow field of 335 s�1 (�r�h � 0.31 for 1 �M FMLP
stimulated neutrophils aggregating via L-selectin, CD11a/CD18, and
CD11b/CD18). The results of four simulations are shown (12,000 neutro-
phils/simulation). The fraction of neutrophil singlets that have aggregated
is presented in A. Size distributions are represented at the resolution of a
Coulter counter with a 100-�m aperture (4.5-fl resolution) (B). The de-
crease in the height of the major peak is a consequence of the aggregation

FIGURE 5 Consumption of fully activated platelets and neutrophils for
heterotypic and homotypic aggregation conditions in a linear shear field of
335 s�1 (A). When platelets and neutrophils interact, they aggregate much
more quickly than when they aggregate independently. The half-life of
platelets drops from 8.5 s to 2.4 s, and that of neutrophils drops from 2.4 s
to 0.11 s, indicating that neutrophils sweep up platelets in large amounts in
aggregating flow. The reduction in the half-life of platelets indicates that
neutrophils participate in a nucleating mechanism to increase the speed of
platelet aggregation. The cumulative volume distributions are shown after
1.25 s of cohomotypic aggregation of platelets and neutrophils (i.e., anti-
P-selectin) and after 1.25 s of heterotypic aggregation (B). When the cells
interact, the sizes of the aggregates increase by a factor of up to 4.
Furthermore, not only are aggregates resulting from heterotypic aggrega-
tion larger, but the larger aggregates compose a greater fraction of the
aggregates. For example, at 1.25 s, aggregates larger than 1000 fl compose
only 2% of the aggregates in a cohomotypically aggregating mixture, but in a
heterotypic aggregation, such aggregates constitute 20% of the particles.
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That is, the kernels �(u, v, t) for homotypic aggregation of
neutrophils (u � v � 290.1 fl) and heterotypic aggregation
of platelets with neutrophils (u � 290.1 fl, v � 7.68 fl) have
a ratio of 1.86, which suggests that homotypic aggregation
is a more probable event than heterotypic aggregation.
However, the weighting of the kernels in Eqs. 9 and 10
favors a heterotypic aggregation: for a system of 1,000
neutrophils and 60,000 platelets, there are only 500,500
combinations of neutrophils, whereas there are 60 million
combinations of platelets with neutrophils. Thus combina-
torial effects favor heterotypic aggregation by a factor of
120, outweighing the factor of 1.86 likelihood of homotypic
aggregation based on kernels alone. Overall, heterotypic
aggregation of neutrophils is favored by a factor of �65
over homotypic aggregation.

Fig. 5 B compares the cohomotypic aggregation of plate-
lets and neutrophils with their heterotypic aggregation at
1.25 s. When the two cell types do not interact (for example,
if a blocking antibody is introduced against P-selectin or
PSGL-1), the mean particle volume in cohomotypically
aggregating medium is 13 fl, whereas the mean volume for
heterotypically aggregating cells is 357 fl. Moreover, only
2% of the aggregates in a cohomotypic aggregation are
larger than 103 fl at 1.25 s, whereas 20% of those aggre-
gating heterotypically fall in this range. Thus the hetero-
typic interaction between the two cell types not only pro-
motes generation of more and larger aggregates, but
promotes their rate of formation as well.

Fig. 5 illustrates the procoagulant effects of activated
neutrophils for activated platelets (mediated by aggregation
via P-selectin–PSGL-1 bonding, but independent of other
biological effects, such as tissue factor expression or neu-
trophil Mac-1 binding of factor X). For example, consider a
clotting episode near a wall (G � 335 s�1) where the shear
field is approximately linear and the characteristic time of
blood-wall interaction occurs during diastole (�0.5 s). Het-
erotypic aggregation causes the fraction of platelets aggre-
gated to increase by nearly threefold from 0.05 to 0.14, and
the fraction of neutrophils aggregated increases by eightfold
from 0.15 to 1.0. Thus, anti-P-selectin antibodies, which are
anti-thrombotic agents (Palabrica et al., 1992), may exert
some of their effects under hemodynamic conditions to
prevent neutrophil promotion of platelet accumulation.

We present the size-composition distributions of platelet-
neutrophil aggregates in Fig. 6. The initial volume distribu-
tions of platelets and neutrophils used in all of our simula-
tions are shown in Fig. 6 A. Composition distributions are
shown at 0.01, 0.1, 1.0, 2.0, and 5.0 s (Fig. 6, B–F). Initially,
heterotypic aggregation dominates, where neutrophils com-
bine with only one or two platelets (Fig. 6 B). Because of
the abundance of platelets, these aggregates increase their
platelet content in the ensuing moments (Fig. 6 C). Aggre-
gates with more than one neutrophil do not appear until
almost all neutrophil singlets are consumed (Fig. 6 D). As in
the homotypic aggregation of neutrophils, aggregates with
distinct numbers of neutrophils form distinct regions in the
composition distribution, whereas such regions do not occur

for platelets. At later times, mass conservation limits the
populations of aggregates, simultaneously decreasing the
overall probabilities of aggregation and slowing down the
aggregation process. Thus the slope of the spread of points
is a result of the initial size distributions and populations of
the cells.

Fig. 7 shows the kinetic behavior of species falling in two
different volume gates (see Fig. 6 B). Here, Gate 1 includes
all aggregates featuring 31–215 fl of platelets and 212–387
fl of neutrophils (1 fl � 1 �m3). This corresponds to species
with one neutrophil and 4–28 platelets. Gate 2 includes all
aggregates featuring 130–514 fl of platelets and 450–730 fl
of neutrophils (two neutrophils and 17–67 platelets). Using
flow cytometry data in an experimental setting, a size- and
composition-dependent aggregation kernel can be deter-
mined to match the dynamics, species distributions, and
stochastic fluctuations seen in Figs. 6 and 7.

DISCUSSION

The stochastic aggregation algorithm, based on species ac-
counting, produced results remarkably precise in compari-
son with the discrete PBE (Eq. 1) solved analytically for
three different ideal test kernels. The algorithm required less
than 10 s of CPU time to run type 2 (volumetrically mono-
disperse singlets) simulations and less than 30 min to run
type 1 (polydisperse) simulations when �12,000 hetero-
typic singlets were simulated.

For the first time, heterotypic aggregation of platelets and
neutrophils (neglecting fragmentation) was simulated for a
realistic kernel estimated from experiments on homotypic
aggregations of these cells. During heterotypic aggregation
in a linear shear field, platelets behaved like an excess
reagent in a chemical reaction, used for driving the conver-
sion of another reagent. In this case, the limiting reagent is
the neutrophil, which also serves as a catalyst for platelet
consumption because of its large sweep through space.
Activated neutrophils serve as nucleation sites for hetero-
typic aggregation of platelets and other neutrophils and are
prothrombotic because of their aggregation biophysics as
well as their biochemistry (Palabrica et al., 1992; Plescia
and Altieri, 1996). Our theoretical prediction is in line with
the observations of Bednar et al. (1985), who observed a
decrease in platelet accumulation in infarcted myocardium
when neutrophils were depleted. The hemodynamics and
receptor biophysics of blood coagulation can be studied
more precisely now that aggregation kernels can be decon-
voluted from heterotypic aggregation experiments.

The stochastic aggregation algorithm has predictive
power for any type of aggregation, regardless of the number
of types of monomers, or whether they vary in volume.
However, our approach is not the only one capable of
handling complicated aggregation spaces. Other stochastic
aggregation algorithms are available (Gillespie, 1975; Shah
et al., 1977; Smith and Matsoukas, 1998), of which the
fastest is the full conditioning method (Gillespie, 1975),
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FIGURE 6 Size and composition distributions of platelet-neutrophil aggregates formed at 335 s�1 with full cellular activation. The initial volume
distributions of platelets and neutrophils are given in A. Composition distributions of aggregates are given for 0.01 s (B), 0.1 s (C), 1.0 s (D), 2.0 s (E),
5.0 s (F). The axes represent the volume content of platelets and neutrophils within the aggregates represented (1 fl � 1 �m3). Because of the combinatorial
disadvantage of doublet formation of neutrophils in this aggregation mixture, neutrophil doublets never appear alone, but are always stuck to platelets, which
mediate their adhesion. As in Figs. 3 B and 4 B, whereas neutrophil doublets, triplets, etc. are easily distinguished, those of platelets are indistinguishable.
The gates of Fig. 7 are shown in B.
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which employs particle accounting. For a system with 

particles, it requires calculations of 
(
 � 1)/2 kernels
before it can proceed to the next time step. When the kernel
is not a function of time, this may be reduced to 
 kernel
calculations. Thus, for time-independent kernels, the full
conditioning method requires O(�) kernel calculations per
time step, where � is the initial number of monomers, given
monodisperse initial conditions. However, as our MC algo-
rithm employs species accounting, only m kernels need be
computed per time step, where m is the number of species.
Given that the maximum number of species occurs when
there is only one of each, the mass balance gives the
following:

1 � 2 � 3 � · · · � m � 1
2

m�m � 1� � � (29)

Thus, in this “worst case” distribution, we see that m �
(2�)1/2. In both real and model aggregations such as those
simulated, such a complete distribution across the species
space does not occur. The actual distribution across the
species space is a function of time and depends on the form
of the kernel. Thus the number of kernel calculations per
time step is a small fraction of �1/2. Still, for comparative
purposes, each time step in our algorithm requires O(�1/2)
kernel calculations, a significant improvement over the full
conditioning method.

The kernel can change with time when aggregating cells
up-regulate, down-regulate, or shed receptors as they react
to external or internal stimuli. In such cases, our algorithm
becomes less efficient; all c(i, j, t) must be recalculated at
every time step, increasing the number of kernel calcula-
tions from m to m � m(m � 1)/2! � 1

2
m(m � 1). Thus,

considering Eq. 29, our algorithm requires O(�) kernel
calculations per time step when the kernel changes with
time. This is still better than the full conditioning method,

which in this situation is forced to calculate O(�2) kernels
per time step, because every particle-particle interaction
must be examined. In practice, it may not be necessary to
recalculate the kernels at every time step if they change
slowly over the course of aggregation.

There are relevant practical details to note when running
simulations with this method. In homotypic aggregation
with species defined by the number of monomers, the index
of a species in a list can be used to denote the number of
monomers in that species, simplifying the bookkeeping.
However, when heterotypic aggregation is simulated, the
numbers or amounts of each cell type must be accounted for
when new species are created. Moreover, for any system
where the volume or set of subvolumes of a particle defines
its species, the volumes of each cell type in each species
must be considered when new species are created. Conse-
quently, a location in a list is insufficient to specify the
volume or composition of a species. Thus, to account for the
size and composition of each species properly, the numbers
or volumes of platelets and neutrophils should be main-
tained in arrays parallel to the species index array, and a
bookkeeping matrix containing pointers should be used to
specify species composition. Taking these measures pre-
vents the redundant generation of an existing species during
the simulation. For a system of � types of monomers, �
parallel arrays will be required for these tasks. This is
general for simulations of aggregation of particles of dis-
crete and continuously varying volume. Fortunately, these
are not computationally intensive, as they will be low-
memory integer variables that are not used directly in com-
putation. The computationally slow step remains the calcu-
lation of new kernels.

When run on a Sun Ultra 30 or Silicon Graphics O2, type
1 simulations of heterotypic aggregation required 4–30 min
to run, depending on the number of particles simulated.
Type 2 simulations required 4 s at most. Because of the
complexity of the initial conditions, O(1000) species were
generated during the course of aggregation. Equivalent ex-
pression of the system through a PBE such as Eq. 1 would
require �1000 differential equations with �750 terms on
average. The method of Hounslow et al. (1988) discretizes
the integral in Eq. 6 to conserve mass and integrates the
resulting equations by finite difference. However, with only
30 volume bins, it still requires more than 2 h of CPU time
to simulate homotypic platelet aggregation. Furthermore,
unlike our method, the Hounslow method requires several
approximations: approximation of an infinitesimal dt as a
finite �t, substantial simplification in species space through
the volume discretization, and the assumption that aggrega-
tion can be described as a deterministic process.

Although the stochastic aggregation algorithm is exact
for bulk aggregation, it must be modified for complicated
aggregation media with spatial gradients. That is, if the
likelihood of an aggregation is strongly dependent on the
absolute rather than relative positions of the aggregating
particles, P(�, �) must be replaced with P(�, �, r), where r
specifies the location of an aggregation event. For example,

FIGURE 7 Evolution of aggregates within specific platelet and neutro-
phil volume gates. The series labeled Gate 1 represents aggregates with one
neutrophil and �4–28 platelets. Gate 2 features aggregates with two
neutrophils and �17–67 platelets. Because they represent dozens of sto-
chastically varying species, the variation in the concentrations of these
“gated species” is notable, whereas the concentrations of platelet singlets
(Fig. 3 A) and neutrophil singlets (Fig. 4 A) have small standard deviations
between runs. Gates 1 and 2 are shown in Fig. 6 B.
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in arteries, shear rate varies with radial position, and aggre-
gation events are coupled with deposition at the wall. In
such cases, position would be a complicated and nontrivial
factor to account for in MC simulation.

In addition to providing a new tool that permits feasible
prediction of the behavior of both heterotypic and homo-
typic aggregation, the stochastic aggregation algorithm also
makes amenable the inverse problem. That is, iterative
fitting of kernels to experimental data such as flow cytom-
etry and Coulter counter distributions will allow direct
deconvolution of size- and composition-dependent kernels.
From these, receptor bonding rate constants may be esti-
mated, because kernels depend on shear rate, aggregate
sizes, receptor concentrations, and receptor on-rates and
off-rates (Bell, 1981; Tandon and Diamond, 1997, 1998;
Long et al., 1999). Iterative solution for these parameters is
finally possible for heterotypic aggregation between cells,
colloids, polymers, proteins, and other aggregating media.
Such methods may detect and quantify subtle changes in
human blood that are diagnostic of clinical states or help
define the pharmacological-hemodynamic performance of
blood.

APPENDIX: MODELING THE HETEROTYPIC
AGGREGATION OF PLATELETS AND
NEUTROPHILS

At G � 335 s�1, the overall efficiencies �r�h for homotypic aggregations
of platelets and neutrophils in plasma are 0.05 and 0.31, respectively (Bell
et al., 1989a,b; Taylor et al., 1996; Tandon and Diamond, 1997, 1998).
Because of the complexity of the aggregation space, experimentally deter-
mined efficiencies for the heterotypic aggregation of platelets and neutro-
phils are not available. In the present study, we approximated this effi-
ciency, �r�h(�i, �i, �j, �j, G), to be a function of the platelet volume
fractions yi � �i/(�i � �i) alone. Then, drawing from the fact that �r�h(yi,
yj) � �r�h(yj, yi), the efficiency was expressed in terms of a single variable,
s � (yi

2 � yj
2)1/2.

The data in Figs. 3–7 were generated using the following functional
form for �r�h(s, G � 335 s�1):

�r�h�s� � C1s
2 � C2s � C3 (A1)

where

C1 � ��1 � 	2��plat-neut �
	2
2

�neut � �plat � �1.20

C2 �
2�plat-neut 
 �neut 
 �plat

2 
 	2
� 1.47

C3 � �neut � 0.31

The coefficients C1, C2, and C3 fit the experimentally determined values of
�r�h for the homotypic aggregations of platelets (s � �2) and neutrophils
(s � 0). They are also fitted to the estimated efficiency for the heterotypic
aggregation of platelet and neutrophil singlets, �plat-neut. Because of the
large number of fast and strong receptor-ligand interactions between plate-
lets and neutrophils in plasma (PSGL-1–P-Selectin, Mac-I–fibrinogen–
GPIIb/IIIa, and LFA-1–ICAM-2), fully activated platelets and neutrophils
should aggregate upon collision (�r � 1). Thus the value of �plat-neut was
approximated as the average hydrodynamic efficiency, 0.61 (Tandon and
Diamond, 1998), which simply corrects the Smoluchowski kernel for

curvilinear trajectories of particles in viscous flow. In this study, we have
not explicitly accounted for the variation of the efficiency with the size
ratio of the colliding particles, taking such effects as lumped within the
experimentally determined efficiencies. Accounting for such size effects
would have a small effect on the speed of the MC algorithm to the extent
that it would increase the computation time for the coagulation kernel.

This work was supported by National Institutes of Health grant HL 56621
and National American Heart Association grant 96-6670. SLD is an Es-
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