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Stochastic simulations are performed for two-component transport-limited aggregation processes
with Brownian motion and shear contributing to the collision frequency. To study the effects of
both mechanisms, the radius ratio of the initially pure particles is 1:8 on average, with the
larger particles having sizes on the order of microns (µm). For a mixed orthokinetic-perikinetic
kernel, the kinetics of the aggregation process and gel point are shown to have a cooperative
dependence on shear and the relative concentration of large particles to small ones. This was
found to be a result of the shear sensitivity of the aggregation process to the addition of large
particles. Ultimately, it is shown that accurate prediction of the kinetics and gel points of complex
aggregation phenomena requires the use of the stochastic approach to the aggregation kinetics
upon which the simulations are based.

Introduction

The aggregation of particles into larger structures is
a ubiquitous phenomenon of interest to a broad range
of researchers, characterizing processes from blood
coagulation to nanoparticle formation. In liquids, trans-
port-limited clustering of solute particles can be brought
about by shearing the solution, by gravitational settling,
or, depending on the size of the particles, by Brownian
motion. Whereas most studies of the kinetics of ag-
gregation focus on just one transport mechanism, many
real aggregation processes feature several modes of
transport, such as shear and diffusion. However, the
consequences of multiple transport mechanisms on the
kinetics of aggregation processes have never been fully
quantified.

Further complicating the analysis of transport-limited
aggregation is the fact that multiple components are
often involved. For instance, the process of heteroge-
neous aggregation often occurs in conjunction with
homogeneous nucleation processes, augmenting the rate
at which clouds and aerosols form.1 However, the subject
of multicomponent aggregation has been sparsely ad-
dressed in the literature, with a few papers on this
subject addressing a physical system.2,3

The state of an aggregation process can be expressed
in terms of its particle size distribution (PSD), which
characterizes the average particle size, polydispersity,
and onset of gelation. The quantitative approach to its
dynamics was developed by Smoluchowski, whose ki-
netic theory of clustering remains the basis of almost
all theoretical treatment of aggregation kinetics.4 The
kinetic theory directly gives Smoluchowski’s population
balance equation (PBE) for single-component aggrega-
tion

In eq 1, the first term on the RHS is the sum of all of
the rates of aggregations yielding particles composed
of i monomers. The second term is the sum of the rates
of aggregation of i-mers to form larger particles. The
quantity K(i,j) is denoted the kernel of the process and
acts as a “second-order rate constant” for the “reaction”
(i) + (j) f (i + j). Each aggregation mechanism features
a unique kernel that can be derived from consideration
of the transport and chemistry of suspended particles.
Hence, the kernel embeds the microphysical mechanism
of the process into Smoluchowski’s equation.

This approach can be expanded to address the con-
servation of multiple components. In such cases, two or
more population balances must be incorporated into a
mass-action equation such as eq 1. For example, Lush-
nikov’s equation for the aggregation of particles com-
posed of two components is5

Here, K(u,v | u′,v′) is a multicomponent kernel and
ĉ(u,v;t) is a concentration density for the system. The
concentration of particles with compositions (<u, <v)
can be determined from ĉ(u,v;t) by integration

Because of the mathematical forms of most kernels,
only a few analytical solutions are known to exist.4,6,7,8

Furthermore, the differential and integral complexity
of eqs 1 and 2 makes numerical approximation difficult
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and often coarse. Fortunately, these difficulties can be
alleviated by a paradigm shift. In a recent publication,
a new approach was developed for aggregation kinetics
of multicomponent particles based on the theory of
Markov processes.2,9 Akin to the stochastic approach to
chemical kinetics,10 this methodology features proba-
bilistic evolution of the state of a system according to
the same laws dictating the evolution of the real process.
Consequently, the stochastic approach naturally lends
itself to exact Monte Carlo (MC) simulation. Because
the kernel is at the heart of the stochastic approach as
well, it parallels Smoluchowski’s deterministic ap-
proach, predicting, on average, the same behaviors for
any aggregation processes. Furthermore, it yields a
more exact treatment of gel phenomena, accounting
explicitly for the mass of an aggregating system.

Although the effects of shear and diffusion on ag-
gregation kinetics have been studied experimentally for
single-component systems, a complete mathematical
analysis of the size distribution and its moments has
never been conducted. In this paper, the versatility of
the stochastic approach is employed to quantify the
kinetics of two-component aggregation between micron-
and submicron-sized particles differentially subjected
to both shear and Brownian transport mechanisms. In
so doing, the effects of changing the relative concentra-
tions of the two components are investigated to develop
a quantitative approach to the characterization of
aggregation kinetics and gel formation.

Methods

Stochastic Simulation Algorithm. As with the
deterministic approach, the stochastic approach is
concerned with the evolution of the states of an ag-
gregating system, defined by the types of particle species
and their populations or concentrations. However, it is
the probability of a state that is specified by the
stochastic master equations. A stochastic master equa-
tion for an aggregating system can be written as

In eq 4, P is a vector of probabilities {Pn} that the
system will be in the nth state at time t, where states
are defined by specific PSDs. A is the transition matrix
for the stochastic process, where {Amn dt} represents
the probabilities that the system will go from the mth
state to the nth state in the next differential time period
dt. By solution of master equations such as eq 4 and
appropriate averaging of the time-dependent prob-
abilities P (t), the stochastic time evolution of the PSD
can be predicted. However, the real power of the
stochastic approach is not in its capacity to predict the
probabilities of states, but in its probabilistic description
of the process. That is, given the transition probabilities
{A mn dt}, MC simulation of the aggregation process can
be performed. The method used to implement the
numerical algorithm follows.

Consider a batch aggregation process in a volume V
in which there are initially N “particle species”. Let a
species be defined as a type of particle with a unique
composition (u, v, ...), where u, v, etc., are conserved size
variables for each component, such as the mass or
volume. Subsequently, let each state be defined by the
populations Xi ∈ N of each unique species i ∈ [1, N].
Because the particles of these species are uniformly

randomly distributed throughout V, they will randomly
collide with and adhere to each other. Thus, transition
probabilities for aggregation events can be written as

The probabilities that any two particles will aggregate
will depend on the populations of the aggregating
species. For example, there are XiXj ways that two

different species i and j can aggregate and (Xi
2 ) ways

that species i can aggregate with itself. Hence

Furthermore, it can be shown that2,11

where, in contrast to the definition given in eq 1, K(i,j)
is the kernel between species i and j. That is, if species
i is defined by the composition (u, v), and species j by
(u′, v′), then K(i,j) ) K(u,v|u′,v′), as in eq 2. Because
states can change only by individual aggregation events,
it follows that eqs 6 and 7 are examples of the afore-
mentioned transition probabilities from which the sto-
chastic simulation algorithm is derived.

The method of simulation of the kinetics of the
aggregation process requires two steps: probabilistic
selection of the time until the next aggregation event
and probabilistic selection of which event it will be.
Using eqs 6 and 7, probability distributions can be
derived for both the quiescence time and the imminent
event, from which values can be drawn by MC. Laurenzi
and Diamond2,9 and Gillespie12,13 give a detailed deriva-
tion of these distributions and an efficient algorithm
drawn from them.

The algorithm consists of the following steps: First,
a set of species must be defined according to an initial
particle density ĉ(u,v;0). To do this, a batch volume V
must be specified such that the initial number of
particles is X0 ) V × G(∞,∞;0). Subsequently, by
standard MC sampling of the normalized distribution
ĉ(u,v;0)/G(∞,∞;0), an initial set of particles can be chosen
in accordance with the initial distribution ĉ(u,v;0) (Ap-
pendix). In principle, the initial species could be repre-
sented by these particles, producing X0 singly populated
species. A more efficient approach discretizes the size
spaces u and v into M and N bins defined by linearly
distributed abscissas uj (j ∈ [1, M ]) and vk (k ∈ [1, N ])
and sorts the MC-defined particles into these bins. As
a result, the number of species is reduced from X0 to N
) M × N . The initial species i ∈ [1, N] are subsequently
defined as having

dP
dt

) AP (4)

C(i,j) dt ) probability that a specific pair of
particles of species i and j will aggregate

in the next dt (5)

a(i,j) dt ) C(i,j)XiXj dt ) probability that any
two particles of species i and j (i * j) will

aggregate in the next dt (6)

a(i, i) dt ) C(i,i) (Xi

2 )dt ) probability that any two

particles of species i will homo-aggregate
in the next dt (7)

C(i,j) ≡ K(i,j)
V

(8)

uj i ) 1/2(uj-1 + uj) (9)
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and

of the first and second components, and populations
defined by the number of particles falling in the jth u
bin and kth v bin.

With the initial state defined, the quiescence time
until the first event can be selected via the following
equation

where r1 is a uniform random number on (0, 1] and R is
defined by

Next, the species involved in the imminent event are
chosen by the following inequality

where r2 is another uniform random number on (0, 1].
The selection of the aggregating species can be imple-
mented by sequential addition of a(i,j) until r2R is
exceeded. Furthermore, it is independent of the ordering
of the summation, inasmuch as the selection is proba-
bilistic. The process of selection of µ and ν can be
optimized by the use of special data structures in order
to reduce the number of computations in eqs 12 and 13.9

After selection of a quiescence time and pair of
aggregating species, a time counter is incremented by
τ, and populations of the “reactant” species µ and ν and
“product” species π are adjusted. Subsequently, all
transition probabilities depending on Xµ, Xν, and Xπ are
updated to reflect the current state of the system, and
the process is repeated. When a species is depopulated,
it is removed from the list of species, and its aggregation
information (C, a) is purged from memory. Likewise,
when a new species is created, N is incremented, the
new species is added to the end of the list of species,
and its aggregation events a(N, j) (j ∈ [1, N]) are
generated.

Computation of Moments. Often, the most impor-
tant quantities used in the characterization of aggrega-
tion kinetics are not the particle distributions ĉ(u,v;t)
themselves but their moments, defined as

for systems with two components. In systems with one
component, the moments of interest are M0(t), M1(t), and
M2(t), which are the total number of particles, total mass
of particles, and distribution width, respectively. In a
multicomponent system, the quantities M0,0(t), M1,0(t),
and M0,1(t) give the total numbers of particles, the total
mass of the first component, and the total mass of the
second component, respectively. As in the single-
component case, higher moments can be used to predict
the width and breadth of particle distributions to
various degrees, as well as the propensity of a system
to exhibit a gel transition. For example, M0,2 is the

variance of the distribution in the second component size
(v), M1,1 the covariance, etc. Prior to complete aggrega-
tion, at which point there is only a single particle, the
increase of these parameters over time reflects the
distribution of the particles across the heterotypic size
space.

Definition of the moments of the distributions pre-
dicted by MC is similar to eq 14. Because the stochasti-
cally generated states defined by the MC simulation are
tantamount to integrals of ĉ(u,v;t), the moment integral
can be expressed as

where θ(x) is the unit step function. Hence, by summa-
tion of the weighted populations of species i with uj i e u
and vji e v, all moments of the MC-predicted PSD can
be computed exactly.

Kernels. Diffusion is a factor in every transport-
limited aggregation process, inasmuch as Brownian
motion has the potential to bring particles into intimate
contact. In liquids at ambient temperatures, the dif-
fusive mechanism is most important for particles with
diameters on the order of nanometers. The perikinetic
kernel for a pair of species defined by the compositions
(u, v) and (u′, v′), where the total volume of the first
species is (u + v) and the total volume of the second is
(u′ + v′), is

In this expression, kB is Boltzmann’s constant, T is the
temperature, and µ is the solution viscosity. In eq 16,
the aggregates formed are not assumed to be fractal,
resulting in the exponents of 1/3. The quantity kBT/η is
a ratio of the thermal energy to the solution viscosity
and is equal to 4.037 × 10-12 cm3/s at 20 °C when the
particles aggregate in aqueous solution. As its name
suggests, the sticking probability εD(u,v | u′,v′) ∈ (0, 1]
gives the probability of adhesion between particles of
compositions (u, v) and (u′, v′), given that they collide.
Because of the dependence of this probability on the
chemical kinetics of bond formation between or charge
distributions of the aggregating particles, it is poten-
tially a function of both size and composition. In our
simulations, it is been set as a constant.

Unlike Brownian objects, particles with radii on the
order of microns can have their transport affected by
fluid convection. The orthokinetic kernel for the shear-
mediated aggregation of particles is

where, again, ε(u,v | u′, v′) is the sticking probability
and G is the shear rate of the solution. Because eq 17
is based on a linear trajectory model of shear-induced
collision, it fails to account for hydrodynamic interac-
tions between approaching particles, which can diminish
the actual collision rate.14,15 Thus, the effective sticking
probability for shear-mediated collision εS(u,v | u′,v′)
includes corrections for hydrodynamic resistance (cur-
vilinear trajectories) and can be less than unity in

vji ) 1/2(vk-1 + vk) (10)

τ ) 1
R

ln(1
r1

) (11)

R ) ∑
i)1

N

∑
j)1

i

a(i,j) (12)

∑
i)1

µ-1

∑
j)1

ν-1

a(i,j) e r2R e∑
i)1

µ

∑
j)1

ν

a(i,j) (13)

Mj,k(t) ) ∫0

∞ ∫0

∞
ujvkĉ(u,v;t) du dv (14)

∫0

u ∫0

v
ujvkĉ(u,v;t) du dv ) ∑

i)1

N

uj i
jvji

kXiθ(u-uj i) θ(v-vji)

(15)

KD(u,v|u′,v′) )

ε(u,v|u′,v′)
2kBT

3η [2 + ( u + v
u′ + v′)

1/3
+ ( u + v

u′ + v′)
-1/3] (16)

KS(u,v|u′,v′) ) ε(u,v|u′,v′)G
π

[(u + v)1/3 + (u′ + v′)1/3]3

(17)
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practice as a consequence of shear rate dependence of
the actual collision rate. Although this would result in
differences in the effective sticking probabilities for the
perikinetic and orthokinetic kernels, we have assumed
that hydrodynamic resistance is negligible in this study
and set εS(u,v | u′, v′) ) εD(u,v | u′,v′) ) ε for general
testing of the MC method.

In the region between the Brownian-dominated and
shear-dominated regimes, both modes of transport can
contribute to the rate of aggregation. Complex rate
kernels have been derived for this case14,16 predicting
higher aggregation rates than the sum predicted by each
regime. However, direct experiments conducted by Swift
and Friedlander (1964)17 have demonstrated that the
kernel for mixed transport behaves to a high degree of
accuracy as a linear combination of eqs 16 and 17

For very small particles, the diffusive term dominates,
whereas large particles are dominated by the shear term
of the kernel. We note that neither Smoluchowski’s
equation (eq 1) nor Lushnikov’s equation (eq 2) have
been solved exactly for this combined kernel.

Simulation Results and Discussion

Single-Component Simulations. Simulations of
single-component aggregation processes mediated by
shear and diffusion were conducted according to the
experimental conditions of Swift and Friedlander.17 In
brief, simulations of identical spherical particles of 0.871
µm diameter at a concentration of c0 ) 2.0 × 108

particles/cm3 were conducted at G ) 1, 5, 20, 40, and
80 s-1, with kT/η ) 4.526 × 10-12 cm3/s and ε ) 0.364.
Results of these simulations are given in Figure 1, which
is identical to Figures 10 and 11 of Swift and Fried-
lander.17 In accordance with their experimental results,
the numbers of particles in the simulations are ap-
proximately given by the expression

where P ) 3Gφη/πkT and φ is the volume fraction of
the particles. Despite the slight curvature of the data
in Figure 1a, linear regression gives R2 values in excess
of 0.99 at each shear rate. By use of a quadratic fitting
function, estimates of the initial slopes of the curves
were computed and plotted against their corresponding
values of G in Figure 1b. As predicted by eq 19, the
slopes were found to be linear and in accordance with
the results of Swift and Friedlander.17

Bidisperse Simulations. Simulations of two-com-
ponent aggregation processes were conducted with the
bivariate size distribution density

This density represents two pure and distinct types of
particles, each with a unique size distribution. We have

chosen these to be broad gamma distributions with R1
) 2, R2 ) 8, â1 ) 3.49 × 10-14 cm3, and â2 ) 4.47 ×
10-12 cm3, such that the average volumes of the two
pure particle types were 6.98 × 10-14 cm3 and 3.58 ×
10-11 cm3. The initial concentrations of the two particle
types were varied relative to the constraint c1 + c2 ) c0
) 2.5 × 1010 particles/cm3, so as to keep the total
concentration of particles constant and dilute over all
simulated conditions. As both the PBE and eq 11 show
that time scales with (c0ε)-1, the simulation results in
Figures 2-5 have been plotted against the dimension-
less time scale t* ) εc0(kT/µ)t.

The parameters for the initial size distribution are
chosen to ensure that the particles can aggregate by
both shear and diffusion. Initially, the average Peclet
numbers for the two particle types

are Pe1,1 ) 0.31, Pe1,2 ) 28, and Pe2,2 ) 159 at G ) 1.0
s-1 and kT/η ) 4.037 × 10-12 cm3/s. Thus, simulations
are performed at shear rates of 0, 1.0, and 10.0 s-1 to
span the range of Brownian- and shear-dominated
transport. Furthermore, the initial particle fraction of
component 2 particles, ê ) c2/c0, has been varied to
adjust the amount of each type of transport at a given

K(u,v|u′,v′) ) KS(u,v|u′,v′) + KD(u,v|u′,v′) (18)

ln[(M0(t) + P

M0(t) )( M0(0)

M0(0) + P)] ) 4εGφ

π
t (19)

ĉ(u,v;0) ) c1
1

â1â2

( u
â1

)R1-1
exp(- u

â1
)

Γ(R1)
δ( v

â2
) +

c2
1

â1â2

( v
â2

)R2-1
exp(- v

â2
)

Γ(R2)
δ( u

â1
) (20)

Figure 1. Results of simulations of Swift and Friedlander’s17

experiments on shear coagulation of a monodisperse latex disper-
sion. (a) Almost-straight lines are obtained, in agreement with the
experimental results and eq 19. (b) The initial slopes of the lines
in a are proportional to G, as predicted by experiment and eq 19.

Pei,j )
3πη(Ri + Rj)

3G
kT

(21)
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shear rate. Figures 2-5 give the average results of 10
simulations of this aggregation process.

Particle Consumption. The time dependence of the
normalized zeroth moment of the size distribution
representing the conversion of particles is given in
Figure 2. In the absence of shear, there is almost no
dependence of the aggregation process on ê because the
diffusion kernel has a weak dependence on the total size.
As eq 16 shows, perikinetic aggregation is a function of
the relative size. Because the initial average relative
ratio of radii is 1:8, heterotypic aggregation is faster
than homotypic processes. The relative difference in
rates is even more dramatically pronounced as the
concentrations of small and large particles approach
each other (ê ) 50%) via the combinatorial weighting
in eqs 6 and 7. However, the rapid heterotypic aggrega-
tion exhausts itself at about 10 s into the process as
the particles homogenize.

As the shear rate is increased from 0 to 10 s-1, the
perikinetic kernel is progressively dominated by the
orthokinetic kernel. However, because Pe1,1 ) 3.1,
Brownian aggregation is still competitive for component
1 particles. Consequently, when ê ) 1%, the consump-
tion of particles over the range of shear studied is
approximately constant. However, when ê is increased
to 10 or 50%, particle consumption is dramatically
increased, with changes in the half-lives of orders of
magnitude. In these cases, the products of large species
populations (eqs 6 and 7) augment the speed of the
orthokinetic process. As shear rate is increased to 100
s-1 and beyond, the consumption curve shifts dramati-
cally to the left, even for ê ) 1%, as orthokinetic
aggregation results in huge aggregates of component 2
particles that serve as diffusive sinks for component 1
particles, owing to the size gradient. However, at these
high shear rates, experimentation has shown that
fragmentation plays an important role in the aggrega-
tion process;18-20 hence, the simulation for this irrevers-
ible aggregation model is not expected to apply to
systems in this shear regime.

Gel Formation. In Figures 3-5, the dynamics of the
normalized second moments M2,0, M0,2, and M1,1, re-
spectively, are given. These moments collectively denote
the width and breadth of the bivariate particle size
distribution. Consequently, because of the variation of
the relative concentrations of the two components,
Figures 3a and 4a show variation in the initial values
of the second moments. However, because there are no
mixed aggregates initially, M1,1 is initially zero for all
shear rates and initial concentrations of particles. As
time progresses, the second moments increase as func-
tions of both shear and relative concentration, reflecting
the increase in polydispersity in each component. The
similarities of Figures 3-5 reflect the fact that there is
no explicit composition dependence of the aggregating
particles in eq 18.

Because aggregation is treated as irreversible in our
simulations, the normalization of the second moments
M2,0/M1,0

2, M0,2/M0,1
2, and M1,1/(M0,1M1,0) reflects the fact

that, upon complete aggregation of all particles, the
quotients must physically equal unity. Whereas this
behavior is intuitive, it differs from the results of the
PBE, which predict divergence of the second-order
moments at t e ∞. This discrepancy results from two
approximations implicit in the derivation of the deter-
ministic approach. The first of these is that determin-
istic prediction of the aggregation process requires that
matter be treated as continuous. Furthermore, the
stochastic fluctuations of the kinetics of singly populated
species (such as a gel) are neglected by the PBE but
are very important.10,21 Consequently, higher-order
terms are neglected from eqs 1 and 2, permitting the
formation of ∞-mers (from mass continuity) and the
definition of a specific time at which the gel forms.
Because the stochastic approach is mathematically
equivalent to the stochastically exact PBE,11 it should
be expected that the higher-order terms in such sto-
chastically exact PBEs preclude the divergence of the
second- and higher-order moments of the size distribu-
tion.

Thus, whereas the gel transition in single-component
systems is customarily defined as the time at which the
second moment M2(t) diverges with a concomitant
decrease in total mass M1(t), Figures 3-5 show a clear
gel transition without such a divergence. Moreover, the

Figure 2. Particle conversion for aggregation of mixtures of
Brownian (255 nm) and microscopic (2.04 µm) particles at shear
rates G ) (a) 0, (b) 1.0, and (c) 10.0 s-1, where 1-50% of the initial
particles are of the larger type.

Ind. Eng. Chem. Res., Vol. 41, No. 3, 2002 417
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MC algorithm forces conservation of mass, such that
M1,0(t) ≡ M1,0(0) and M0,1(t) ≡ M0,1(0). Figures 3-5 show
that the gel transition in the real system occurs just
before the rapid growth of the second moments late in
the aggregation process, when about 90% of the particles
have aggregated. Supporting this result is the fact that
the rapid growth phase begins at the same time in
Figures 3-5 at each shear rate and ê. Thus, the results
indicate that the real gel point of an aggregating system
of arbitrary components is characterized by a rapid and
finite increase in the second moments, asymptotically
approaching unity. This result has been previously
demonstrated, albeit in a different form, in MC simula-
tions of polymerization kernels with known gel points.22

Moreover, Figures 3a, 4a, and 5a show that, in the
absence of shear, no gel formation (rapid increase of the
second moments) distinct from complete aggregation is
observed. In this case, the growth of the second moment

to unity requires decades, whereas the shear-mediated
process is rapid.

Figures 3-5 also show the effects of seeding the small
particles of the first component with larger particles of
the second. Although the speed of the gel transition is
greatly enhanced by the addition of large particles, there
are diminishing returns with respect to this addition.
For example, gel points occur about 20-30 times faster
as ê is increased from 1 to 10%. An increase in ê from
10 to 50% diminishes the gel point by an additional
factor of about 13, regardless of the shear rate. In
summary, these results indicate that the addition of
microscopic particles to Brownian particles increases the
total rate of aggregation by increasing the shear sen-
sitivity of the process. Consequently, by addition of a
small amount of microscopic particles, an aggregation
of Brownian particles can be enhanced or controlled by
shear. The method provided in this work gives exact
quantification of these concentration and shear depend-
encies.

Figure 3. Normalized second moment of particle distribution in
the small component (M2,0) at shear rates G ) (a) 0, (b) 1.0, and
(c) 10.0 s-1. The beginnings of the rapid increases reflect the
formation of a gel.

Figure 4. Normalized second moment of particle distribution in
the large component (M0,2) at shear rates G ) (a) 0, (b) 1.0, and
(c) 10.0 s-1.
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Conclusions

By use of a stochastic approach to aggregation kinet-
ics, an exact multicomponent analysis of irreversible
transport-limited aggregation via combined Brownian
motion and shear has been performed for the first time.
Because the stochastic approach is based on the micro-
physics of the aggregation process and lacks the math-
ematical complexity of Smoluchowski’s and Lushnikov’s
equations, it permits MC simulation of any aggregation
kernel with any initial distribution of particles, regard-
less of the number of components or complexity of the
kernel. Furthermore, it gives a more exact mathematical
treatment of gel formation and its characterization.

Aggregation simulations of two types of volumetrically
polydisperse single-component particles with a diameter
ratio of 1:8 were performed at the size scale spanning
the Brownian and shear-mediated transport mecha-
nisms. The results demonstrated the capacity of shear
and seeding with large particles to augment the speed

of aggregation and hasten gelation. In the absence of
shear, no gel transition was observed. However, even
at small shear rates, gel formation was observed, where
the gel point was shown to be rapid, but not instanta-
neous, and strongly dependent on shear rate. Further-
more, neither divergence of the second-order moments
nor decrease of the first moments of the particle size
distribution were observed at or after the gel point.

Seeding with micron-sized particles was shown to
increase the sensitivity of the aggregation process to
mixing and hasten the process of gelation of the Brown-
ian aggregation process by orders of magnitude. How-
ever, in the absence of shear, the consumption of
particles was essentially independent of the large
particles. Furthermore, the benefits of seeding diminish
as the initial fraction of particles of micron-size in-
creases beyond 10%, especially at large shear rates.
Whereas the cooperative effects of seeding and shear
can be used to control the gel point, other design
parameters such as shear- and composition-dependent
sticking probabilities can also be analyzed by MC
simulation.
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Notation

A ) transition matrix of an aggregating system
a(i,j) ) frequency of aggregation between any particles of

species i and j
C(i,j) ) frequency of aggregation between specific particles

of species i and j
c(i,t) ) concentration of i-mers at time t
ĉ(u,v;t) ) bivariate concentration distribution density
c0 ) total initial concentration of particles
c1, c2 ) initial concentrations of pure particles of compo-

nents 1 and 2, respectively
G(u,v;t) ) cumulative concentration distribution
K(i,j) ) aggregation kernel between i-mers and j-mers or

between species i and j
K(u,v|u1,v1) ) bivariate aggregation kernel
kB ) Boltzmann’s constant
M, N ) number of abscissas for initial discretization of

component 1 and 2 size/mass spaces
Mi,j(t) ) (i,j)-th moment of bivariate population distribution
N ) number of particle species
P ) vector of the probabilities of states of an aggregating

system
Pei,j ) Peclet number between components i and j
r2, r1 ) random numbers
R1, R2 ) radii of pure particles of components 1 and 2,

respectively
T ) temperature
t ) time
u, u1 ) size/mass of component 1 in aggregating particles
uj, vk ) abscissas of the size/mass spaces of components 1

and 2
ujk, vjk ) size/mass of components 1 and 2 in species k
v, v1 ) size/mass of component 2 in aggregating particles
V ) batch volume
X0 ) initial number of particles
Xi ) population of species i
R ) total aggregation frequency

Figure 5. Normalized mixed second moment M1,1 of particle
distribution at shear rates G ) (a) 0, (b) 1.0, and (c) 10.0 s-1.
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R1, R2 ) size factors for gamma distributions of size for
components 1 and 2, respectively

â1, â2 ) shape factors for gamma distributions of size for
components 1 and 2, respectively

ε(u,v|u1,v1) ) sticking probability
η ) solution viscosity
φ ) volume fraction of aggregating particles
µ, ν ) indices of species that will imminently aggregate
τ ) quiescence time
ê ) number fraction of initial particles composed of

component 2

Appendix: Monte Carlo Sampling of a Bivariate
Probability Distribution

The MC selection of abscissas X and Y from a
bivariate probability distribution density can be per-
formed as follows: Consider a distribution density P(x,y)
with x ∈ [a, b] and y ∈ [a′, b′], where any of a, a′, b or b′
can be infinite. If P(x,y) is a normalized density function,
it obeys the equation

The Monte Carlo method of sampling the distribution
is to define a probability via a random number generator
and set it equal to the cumulative distribution. In the
case of a bivariate distribution, proper conditioning
must be employed to obtain independent results. Thus,
one can define

as the probability that X e x and

as the probability that Y e y, given that X e x. The
product of these probabilities gives eq 22. Consequently,
a value of X can be selected by setting the LHS of eq 23
to a uniformly generated random number r ∈ [0, 1]. With
X ) x chosen, subsequent selection of a value of Y can
be performed likewise, but with a different random
number.
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Prob(X,Y;Xex,Yey) ) ∫a′

y ∫a

x
P(x,y) dx dy e1 (22)

Prob(X;X<xeb) ) ∫a′

b′ ∫a

x
P(x,y) dx dy (23)

Prob(Y|X;Yey|Xex) )

∫a′

y ∫a

x
P(x,y) dx dy/∫a′

b′ ∫a

x
P(x,y) dx dy (24)
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