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Kinetics of random aggregation-fragmentation processes with multiple components
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A computationally efficient algorithm is presented for exact simulation of the stochastic time evolution of
spatially homogeneous aggregation-fragmentation processes featuring multiple components or conservation
laws. The algorithm can predict the average size and composition distributions of aggregating particles as well
as their fluctuations, regardless of the functional form~e.g., composition dependence! of the aggregation or
fragmentation kernels. Furthermore, it accurately predicts the complete time evolutions of all moments of the
size and composition distributions, even for systems that exhibit gel transitions. We demonstrate the robustness
and utility of the algorithm in case studies of linear and branched polymerization processes, the last of which
is a two-component process. These simulation results provide the stochastic description of these processes and
give new insights into their gel transitions, fluctuations, and long-time behavior when deterministic approaches
to aggregation kinetics may not be reliable.
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I. INTRODUCTION

The aggregation of small entities into larger ones und
lies processes as diverse as self-assembly, chemical poly
ization, and blood coagulation. When aggregation is conc
rent with fragmentation, many of these processes may
conceptualized as chemical polymerization processes,

Mi1M j

K~ i , j !



F~ i , j !

Mi 1 j , ~1!

where Mi and M j are particles of sizesi and j, and the
aggregation and fragmentation kernelsK( i , j ) and F( i , j )
function as ‘‘chemical’’ rate constants. The size dependen
of the kernels may be derived by the microphysical cons
eration of the mechanism of a given process. Hence, Eq~1!
is a general model by which many reversible aggrega
processes may be represented.

As written, Eq.~1! describes a process with a single co
servation law, i.e., conservation of monomers. However,
gregation and fragmentation processes may also feature
ditional conservation laws for other distinct monome
units. For example, a detailed account of the kinetics
blood coagulation requires conservation laws for each ac
blood component: platelets, leukocytes, soluble fibrinog
etc. To represent such processes, Eq.~1! must be modified to
account for the additional conservation laws or compone
Let us define each multicomponent speciesM (u) by a com-
position vectoru5(u1 ,u2 , . . . ,uk), whereuk (kP@1,k#) is
the amount of thekth conserved quantity or component. W
may then rewrite Eq.~1! for this multicomponent or multi-
conservative model as
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M ~u!1M ~v!

K~u,v!



F~u,v!

M ~u1v!. ~2!

In this case,K(u,v) andF(u,v) are multicomponent aggre
gation and fragmentation kernels that may depend on e
component ofu andv.

To quantify the time evolution of aggregation
fragmentation processes, the kinetic process represente
Eq. ~2! must be employed in a mathematical statement
component conservation. The traditional approaches
Smoluchowski@1#, Blatz and Tobolsky@2#, and Lushnikov
@3# have achieved this by use of the deterministic populat
balance equations~PBEs! such as

]c~u,t !

]t
5

1

2 (
v50

u

K~v,u2v!c~v,t !c~u2v,t !

2(
v50

`

K~u,v!c~u,t !c~v,t !

2
1

2(
v50

u

F~v,u2v!c~u,t !1(
v50

`

F~u,v!c~u1v,t !.

~3!

In this expression,c(u,t) is the concentration ofu-mers and
the sums are computed over each compositionv
5(v1 ,v2 , . . . ,vk)PNk, excluding the upper and lower lim
its.

Because PBEs, such as Eq.~3!, are infinite sets of infi-
nitely coupled nonlinear differential equations, obtaini
their analytical and numerical solutions can be formida
challenges. Only a handful of analytical solutions of PB
are known for processes with no fragmentation, most
©2003 The American Physical Society03-1
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which are for single-component systems@1,3–8#. Further-
more, only two analytical solutions are known for singl
component aggregation-fragmentation processes@2,9#, and
none are known for multicomponent aggregatio
fragmentation processes. In addition, it has been shown
PBEs have validity only in the large population limit, that
when there are many aggregates of each compositionu.
Consequently, PBEs cannot predict the long-time behav
of aggregation processes when the particles or molec
completely aggregate or undergo a phase transition@10–12#.

Owing to these considerations, the stochastic approac
aggregation kinetics has emerged as a viable and attra
alternative@10–20#. The stochastic approach can give a mo
realistic and robust characterization of aggregation p
cesses, explicitly accounting for both the conservation
monomers and the statistical fluctuations ofu-mer popula-
tions. In this paper, we employ this approach to exactly ch
acterize the kinetics of reversible aggregation, wherein m
tiple components or conservation laws are extant. We t
present an exact Monte Carlo~MC! algorithm for simulation
of the time evolution of any spatially homogeneous aggre
tion process. The paper is organized as follows. In Sec. II,
derive the probability functions utilized by the MC algo
rithm, setting the stage for the presentation of the algorit
in Sec. III. We then apply the MC algorithm to study th
kinetics of physically relevant reversible polymerization pr
cesses in Sec. IV. Here, we give the exact stochastic des
tions of the time evolutions of the linear (RAg) and branched
(RAg /RB2) models of reversible polymerizations of mult
valent monomers, and develop methods of characteriz
their gel points exactly. We conclude with a discussion of
results in Sec. V.

II. STOCHASTIC APPROACH

In a previous paper, we developed the stochastic form
ism for the description of irreversible aggregation of partic
with multiple components or conservation laws@12#. We
summarize those results here and develop the additiona
tails pertaining to particle fragmentation.

Consider a well-mixed and spatially homogeneous v
umeV in which there reside particles belonging toN distinct
aggregate species, and let each speciesm be characterized by
a unique compositionum5(um,1 , . . . ,um,k). That is, each
particle having the compositionum is a member of themth
species. After timet50, these species will randomly aggr
gate or fragment according to the mechanism of Eq.~2!,
resulting in a change in the populations of one or more s
cies. To specify these changes mathematically, we spe
the state of the system by a vectorx[(X1 , . . . ,XN), where
Xm is the population~number of particles! of themth species.
Subsequently, we specify the probabilities of aggregation
fragmentation of each speciesmP@1,N# in that state. Apply-
ing the stochastic approach to the chemical kinetics of
forward ‘‘reaction’’ of Eq. ~2!, one obtains the following
transition probabilities for aggregation events@12,19#:
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a~m,n!dt5V21K~um ,un!XmXndt

5Pr~any two particles ofunlike species
m and n with populationsXm and Xn will
aggregate within the imminent time intervaldt),

(4)

a~m,m!dt5V21K~um ,um!
Xm~Xm21!

2
dt

5Pr~any two particles of thesame speciesm

with population Xm will aggregate within

the imminent time intervaldt). ~5!

Applying the stochastic approach to the chemical kinetics
the reverse reaction of Eq.~2! likewise yields the following
transition probabilities for fragmentation events:

f ~m,v!dt5F~um2v,v!Xmdt

5Pr~any particle of speciesm

with population Xm and compositionum

will break into two unlike particles of

compositionsum2v and v within the

imminent time intervaldt), ~6!

f ~m,um!dt5
1

2
FS um

2
,
um

2 DXmdt

5Pr~any particle of speciesm with population

Xm and compositionum will break into two

identical particles of composition
um

2
within the imminent time intervaldt. ~7!

In these definitions, the population terms enumerate the n
ber of ways by which the reactant species can be chosen
example, there areXmXn ways that a pair of distinct specie
m andn can be chosen to aggregate. Likewise, there areXm

ways of choosing a speciesm for a fragmentation. The facto
1
2 in Eq. ~7! is a consequence of the fact that there is only o
way that a particle can split in half, but two ways that it c
be split asymmetrically.

In principle,u-mers may have many structural configur
tions, each with its own size or shape that may affect
rates of aggregation and fragmentation. However, neither
PBE nor our definition of species explicitly accounts for t
configuration or shape. Consequently, it is possible that
u-mer particle may exhibit any of theN(u) possible configu-
rations of u-mers, regardless of the population ofu-mers.
3-2
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Thus, for Eqs. ~4!–~7! to be generally valid for all
aggregation-fragmentation processes, even for singly po
lated species, the kernelsK(u,v) and F(u,v) must be the
averagerates of aggregation and fragmentation taken o
all conformations, shapes, cross-sectional areas, and so
This condition implicitly requires that the conformation di
tributions of all species should remain constant through
the aggregation process. In both the PBE and the stoch
approach to aggregation kinetics, this is commonly assum
to be true.

Using Eqs.~4!–~7!, one can exactly derive probabilit
distributions for both the event to come and the preced
quiescence time@12,19,21#. The probability that the immi-
nent event will either be an aggregation of some speciem
andn or a fragmentation of some speciesm into particles of
compositionsv andum2v is

P2~m,n;m,vut!5H f ~m,v!/a, uvu.0, n50

a~m,n!/a, uvu50, m,n.0,
~8!

where

a5 (
m51

N

~am1Xmfm! ~9!

is the sum of all transition frequenciesa(m,n) and f (m,v),
and

am5 (
n51

m

a~m,n! ~10!

and

fm5 (
v50

[(1/2)um]

F~um2v,v!, v5~v1 , . . . ,vk! ~11!

are so defined for reasons that will become apparent la
The probability that the next event will occur immediate
after the quiescence intervalt is

P1~t!dt5aP0~t1tut !dt, ~12!

whereP0(t1tut) is the probability that nothing will occu
within the quiescence time. Becauseadt is the probability
that something will occur within the next time intervaldt, it
may be specified thus

P0~ t1dtut !5P0~ t10ut !@12adt1O~dt!#. ~13!

By transposingP0(t10ut) from the left-hand side of Eq
~13! and dividing throughout bydt and lettingdt→0, one
obtains the following differential equation forP0(t1tut):

d

dt
P0~ t1tut !5aP0~ t1tut !,

P0~ t10ut !51. ~14!

In the typical case whereK(u,v) and F(u,v) are indepen-
dent of time, the solution of Eq.~14! is
05110
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P0~ t1tut !5exp~2at!. ~15!

However, if the aggregation and fragmentation kernels~and
thus a) are explicit functions of time, Eq.~14! will yield a
different expression forP0(t1tut) and Eq. ~8! should be
evaluated att1t. For example, time-dependent kernels m
be necessary to describe the aggregations of biological c
whose ability to adhere to each other is highly regulated
time dependent.

Because Eqs.~12! and ~8! are derived analytically from
Eqs.~4!–~7! without approximation, they are valid and exa
for any process described by any set of aggregation and f
mentation kernels, regardless of their mathematical comp
ity or time dependence. Consequently, MC simulations ba
upon these formulas are tantamount to individual aggre
tion processes governed by kernelsK(u,v) andF(u,v).

III. SIMULATION ALGORITHM

We now proceed to the development of the MC algorith
for reversible aggregation processes with multiple com
nents. Fundamentally, the process of simulation entails th
steps—the selection of the quiescence time preceding
imminent event, the selection of the event to come, and
modification of the state of the system to account for
occurrence of the chosen event. The process is then repe
until some predetermined time or, in the case of irreversi
aggregation, the system is reduced to a single particle p
sessing all of the mass and other conserved quantities o
system.

The most computationally efficient method for the exa
selection of the quiescence interval and event to come
modified version of Gillespie’s direct method@21#. In this
method, random variables are selected by integrating t
distributions until a uniform random number is just e
ceeded. Hence, the quiescence time is selected from Eq.~12!
as follows@21#:

E
0

t

a exp~2at!dt5r 1 , r 1P@0,1!, ~16!

wherer 1 is a uniform random number. Inverting this expre
sion, one obtains an explicit equation for the quiesce
time,

t5
1

a
lnS 1

12r 1
D , t selection. ~17!

Similarly, the imminent event is specified by summing ov
all P2(m,n;m,vut) until another uniform random numbe
r 2P@0,1) is exceeded. That is, if the terma(m,n)/a causes
the running sum of the terms ofP2(m,n;m,vut) to exceed
r 2, then the imminent event will be an aggregation of spec
m andn.

Unfortunately, a simple equation such as Eq.~17! cannot
be written for the definition of the imminent event. Howeve
the imminent event may be selected by judicious integrat
3-3
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FIG. 1. Aggregation table for storing information pertaining to the state of the system and probabilities of aggregation and fragm
events.
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of Eq. ~8!. To begin with, we define the speciesm involved
in the imminent event by integrating overm until the quan-
tity r 2a is exceeded,

(
i 51

m21

~a i1Xif i !<r 2a,(
i 51

m

~a i1Xif i !, m selection.

~18!

In this expression, we have employed the quantitiesa i and
f i defined by Eqs.~10! and ~11!. The choice between a
aggregation or a fragmentation is implicitly specified duri
this process. Ifam causesr 2a to be exceeded in Eq.~18!,
then the event to come is an aggregation of speciesm with
some other species; otherwise, the event to come will b
fragmentation,

(
i 51

m21

~a i1Xif i !1am.r 2a, aggregation of speciesm,

(
i 51

m21

~a i1Xif i !1am<r 2a, fragmentation of speciesm.

~19!

Finally, the imminent event is selected by determining wh
individual a(um ,un) or f (um ,v) caused the sum o
P2(m,n;m,vut) to exceedr 2a ~18!. If the imminent event is
an aggregation, then the species indexn of the second par-
ticle is specified by

(
j 51

n21

a~m, j !<r 2a2 (
i 51

m21

~a i1Xif i !

,(
j 51

n

a~m, j !, n selection, ~20!

where we note that the quantity( i 51
m21(a i1Xif i) was previ-

ously calculated in them-selection step. Conversely, if th
imminent event is a fragmentation, the compositionv of the
smaller daughter fragment of speciesm is selected by sum
ming the termsf (um ,v) until the quantity r 2a2( i 51

m a i

2( i 51
m21Xif i is exceeded. Let us define the partial sum

fragmentation kernels by
05110
a

h

f

F~um ,v!5 (
wÄ0

[(1/2)v]

F~um ,w!, ~21!

whereF(um ,um)5fm . The v-selection criterion may then
be written as

XmF~um ,v!.r 2a2(
i 51

m

a i2 (
i 51

m21

Xif i , v selection,

~22!

such thatv is the first composition in the order of summatio
in Eq. ~21! which causes the right-hand side~RHS! of Eq.
~22! to be exceeded. In practice, this may be done by c
secutive summation using Eq.~21! or by solving Eq.~22! by
bisection when a simpler form ofF(um ,v) is known analyti-
cally.

Given these rules for the MC selection of the quiesce
time and imminent event, the following general simulati
algorithm may be outlined.

~1! Initialize the process by defining all initial species a
their properties@um , Xm , am , fm ,F(um ,v), K(um ,v), and
a(m,n)] and computea @Eq. ~9!#.

~2! Select the quiescence time@Eq. ~17!# and the immi-
nent event@Eqs.~18!–~22!#.

~3! Increment the time byt and modify the state of the
system to account for the selected aggregation or fragme
tion event.

~4! Recomputea. If a50, stop the simulation. Other
wise, return to step~2!.

The computationally intensive aspects of this algorith
may be streamlined using an ‘‘aggregation table’’~Fig. 1! as
previously described@12#. The aggregation table is com
posed of anN31 ‘‘species vector’’ containing information
specific to each species@um , Xm , am , fm , andF(um ,v)]
and a lower-diagonalN3N ‘‘aggregation matrix’’ containing
information specific to pairs of species@K(um ,un), a(m,n)].
This organization serves two functions:~a! facilitation of the
creation, deletion, and update of species in steps~1! and~3!,
and ~b! reduction of the number of computations necess
for the event and quiescence time selection steps.

In step~1!, the state of the system is defined by succ
sively adding each initial species to the bottom of the spec
vector and defining its corresponding row in the aggregat
matrix. For each new species added to the bottom of
table (N), the compositionuN and populationXN are entered
3-4
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first. Subsequently, the functionsF(uN ,v) are computed and
stored, thereby definingfN . Finally, $a(N,i )% and
$K(uN ,ui)%( i P@1,N#) are added to theNth row of the ag-
gregation matrix, andaN is computed according to Eq.~10!.
Due to the structure of the table,aN is just the sum of the
transition probabilitiesa(N,i ) in this row. Furthermore,a is
just the sum of the quantitiesam for each speciesm in the
species vector.

In the course of simulation, product particles resulti
from an aggregation or fragmentation event will often ha
unique compositions and constitute new species. In s
cases, these new species are added to the bottom of th
gregation table as discussed. However, if the product par
belongs to a species already represented in the species
tor, the information for that species must be updated to
flect its change in population. The reactant species must l
wise be updated. The aggregation table allows th
modifications to be performed in a straightforward way. F
example, consider a reactant or product speciesu with popu-
lation Xu prior to the imminent event. First, the population
this species is incremented or decremented to reflect its
eration or consumption. For example, if it aggregates wit
speciesnÞm, then the population is decremented by on
Subsequently, the quantities$a(m,i ),i P@1,m#% and
$a( j ,m), j P@m11,N#% in the mth row andmth column of
the aggregation matrix are recomputed systematically u
the colocally stored kernelsK(um ,vi) and K(uj ,vm). As
these adjustments are made, the partial sumsa i ( i>m) are
updated concurrently. Overall, this procedure requiresO(N)
operations.

In processes featuring a gel transition or irreversible
lation, species are often completely consumed. In th
cases, the procedure for updating the aggregation tab
significantly simplified. Because the quantities$a( j ,m), j
P@m11,N#% in the mth column of the aggregation matri
are recomputed withXm50, they will all be zero. Thus, the
partial sumsa i ( j P@m11,N#) only need to be decremente
by the valuesa( j ,m) corresponding to the stateprior to the
event. Subsequently, themth row of the aggregation tabl
and mth column of the aggregation matrix may be delet
from computer memory without affecting the rest of the a
gregation table. As a result, the memory usage of the a
rithm is minimized.

A remarkable feature of the aggregation table and se
tion rules here presented is that the fragmentation trans
frequenciesf (m,v) require neither direct computation no
storage. Here, the rationale underlying the definitions offm
andF(um ,v) becomes apparent. Due to the fact that neit
of these quantities are functions ofXm , they require no ad-
justment once a species is initially defined. Consequently,
simulation procedure eliminates the extensive postevent
counting associated with the vast number of fragmenta
transition probability densities$ f (m,v)% when speciesm is a
reactant or product. As a consequence, simulation ofany
reversible aggregation process is feasible regardless o
number of components. In simulations of strictly aggregat
systems, computation ofa and selection of a pair of aggre
gating particles requireO(N) operations per event@12#.
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When fragmentation is added to the simulation procedure
described and if the functionsF(um ,v) for each speciesm
are stored in computer memory as lookup tables, o
O„ln(Nmax)… additional operations are required~refer to the
Appendix!. Consequently, the number of operations requi
of our algorithm per event is the same as that for the m
efficient stochastic simulation algorithm for irreversible a
gregation processes with multiple conservation laws or co
ponents@12#. Thus, simulations of nongelling aggregatio
fragmentation processes with tens of thousands of parti
typically require only seconds of central processing unit ti
to reach their steady states when run on a personal comp
However, processes that produce gels tend to be much m
computationally demanding since they can require comp
tion and storage of thousands of new fragmentation kern
after every event that involves the large, singly populated
particle.

IV. KINETICS OF REVERSIBLE POLYMERIZATION

Polymerization is a specific type of aggregation proc
whereby the monomers are indistinuguishable chemical
tities. In many cases, these chemical monomers possess
tional groups that can reversibly react with complement
groups attached to other monomers or polymers. In this s
tion, we present MC simulation results for three such po
mer models. We begin by considering the single-compon
linear polymerization model of Blatz and Tobolsky. We th
consider single- and two-component processes that prod
branched polymers.

Several features of these processes motivate the cu
study. First, the reaction-limited aggregation and fragmen
tion kernels may be computed exactly. Second, station
composition distributions are known for these processes
the thermodynamic limit, and a transient solution of the P
is known for the linear polymerization model@2,22#. Thus,
simulation results can be compared against these distr
tions. Finally, the branched polymerizations have been th
rized to exhibit gel transitions, defined by the rapid accum
lation of a significant fraction of the system mass into
single particle. Our simulations may give insight into bi
logical processes such as antibody agglutination and a
polymerization, which are characterized by similar branch
polymerization mechanisms.

A. ARB model

The ARB process is named for its monomers that poss
one A group and one B group apiece. Due to the chem
reaction

A1B

k1



k2

AuB, ~23!

the monomers bind to each other and give rise to linear p
mers of the form ARB-~ARB! k22-ARB.

We concern ourselves with the reaction-limited proce
where the particles collide much more frequently than th
react. Hence, the rates of aggregation and fragmentation
3-5
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equal to the total rates of bond formation and dissociation
internal cyclization is forbidden, every monomer and po
mer chain will have one A group and one B group. Con
quently, there will be two ways of attaching any two chain
If one further assumes equireactivity of all A and B group
the total rate of bond formation between ani-mer andj-mer
is

K~ i , j !52k1 . ~24!

The fragmentation kernel can be derived likewise by cons
ering the number of ways that an (i 1 j )-mer can dissociate
into an i-mer and aj-mer. As Eq.~23! shows, the rate of
dissociation of any bond isk2. Because an (i 1 j )-mer can
lose ani-mer at either end, the total fragmentation rate is

F~ i , j !52k2 . ~25!

Note that both Eqs.~24! and ~25! define constant kernels
that is, they exhibit no size dependence.

The kinetic time evolution of this process was first qua
tified by Blatz and Tobolsky, who solved a single-compon
PBE such as Eq.~3! with these kernels@2# and with a mono-
disperse initial conditionc(k,0)5c0dk,1 . Their solution for
the time-dependent size distribution is

c~k,q!5c0qk~12q!2, ~26!

wherec0 is the initial concentration of monomers,

q5
2

~l12!1Al~l14!cothS 1

2
TAl~l14! D

is the extent of reaction of A or B groups,l5k2 /(k1c0) is
the dimensionless dissociation constant, andT5k1c0t is the
dimensionless time.

To demonstrate the agreement of the stochastic me
with the results of the PBE, simulations of the ARB pol
merization process were simulated using 10 000 ini
monomers (c051, V51.03104) at l ranging over six or-
ders of magnitude. We show the average results of sets o
replicate simulations forl51.031024 andl51.0 in Figs. 2
and 3, respectively. For all species with populations in exc
of ten, the agreement between the average stochastic re
and the deterministic results was excellent. However, dif
ences between the approaches were evident for species
small populations. These differences are consequence
stochastic fluctuations of the populations of rare spec
which cannot be predicted by deterministic approaches
contrast, the populations of well-populated species are
strongly affected by these fluctuations. Thus, our res
demonstrate that stochastic simulation can reproduce
time evolution of the size distribution as predicted by t
PBE for a wide range of kernels, and provide insight rega
ing the statistical fluctuations of rare species.
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B. RAg model

Unlike the process discussed in the preceding section,
RAg process features monomers that haveg A groups on
each monomer. Moreover, these monomers aggregate
result of the following chemical reaction between A grou
on adjacent particles:

A1A

k1



k2

AuA. ~27!

FIG. 2. Time evolution of the ARB polymerization process wi
l51.031024. X(k) is the number ofk-mers at the dimensionles
time T.

FIG. 3. Time evolution of the ARB polymerization process wi
l51.0. X(k) is the number ofk-mers at the dimensionless timeT.
3-6
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Hence, a 2-mer is composed of two RAg monomers con-
nected by an AuA bond, and has 2(g21) A groups avail-
able to bind other monomers or aggregates.

The first quantitative study of the RAg process was con
ducted by Stockmayer@22#. Assuming equireactivity of all A
groups, forbidding internal cyclization~unbound A groups on
an aggregate cannot react with each other!, and assuming
that the process begins with RAg singlets alone, he obtaine
a stationary solution for the size distribution@22#

c~k,q!5c0Nk~q/g!k21~12q!sk(g), ~28!

wherec0 is the initial concentration of monomers,q is the
extent of reaction of A groups,

sk~g!5~g22!k12 ~29!

is the number of free A groups on ak-mer, and

Nk5
gk~gk2k!!

k! „sk~g!…!
~30!

is the number of unique structural isomers or configurati
of acyclick-mers. For example, one configuration is a line
chain, another has one branch, still another two branc
etc.

Stockmayer’s distribution has interesting properties re
ing to gel transitions, whereat a significant portion of t
monomers aggregate into a single particle. Stockma
showed that if the conversionq reaches or exceeds a critic
value qc , the moments of Eq.~30! diverge for n>2 and
decrease forn51. The first few moments

Mn~q!5 (
k51

`

knc~k,q! ~31!

are

M0~q!5c0S 12
g

2
qD , ~32!

M1~q!5c0 q,qc , ~33!

and

M2~q!5c0

11q

12~g21!q
, q,qc , ~34!

representing the total concentration of particles~aggregates
and singlets! in the system, the total concentration of mon
mers, and the width of the size distribution, respective
Consequently, the thermodynamic analysis predicts a vi
tion of monomer conservation and formation of an infin
particle at the gel point at the critical conversion,

qc5
1

~g21!
. ~35!

Although Stockmayer’s solution is an exact result of th
modynamic analysis, it specifies neither the time evolution
the reversible RAg polymerization, nor its gel point (t5tg)
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at which q exceedsqc . In theory, analytical solution of a
PBE for this system could provide this information give
valid kernels. However, such a solution has not been
tained explicitly. van Dongen and Ernst have estimated
time dependence of the reversible RAg polymerization pro-
cess using Ziff’s method@23,24#,

q~ t !55
g~k1c0!t

11g~k1c0!t
, l50

2q`

~12q`
2 !cothF1

2
~k1c0!k t G1~11q`

2 !

, l.0.

~36!

In this expression,q`5(2g1l2k)/2g is the extent of re-
action at steady state,l5k2 /(k1c0) is the dimensionless dis
sociation constant for the reaction between A groups, ank
5@l(l14g)#1/2. By equating this expression toqc in the
limit tg→`, one obtains the critical dimensionless equili
rium constantl @24#,

lc5
g~g22!2

~g21!
, ~37!

above which gel transitions should not be observed.
Although Eq.~36! ascribes the time dependence to Stoc

mayer’s distribution and the consumption of particles, it do
not completely describe the time evolution of the RAg poly-
merization process. Due to their radii of convergence, E
~33! and~34! cannot be used to predict the time evolution
the higher-order moments of Stockmayer’s distribution b
yond the gel point. Alternative formulas for these mome
have only been computed for the postgelation phase of
RA3 polymerization@23#, and neither these nor the precedin
kinetic solution has been fully validated by substitution in
the PBE or by comparison with stochastic simulation.

Stochastic simulations can predict the time course of
entire reversible RAg polymerization process, regardless
whether gel transitions occur, as long as they are perform
with proper kernels. The method of constructing kernels
polymerization processes was first developed by van Don
and Ernst, and we summarize their results here. Follow
Stockmayer’s assumptions of equireactivity of A group
equal probabilities of all conformations ofk-mers, and
reaction-limited kinetics, the rate of aggregation will b
equal to the average rate of bond formation between a pa
particles. Because there ares i(g)s j (g) ways a bond may be
formed between ani-mer andj-mer, the rate of bond forma
tion between these particles is

K~ i , j !5k1s i~g!s j~g!. ~38!

Because the fragmentation kernel is the average rat
breakup of a particle into two specific daughter fragmen
the fragmentation kernelF( i , j ) is equal to the dissociation
rate constantk2 multiplied by the average number of way
that an (i 1 j )-mer can break intoi-mers andj-mers. As dis-
cussed, there are two unique ways this can happen
3-7
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linear polymerization (g52), in which case the fragmenta
tion kernel isF( i , j )52k2. However, in branched polymer
izations an (i 1 j )-mer may be one ofNi 1 j unique structural
configurations or structural isomers. In the absence of in
nal cyclization and if the initial size distribution is monodi
perse, then the distribution of (i 1 j )-mers over theirNi 1 j
configurations will be uniform@24#. Thus, the total numbe
of ways thati-mers andj-mers of all configurations can b
connected or disconnected iss i(g)s j (g)NiNj . Multiplying
this combinatorial factor by the dissociation rate consta
one obtains the rate of dissociation of (i 1 j )-mers of all
configurations intoi-mers and j-mers. Since the rate o
breakup must be equal to the rate of bond dissociation,
in turn must be exactly equal to the quantityNi 1 jF( i , j ).
Equating these quantities, one obtains the van Dongen
Ernst kernel@24#

F~ i , j !5k2s i~g!s j~g!
NiNj

Ni 1 j
. ~39!

Using these rate kernels, we simulated the RA3 and RA4
polymerization processes using 50 000 initial monom
(c051,V55.03104) at l, above and below the critical val
ues oflc for these two processes. We show these result
Figs. 4–8 in terms of a dimensionless time scaleT5c0k1t.

In Fig. 4, we show the time evolution of the size distrib
tion of an individual RA4 polymerization simulation withl
5 1

3 ~gelling!. In this figure, X(k,T) @5Vc(k,T)# is the
k-mer population at the dimensionless timeT. Like the de-
terministic description, MC simulation predicted the dimi
ishing populations of allk-mers after the gel point as thes
species were consumed by the gel. Additionally, stocha
simulation demonstrated the probabilistic character of
dynamics ofk-mers asX(k,T)→1. As we have discussed
strong fluctuations and a slight offset from the determinis
description are observed for smallX(k,T), particularly when
l,lc . Despite these fluctuations, the dynamic M
generated size distribution of Fig. 4 cannot be distinguis

FIG. 4. Time evolution of the RA3 polymerization process with
l51/3. X(k,T) is the number ofk-mers at the dimensionless tim
T.
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from Eq.~28! by thex2 test. However, we note thatp values
for these tests were as low as 0.1 at some time points prio
the steady state.

In Figs. 5 and 6, we show how the average values ofM0
andM2 evolve over time in stochastic simulation. The ave
age values reported here were computed using the resul

FIG. 5. Consumption of the number of particles (M0) in RA4

polymerization processes with various dissociation constantsl.
Solid lines are simulation results, and dashed lines are results
the deterministic theory. Stochastic simulation always predicts p
tive numbers of particles and proper equilibria, even whenl< 1

2 .

FIG. 6. Average widths of the RA4 size distribution with various
dissociation constantsl. Solid lines are simulation results, an
dashed lines are results from the deterministic theory. Below
critical dissociation constantlc51/3, systems of particles exhibit
gel transition. Stochastic simulation permits exact quantitation
the process in the postgel phase.
3-8
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ten replicate simulations. We also show the deterministic p
dictions for comparison. We have normalized our results
accordance with the physical criterion,

@VMk~ t !#

@VM1~ t !#k
<1, k>2, ~40!

FIG. 7. Coefficients of variation of the zeroth and second m
ments of the RA4 size distributions with dissociation constants
the gelling and nongelling regions. Peaks are observed only
processes that undergo a gel transition. Note that the coefficien
variation exceed unity in these cases, indicating strong fluctuat
in the size distribution.

FIG. 8. Average power spectra of the zeroth and second
ments of the RA4 size distributions. The second moment h
Brownian noise~slope;2) for nongelling processes, but colore
noise~slope,2) for gelling processes.
05110
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which is true for all single-component aggregations of fin
numbers of particles@3#. As we have mentioned, the dete
ministic equations predict a divergence ofM2 and a decrease
in M1 at the gel point, whereas the stochastic simulatio
predicts a rapid but finite increase inM2 and rigorous con-
servation of mass. Just as noteworthy, however, are the
ferences between the predictions of the two approaches
time evolution of the total number of particlesM0. For all
values ofl, stochastic simulations predicting a asympto
decay of M0 to a final positive value. However, whenl
< 1

2 the deterministic equations predict thatM0 will either
vanish or become negative asT→`. However, becauseM0
is the total concentration of particles in the system, it can
be negative. Hence, the deterministic equations fail,l< 1

2 .
As l is increased, the agreement between the two
proaches improves. For example, simulation results forM0
with l51 (lc51.5) are in fairly good agreement with th
deterministic predictions, despite small differences in the
cay rate afterT.0.3 and a slight offset between the stead
state values. Atl55, both the stochastic and the determi
istic predictions of the time evolutions of the zeroth a
second moments are in close agreement.

Upon closer examination, it may be shown that the diff
ences between the stochastic and the deterministic result
neither a consequence of a difference between the stoch
and the deterministic approaches to the kinetics of Eq.~27!
@25,26#, nor do they result from an error in Stockmayer
distribution. Rather, these differences and the determini
prediction of negative zeroth moments primarily result fro
the assumptions underlying the kinetic derivation of Eq.~36!
for q(t). Equation~36! is derived by applying deterministic
rate equations to Eq.~27! and assuming that all unbound
groups are free to react with all other unbound A grou
@23,24#. However, the derivations of both Stockmayer’s d

-

or
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ns

o-

FIG. 9. Equilibrium RA4 /RB2 particle composition distribution
with dissociation constantl51 and relative RA4 monomer content
y50.4. X(m,n) is the number of particles composed ofmRA4

monomers andnRB2 monomers. The dashed and solid lines a
boundaries reflecting that aggregates must have more than zero
A and B groups, respectively.
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tribution and the kernels we have used forbid internal
clization. Thus, any process starting withX0RAg monomers
must have at leastsX0

(g) free A groups at any given time–

the number possessed by a single aggregate of allg
monomers. This corresponds to a maximum extent of re
tion

qmax5@gX02sX0
~g!#/gX0.2/g. ~41!

Because Eq.~36! neglects these considerations, it allowsq to
exceedqmax whenl is sufficiently small. When this occurs
Eq. ~32! predicts that the number of particles in the syst
becomes negative. In summary, Eq.~36! is predictive for
small T and for equilibrium constants in excess oflc, when
extents of reaction are smaller thanqmax. However, it be-
comes progressively unreliable for values ofl smaller than
lc . This is the reason whyx2 testing of the simulation re
sults shown in Fig. 4 yielded smallp values for distributions
at certain time points.

In addition to showing the deterministic and stochas
predictions for the time evolution ofM2 prior to gelation,
Fig. 6 also shows the exact predictions of the time evolut
of M2 after the gel point. The shortcomings of Eq.~36!
aside, deterministic approaches cannot predict the time
lution of the second moment beyond the gel point beca
Eq. ~34! diverges asq→qc . Moreover, even their steady
state behavior is not guaranteed to obey Eq.~40! due to
statistical factors lacking in Stockmayer’s methodology a
in the PBE@11,12#. However, any stochastic simulation o
the aggregation of finite numbers of particles, evenmolesof
particles, will predict size distributions with that obey E
~40! for all l and reach a steady state.

The erroneous smalll behavior of Eq.~36! causes addi-
tional significant differences between the simulation res
and the deterministic equations. Early in the aggregation p
cess, both the deterministic and the stochastic approa
give equivalent predictions of the growth ofM2 because Eq.
~36! predicts very small values ofq. However, as Eq.~36!
predicts values ofq that approachqmax, it begins to lose
predictive power. This translates to small deviations inM0
prior to the gel point (qc,qmax) because Eq.~32! predicts a
linear relationship betweenq andM0. However, the form of
Eq. ~34! enhances these deviations significantly. In fact
the values ofq given by Eq.~36! are decreased by approx
mately 10 time series forl50.5 andl51.0 agree very well
prior to the gel point. In the irreversible (l50) and nongel-
ling (l55) processes, there is a good agreement betw
simulation results and the deterministic equations. In the
case, the gel transition occurs before the shortcomings of
~36! become evident. In the second case, Eq.~36! never pre-
dicts a conversion as large asqc(qc,qmax), precluding the
‘‘depletion’’ of A groups for reaction that is its source o
error.

A major consequence of this observation is that Eq.~36!
cannot be used to accurately predict the gel point for the Rg
polymerization. However, stochastic simulation can char
terize the gel point exactly. Since Eq.~32! is valid for all q,
even in the stochastic approach,tg is the time at which the
average value ofM0 is equal to the value predicted by E
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~32! with q5qc . We will use this method to characterize th
copolymerization process discussed in the following secti
Interestingly, our simulation results and Eq.~37! agree in
their predictions of the critical equilibrium constantlc for
the RA2, RA3, and RA4 polymerizations. Becauseqc

,qmax, the aforementioned shortcomings of Eq.~36! do not
appear to strongly influence thesteady-statevalues of Eq.
~36! on which Eq.~37! is based. Thus, our results sugge
that the methodology used by van Dongen and Ernst to
termine Eq.~37! is valid, even though Eq.~36! is not gener-
ally reliable.

In addition to allowing exact computation of the avera
moments and the gel point, stochastic simulation permits
to compute additional fluctuation statistics. In Fig. 7, w
present respresentative results for the time evolutions of
efficients of variation (V) for M0 and M2, for one gelling
(l50.2) and one nongelling (l50.2) system. Like the av-
erage values ofM0 and M2 presented in Figs. 5–6, the co
efficients of variation presented in Fig. 7 were comput
from the results of ten simulations. Att50, theV(M0) and
V(M2) are exactly zero since the initial condition is exac
known. Subsequently, these quantities rise as a result o
random generation and consumption of new species and
stochastic evolutions of their populations. The time evo
tions of V(M0) and V(M2) have behaviors that distinguis
gelling and nongelling systems. In nongelling processes,
coefficients of variation of both moments grow monoton
cally and approach asymptotic values that are always
than 1. However, the time evolutions ofV(M0) andV(M2)
are significantly different for gelling systems. Ifl,lc , the
time series of bothV(M0) and V(M2) go through maxima
prior to their steady states. Moreover, the time series
V(M2) possesses a cusp at whichV(M2) exceeds unity, im-
plying that the standard deviation of the gel size is grea
than its average and this point is close to if not colocal w
the gel point. These intense fluctuations have ramificati
for the deterministic desciption of gelling systems, inasmu
as they relate to statistical terms usually neglected from
RHS of PBEs such as Eq.~3! @11,13#. For all reversible
branched aggregation processes studied, a coefficien
variation forM2 in excess of unity implied a gel transition
Finally, the steady-state values ofV(M2) are always much
larger for gelling systems than the nongelling system
whereas those forV(M2) are relatively insensitive tol or
gelation.

The special behavior of the time evolutions ofV(M2) for
gelling processes is a direct consequence of the propertie
the gel. The gel size fluctuates rapidly because the gel
single particle subject to random aggregations with other p
ticles. However, unlike other singly populated species,
gel possesses a significant fraction of the monomers. Thu
single random fragmentation of a gel can bring about a s
nificant drop inM2, whereas a population change in 1-me
from 1 to 0 will have little effect. Likewise, a random aggr
gation of singly populated large particles or gel ‘‘daughter
will result in large and immediate increases inM2. The net
result is that the steady stateV(M2) is much larger for gel-
ling systems than for nongelling systems. In contrast, th
3-10
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events have little effect uponV(M0) because no single even
can changeM0 by more than one.

In Figs. 6 and 7, both the average value and the coe
cient of variation ofM2 appear to fluctuate after the g
transition, despite being statistical quantities taken from
results of ten replicate simulations. These fluctuations re
from the fact that these statistics are computed from the
sults of only ten simulations. Because the gel is a sin
particle, the apparent fluctuations of the average and the
efficient of variation result from the considerable variation
the size of a gel from simulation to simulation~or experi-
ment to experiment! at time t. To smooth out these appare
fluctuations, one must compute the statistics ofM2 using
many more experiments or simulations. These fluctuati
are not results of chaos or instability, and are not incomp
ible with the definitions of equilibrium and steady state.

Using spectral analysis, the steady states of the time se
of the simulated size distributions and their moments can
shown to be proper equilibrium states. In Fig. 8, we show
average results of ten power spectra ofM0(t) and M2(t)
obtained by fast Fourier transform of their steady-state t
series. The individual spectra could be statistically dist
guished from the mean, thus, we conclude that the RAg po-
lymerization as simulated is ergodic. Moreover, the abse
of distinct peaks in the spectra demonstrates an absenc
periodic fluctuations at equilibrium. Similar results were o
tained for simulation results of the RA3 and RA4 polymer-
izations over broad ranges ofl.

In addition, the power spectra of both moments have
form P( f )}1/f v, regardless of the values ofl andg used in
the simulations, permitting a quantitative characterization
the fluctuations. A completely random signal is often deno
as ‘‘white noise’’ and hasv.0, whereas processes such
Brownian motion produce signals withv.2. The ‘‘noise’’
associated withM0 and M2 depends upon the value ofl.
Whenl.lc , the noise of both moments is Brownian, th
is, v.2. However, asl decreases belowlc , so doesv,
resulting in what is often denoted as ‘‘colored noise.’’ Lik
the height of the peaks of the coefficients of variation in F
7, the dependence ofv upon the equilibrium constantl is
much stronger for the second moment than for the ze
moment. For an RA3 polymerization with l50.5(lc
51.5), the exponent for the zeroth moment is about 1
which is essentially Brownian. In contrast, the exponent
the power spectrum of the second moment under these
ditions is 0.54. Similar results are observed for all RAg po-
lymerizations except wheng52, where gelation cannot oc
cur andv.2 for all l. The power spectra of the zerot
moments of RAg polymerizations have exponents that do n
deviate substantially from 2, whereas the exponents from
second moment power spectra become smaller than 1 asl is
decreased belowlc .

C. RAg ÕRB2 model

Like the RAg process, the RAg /RB2 process is a polymer
ization that can produce highly branched aggregates.
RAg /RB2 process is a copolymerization of two types
monomers: one withg A groups and the other with two B
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groups. Hence, this process is a two-component system
conservation laws for each type of monomer. Like the sing
component ARB polymerization, aggregation occurs via
bonding between A groups on RAg monomers and B group
on RB2 monomers as in Eq.~23!. Thus, if one of the two
types of monomers is absent, no polymerization can occ

This process is analogous to the polymerization of a
bodies (RB2) with multivalent antigens (RAg). In this case,
the B groups are antigen-bindingFab domains and the A
groups are the corresponding multivalent antigenic deter
nants~epitopes!. Hence, the RAg /RB2 model quantifies the
kinetics of polymerization of bivalent antibodies~IgD, IgE,
IgG, where Ig is immunoglobin! with polyvalent antigens.
Likewise, the RAg /RB2 model describes the branched pol
merization of polyfunctional antibodies such as IgM (g
510) or IgA (g54) with antigens possessing two epitope
The predisposition of an RAg /RB2 polymerization to form
branched aggregates depends upon how many of the2
and RAg monomers are present initially.

Under the assumptions of equireactivity of A and
groups, no internal cyclization, and reaction-limited po
merization, Stockmayer calculated a stationary distribut
for this process@22#, which may be written as

c~u,q!5c0

2g~12q!~12rq !

q~2r 1g!
jmznN~u!, c05c1,01c0,1.

~42!

Here,m andn are the amounts of RAg and RB2 monomers in
a u-mer @u5(m,n)#. Additionally, c1,0 andc0,1 are the total
concentrations of RAg and RB2 monomers, respectively,

r 5
gc1,0

2c0,1
~43!

is the ratio of A groups to B groups,q is the fractional extent
of reaction of A groups, and the quantitiesj andz have been
defined by Stockmayer in terms ofq, g, and r @22#. The
quantity

N~u!5
gm2n~gm2m!!

@A~u,g!#! @B~u,g!#!m!
, u5~m,n! ~44!

is the number of unique structural isomers of au-mer, where
the quantities

A~u,g!5~g21!m2n11 ~45!

and

B~u,g!5n2m11 ~46!

are the number of free A and B groups on au-mer, respec-
tively.

The moments of Eq.~42!

Mk,,~q!5 (
m50

`

(
n50

`

mkn,c~u,q!, c„~0,0!,q…[0 ~47!
3-11
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have physical interpretations similar to those of the mome
discussed in the preceding section. However, their comp
tion is not trivial except for the first momentsM1,05c1,0 and
M0,15c0,1, and the zeroth moment

M0,0~p!5c0~12gqy!, qP@0,min„~gy!21,1…#, ~48!

where

y5
c1,0

c0
5S 2r

2r 1gD ~49!

is the relative ratio of RAg monomers to the total number o
reactive monomers. Physically, the momentsM0,0, M1,0,
andM0,1 are the total concentration of particles~singlets and
aggregates!, total concentration of RAg , monomers and tota
concentration of RB2 monomers, respectively. The seco
momentsM0,2, M1,1, andM2,0 are the widths of the distri-
bution in RAg and RB2 composition. The mixed second mo
mentM1,1 indicates the extent of mixing of the two types
monomers in the aggregates. In analogy with the station
distribution for the RAg polymerization, these higher-orde
moments (k1,>2) will diverge when the conversionq ex-
ceeds the critical value

qc5
1

Ar ~g21!
~50!

at the gel pointtg .
Although Stockmayer’s description predicts conversion

a stationary system, it does not predict the time evolution
the RAg /RB2 process. Moreover, the gel criterion~50! does
not specify whether or not a system will possess a gel tr
sition for a specific combination of dimensionless chemi
equilibrium constantl5k2 /(k1c0) andr ~or y). As we have
shown in the preceding section, the deterministic treatm
of the kinetics of reactions such as Eq.~23! to ascribe the
time dependence to the conversionq may not be reliable.
Thus, we conducted stochastic simulations to characte
the kinetic time evolution of this process exactly and det
mine thel andy dependencies of its gel point.

The derivations of the kernels for this process are an
gous to those of the model of the preceding section. Ag
we impose the constraints of~1! equireactivity of A and B
groups,~2! reaction-limited aggregation, and~3! no internal
cyclization. To define the aggregation kernel, the rate c
stantk1 in Eq. ~23! must be multiplied by the total number o
ways of forming a bond between au-mer and av-mer. Enu-
merating the ways in which one can form a bond betwee
and B groups on these species, one obtains

K~u,v!5k1@A~u,g!B~v,g!1A~v,g!B~u,g!#. ~51!

Note that if a combination of free A and B groups is n
possible between these species, the aggregation kerne
be zero. For example, ifu5v5(1,0) ~interaction of two RAg
monomers!, both B(u,g) and B(v,g) will be zero on the
RHS of Eq.~51!. Employing the arguments of the precedin
section, the fragmentation kernel may be written as
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F~u,v!5k2@A~u,g!B~v,g!1A~v,g!B~u,g!#
N~u!N~v!

N~u1v!
,

~52!

where the combinatorial termsN(u) are given by Eq.~44!.
Like the aggregation kernel, the fragmentation kernel
counts for the connectivity of A and B groups. If a comp
sition u is inconsistent with the requirement that aggrega
must be linked by A-B bonds, eitherN(u) or N(v) will be
zero. Consequently, the fragmentation kernel does not pe
the breakup of an (u1v)-mer into daughter fragments tha
violate the chemistry and stoichiometry of Eq.~23!.

Using these kernels, we conducted stochastic simulat
for the RA4 /RB2 system with 10 000 particles (c051.0, V
510 000) over broad ranges ofy and l. The valency was
specifically chosen to represent the polymerization of an
antibody (g54) with a bivalent antigen~two epitopes!.

Figure 9 shows the complete steady-state (T510) two-
component size-composition distribution from a single sim
lation of an RA4 /RB2 process withy50.5 andl51. Like
the process discussed in the preceding section, the st
states of this model constitute proper equilibria, since
time and data averages are equivalent in the limit of largt.
Note that all the species conform to the aforementioned c
straintsA(u,g)>0 ~dashed line! andB(u,g)>0 ~solid line!,
reflecting the fact that the simulation algorithm cannot sel
an event having a zero kernel. Also, note that there is no
in this distribution.

The absence of a gel in Fig. 9~i.e., a large particle con-
stituting a significant portion of the monomers! suggests via
Eq. ~50! that the equilibrium extent of reactionq(`) is less
thanqc . This hypothesis may be validated directly using E
~48! that, like Eq.~32!, is exact in both the stochastic and th
deterministic approaches. The composition distribut
shown in Fig. 9 hasM0,0(`)53650 particles, correspondin
to a conversionq(`)50.397. Stockmayer’s gel criterion
specifies that a conversion ofqc50.5 is required for gela-
tion, thus both the stochastic and the deterministic
proaches agree that no gel transition occurs. Moreover,
~42! with q50.397 is indistinguishable from the compositio
distributions generated by stochastic simulation according
x2 significance testing (p51.0).

Like the second moments of the size distribution for t
single-component RAg process, the second momentsMk,,
(k1,>2) exhibit strong fluctuations after a gel transitio
In Fig. 10, we present time series for the average mome
M0,0, M0,2, M1,1, andM0,2 of gelling (y,l)5(0.4,0.2) and
nongelling (y,l)5(0.4,0.5) processes computed from t
replicate simulations per (l,y) pair. Here, we normalize the
moments according to the physical limit for finite systems
particles,

@VMk,,~ t !#

@VM1,0~ t !#k@VM0,1~ t !#,
<1, k1,>2. ~53!

In Fig. 11, we present the corresponding coefficients
variation. Like the second moments of the single-compon
RAg process, the ‘‘second’’ momentsM0,2, M1,1, andM0,2
3-12
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rapidly increase when the gel transition occurs. Moreov
the coefficients of variation of these moments go throu
unambiguous maxima for processes featuring a gel trans
and exceed unity, whereas nongelling processes incr
monotonically to asymptotic values smaller than 1. In so
cases, nongelling processes appeared to have coefficien

FIG. 10. Average moments of the RA4 /RB2 composition distri-
bution with l above and below the gelation threshold and relat
RA4 monomer contenty50.4. In processes withl50.2, a gel
transition is observed, resulting in a rapid and sizable jump in
second-order moments.

FIG. 11. Coefficients of variation of moments of the RA4 /RB2

composition distributions with dissociation constants in the gell
and nongelling regions. In processes featuring a gel transit
V(M2) has a peak in excess of unity, reflecting strong fluctuati
in the composition distribution at the gel point.
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variation in excess of 1. However, these were invariably c
sequences of artificial fluctuations as discussed in the pre
ing section when the asymptotic limit of a coefficient
variation was close to 1. Moreover, the noise of the sec
moments as computed from the individual simulations w
invariably Brownian for nongelling processes and color
for gelling ones, in analogy with the results for the sing
component RAg polymerization~data not shown!.

Organizing the results of thousands of replicate simu
tions over the (l,y) space, we constructed a phase diagr
for the RA4 /RB2 process~Fig. 12!. In this figure, circles
denote simulations that featured no gelation and squares
note simulations in which gelation occurred. The shad
indicates the magnitudes of the gel points. As discusse
the preceding section, these are defined as the points in
where the simulation averaged values ofM0,0 are equal to

Mc5M0,0~qc!, ~54!

as computed using Eq.~48! with qc defined by Eq.~50!. For
every simulation in which a gel transition occurred, a ma
roparticle was generated in the species vector, the co
cients of variation of the second moments went throug
peak in time, and the conversionq exceeded the critica
value specified by Eq.~50!. The converse was also observe
Processes that did not produce macroparticles featu
monotonically increasing coefficients of variation of the se
ond moments and their equilibrium conversionsq(`) were
always smaller thanqc .

The additional curve shown in Fig. 12 is a determinis
prediction of the phase boundary, derived by extension of
method of van Dongen and Ernst to the chemistry of E
~23!,

e

e

g
n,
s

FIG. 12. Phase diagram for the RA4 /RB2 polymerization pro-
cess.l is the dimensionless dissociation constant andy is the ratio
of RA4 monomers to total reactive monomers. Crosses denote
lymerizations featuring a gel transition. Polymerizations lacking
gel transition are represented by circles. Gel points are indicate
the shading bar.
3-13
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lc5S 2r

2r 1gDg~12qc!S 1

r
2qcD

qc
. ~55!

The differences between the stochastic predictions of
phase boundary and Eq.~55! were negligible for almost al
l.lc , with some exceptions. In these cases, the neglec
the critical limit qmax5(yg)21 in the deterministic method
resulted in unreliable results forq` . Despite this, Eq.~55! is
generally predictive of the gel transition. However, in an
ogy to our results for the single-component RAg process, the
time dependence ofq predicted by Ziff’s method was no
accurate forl,lc and produced incorrect estimates oftg for
all l andy.

The analysis used here to characterize the RA4 /RB2 co-
polymerization may further the understanding of antibo
agglutination. For a known dissociation constant (KD
5k2 /k1) of an antibody-antigen pair, one can pred
whether or not a mixture of the two molecules will result
a precipitate and when the precipitate will form. Copolym
izations of pertinence to immunology such as those of I
(g510) with bifunctional antigens may be simulated a
characterized likewise. However, the following cave
should be noted before applying these results. First, we h
assumed that the internal cyclization is forbidden, which m
not be true in a real agglutination process. Second, our an
sis additionally presumes that there is no steric hindran
Finally, the kernels we have used did not explicitly accou
for the effects of transport or Brownian motion, which m
become important in the limit of gelation.

V. DISCUSSION

We have presented a simulation algorithm for determin
the stochastic time evolution of reversibly aggregating s
tems of particles with multiple components or conservat
laws. Because the simulation algorithm addresses aggr
tion and fragmentation events as random events, com
population balance equations may be replaced with sim
probability distributions that are amenable to Monte Ca
sampling. The simulation procedure first involves select
of a time intervalt in which no aggregation or fragmentatio
events occur. Subsequently, the imminent event
chosen—be it an aggregation of two particles or a fragm
tation of a single particle. Finally, a time counter and t
system state are updated to account for the consumptio
production of particles. By successive selections of eve
and quiescence times, any virtual system of aggregatin
fragmenting particles, biological cells, or molecules may
evolved stepwise, including those having time-dependent
gregation and fragmentation kernels. At the heart of this
gorithm is the aggregation table—a data structure desig
to keep track of multicomponent or multiproperty spec
and the probability densities of imminent events. The agg
gation table accounts for aggregate species rather than
vidual particles, reducing the data storage requirements
increasing the speed by orders of magnitude.

We have applied the algorithm to three aggregation p
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cesses: the single-component RAg polymerization, the
single-component ARB polymerization, and the tw
component RAg /RB2 copolymerization. The first of these i
an aggregation of monomers featuringg functional groups
that bind to identical functional groups on other monom
according to the chemical reaction A1A�AuA. The latter
two are mediated by the complexation reaction
1B�A—B; the ARB process featuring one type of mon
mer with both types of functional group and the RAg /RB2
copolymerization featuring two types of monomers—o
with g A ligands and the other with two B ligands. We e
amined statistical fluctuations during and following gel tra
sitions of reversibly aggregating systems. The stochastic
generated time series of the moments of size and comp
tion distributions have different types of noise depending
the occurrence of a gel transition. Finally, we developed
first phase diagram to predict the gel transition for t
RA4 /RB2 copolymerization process in terms of its chemic
properties. Using the stochastic simulation algorithm,
type of analyses performed for these processes may be
plied to related biological processes such as the cross lin
of cells via polyvalent or bivalent macromolecules. Spec
examples include von Willebrand factor or fibrinoge
mediated platelet aggregation and the antibody-media
cross linking of red blood cells in blood typing.

In this work, we have simulated processes for which~1!
the aggregation and fragmentation kernels were related
the combinatorics of connecting multivalent monomers, a
~2! aggregate formation was mediated by the formation
chemical bonds. However, many aggregation-fragmenta
processes feature other mechanisms of aggregation and
mentation, which are not microscopically reversible. Inde
the steady states of such processes may not even be
equilibrium states. However, these issues are irrelevan
both the stochastic simulation algorithm and to the PBE
long as the forms ofK(u,v) and F(u,v) correctly quantify
the average rates of aggregation and fragmentation. Bec
the probability density functions underlying the algorith
are independent of the functional forms of the kernels,
stochastic simulation algorithm, like the PBE, can predict
time evolution of any process characterized by any pair
kernelsK(u,v) andF(u,v).

In both this paper and in a previous publication@12#, we
have shown that the stochastic simulation algorithm can p
dict the time evolution of processes that feature a gel tra
tion. Under certain conditions, processes described by ‘‘s
tering’’ kernels are also amenable to simulation. Howev
this requires careful consideration of the size and comp
tion space. When size or composition is treated as a cont
ous variable (uPRk), solutions of the corresponding ‘‘con
tinuous’’ PBE with certain fragmentation kernels imply
loss of system mass@27–29#. These results follow from the
fact that particles are considered to be infinitely divisib
Thus, the ‘‘shattering transition’’ results from the disintegr
tion of particles into infinitesimally small fragments. How
ever, when particles are aggregates of monomeric unitsu
PNk), the smallest particles must be monomers. Hence,
lutions of a discrete PBE such as Eq.~3! with a ‘‘shattering
kernel’’ will predict a rapid fragmentation of particles int
3-14
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the constituent monomers. Because the stochastic simula
algorithm is indifferent to the functional forms of simulate
kernels, it may be used to predict the time evolution of b
‘‘aggregation dominated’’ and ‘‘fragmentation dominated
processes with multiple components as long as the in
particles are composed of monomers.

APPENDIX

The maximum number of operations necessary for de
mining the composition of a daughter fragment in Eq.~22!
follows from a consideration of the breakup of the aggreg
of all particles in the system. Consider a system of partic
composed ofk components, such as different types
chemical monomers or different blood cell types. Let us
fine Vk(kP@1,k#) as the amount of each type of compone
particle. The number of distinct fragmentation kernels for
aggregate of all of the particles is then

N5)
k51

k F1

2
VkG , ~A1!
t

ut

rg
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where@ 1
2 Vk# is the greatest integer less than1

2 Vk . Using the
relationship between the amounts of each component and
maximum number of speciesNmax @12#,

)
k51

k

Vk.22kNmax
k11 , ~A2!

Eq. ~A1! may be simplified to

N.Nmax
k11 . ~A3!

If Eq. ~22! is solved by bisection to obtain the compositio
of a daughter fragment, at most log2(N) operations are re-
quired, for a maximum ofO„ln(Nmax)… operations. This does
not include the theN operations necessary to specify th
mother species.
p,
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