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A genetic algorithm (GA) was developed for the purpose of regressing composition-dependent aggregation
kernels from time series of experimentally measured component or size distributions. The GA evolves initially
random populations of kernel models in accordance with the principles of microevolution. To test the robustness
of the GA, functionally diverse kernelssincluding one describing the shear-mediated aggregation of blood
cellsswere constructed. The stochastic time evolution of their corresponding aggregation processes were
then simulated under physiological conditions via Monte Carlo. The GA successfully regressed the kernels
underlying these “gold standard” datasetsswhere we employ the term in the sense of a “trusted reference”s
from these simulation results, reproducing the multicomponent kernels to a maximum relative deviation of
less than 9% over their entire composition ranges. Finally, ramifications of these cases pertinent to experimental
design are considered, including the effects of extreme initial population ratios for multicomponent aggregation
experiments with extreme population ratios.

Introduction

The receptor-mediated aggregation of blood platelets and
neutrophils plays an important role in cardiovascular disease.1-4

Aggregates contribute to myocardial infarction, ischemia,
thrombosis,5-7 the progression of unstable angina,8 and com-
plications associated with extracorporeal circulation during
surgery.9

Motivated by these medical issues, the aggregation of these
blood cells has garnered considerable interest among biophysi-
cists over the past twenty years. Among the more popular
approaches to the study of the dynamics of this process is the
“population balance” method,10-15 wherein the time evolution
of the aggregation in a closed system with fixed volumeV is
specified by an equation such as

Here, c(u,V) du dV is the concentration of aggregates with a
platelet volume content [µm3] betweenu and u + du and
neutrophil volume content [µm3] betweenV andV + dV.16-19

The aggregation kernelK(u,V,u′,V′) is the intrinsic rate at which
particles of composition (u,V) and (u′,V′) aggregate. By speci-
fication of the functional form of the kernel and the initial
composition distributionc(u,V,t ) 0), one may specify the time
evolution of the entire aggregation process.

When particles aggregate in a linear shear field (Vx ) γSy),
the aggregation kernel possesses the form20,21

where γS is the shear rate [s-1] and ε is the “efficiency” or
“sticking probability” for the interaction. When the aggregating
particles are on the order of micrometers in radius, this parameter
is a function of both the hydrodynamic and electrostatic forces
between colliding aggregates.21-29 However, because adhesion
between platelets and neutrophils is mediated by surface-
bound macromolecular receptors,30-39 their aggregation is a
function of the kinetics of formation and dissociation of those
bonds.28,29,40-43 Therefore, since each cell line features a unique
set of surface-bound adhesion molecules, the sticking probability
must feature a composition dependence, i.e.,

wherey ) u/(u + V) andy′ ) u′/(u′ + V′).
In 1964, Swift and Friedlander published a method of

determining the sticking probability for the single-component
aggregation of latex beads.21 Insofar as the aggregation process
was homotypic, the sticking probabilityε could be related
directly to the particle consumption and computed directly from
time series measurements of the particle size distribution.
However, this elegant approach has not been amenable to the
regression of multicomponent biological kernels on account of
the explicit composition dependence of the kernels. In the case
of the heterotypic aggregation of platelets and neutrophils in
linear shear flow, the sticking probability must be a function of
at least two variables (y1 and y1′) and three parametric
constants: the sticking probability for the interactions of platelets
with neutrophilsεplat-neut, the sticking probability for homotypic
interactions of neutrophilsεneut, and the sticking probability for
homotypic interactions of plateletsεplat. Thus, to obtain the
functional dependence of the heterotypic sticking probability
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ε(u,V,u′,V′) ) ε(y,y′,γS) (3)
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ε(y,y′) from experimental data, the PBE itself must be solved
and inverted. However, this is not a trivial task: the infinite set
of nonlinear partial-differential integral equations represented
by eq 1 rarely admits analytical solution, and Monte Carlo (MC)
simulations of the stochastic time evolution of the aggregation
process are required.17,18,44Therefore, a more general regression
algorithm is necessary to specify the functional dependence of
the heterotypic sticking probabilityε(y,y′) from experimental
data.

In this work, we employ the genetic algorithm (GA) to solve
the “inverse problem” of deconvoluting the functional form of
the sticking probability from timeseries measurements of
component size distributions of platelet-neutrophil aggregates.
The genetic algorithm (GA) is a method of minimizing or
maximizing functions using the principles of biological evolution
and has been used for optimizations as diverse as kinetic model
fitting45-47 and chemical plant design.48,49

Methods

Generation of “Gold Standard” Datasets.Under different
experimental, physiological, or pathological conditions, the
sticking probabilities between aggregates of platelets and
neutrophils may differ. However, our interest lies in the
development of an algorithm to regress these probabilities
without restricting our scope to a specific experimental system.
Hence, we performed MC simulations of two qualitatively
dissimilar models ofε(y1,y2). The resulting sets of time series
of composition distributions (our trusted reference datasets or
gold standards) were employed as proxy experiments, akin to
the composition distributions of platelet-neutrophil4 and platelet-
LS174T50 aggregates measured via flow-cytometry.

The two models employed the shear kernel defined by eqs 2
and 3 with sticking probabilities featuring the following
composition dependence:

This model has a microphysical interpretation as a “single-bond”
model, wherebyy acts as the probability that there is a single
platelet in a particle of composition (u,V), in accord with the
symmetry property of all aggregation kernels,ε(y,y′) ) ε(y′,y),
regardless of the values ofC1, C2, andC3.

The first gold standard model for which data were simulated
(E1) was designed to emulate the behavior of true heterotypic
aggregation of platelets and neutrophils in shear atγS ) 335
s-1. At this shear rate,C1sthe homotypic sticking probability
for plateletsεplatsandC3sthe homotypic sticking probability
εneut for neutrophilssare 0.05 and 0.31, respectively.15,51,52The
value of the heterotypic sticking probability between platelet
and neutrophil singletsεplat-neut was estimated to be 0.5.

The second gold standard model (E2) was chosen to have
significantly different features than the first: parameters of 0.5,
0.1, and 0.6 were selected forC1, C2, andC3, respectively, to
favor homotypic aggregation of the two “cells” over heterotypic
aggregation. Moreover, the homotypic parameters were specif-
ically chosen to be similar in magnitude.

Monte Carlo Simulation. To obtain time series of the
composition distributions of cellular aggregates that behave
according to models E1 and E2, we conducted stochastic
simulations of their aggregation processes. We employed the
stochastic simulation algorithm (SSA) of Laurenzi and co-
workers, which is based on Gillespie’s direct method.17,18,44,53,54

This method simulates the stochastic time evolution of the

aggregation process using the kernels directly, avoiding the
solution of a population balance equation (PBE) such as eq 1.
The fundamental axiom of the approach is

If there is more than one particle of each aggregation species
as defined by composition, then it may be shown that53,55

whereh is the total number of ways that those particles can
aggregate

and X(u,V) is the total number of particles with composition
(u,V).

By judicious use of these axioms, one can construct prob-
ability densities for the time until the next event (quiescence
time) τ and the specific event to come, such as the interaction
of a platelet of sizeu with a neutrophil of sizeV.17,18,44 By
repetitive Monte Carlo selections of quiescence times and events
from these probability densities and intermediating “updates”
of species population and reaction rates concomitant with
population change (cf. eqs 6 and 7), the entire time evolution
of any aggregation process may be simulated. We note in
particular that the derivation of the algorithm is exact, involving
no numerical approximations, and remarkably fast due to
innovations of data structures for aggregating systems.18,44The
simulations return species populationsX(u,V) over a desired
range of time points, which may be related to concentrations
by division byV.

All simulations were performed using volumetrically homo-
geneous platelets (7.68 [µm3]) and neutrophils (290.1 [µm3])
at populations of 36 000 and 1000 cells, respectively. To
approximate experimental error, redundant simulations were not
performed, and the results of individual simulations of the
models were employed as sets of proxy experimental results
for GA regression.

The results of these simulations tend to be statistically
indistinguishable from analytical solutions of eq 1 unless (a)
the kernel grows geometrically in size or (b) the number of
monomers of a component is too small. In the simulations of
our model systems, the number of particles was sufficiently large
enough to reproduce bulk behaviors. Simulations were per-
formed on a 1.2 GHz Dell desktop computer running RedHat
Linux and typically required only a few seconds of CPU time.

Genetic Algorithm. The first GA is attributed to John
Holland,56 who devised electronic entities whose “evolution”
was guided by their conformity to a fitness measure. By
correlating these quantities to mathematical statements and
formulas, he was able to use the concept of natural selection to
optimize functions. Since the early 1980s, GAs have been used
extensively in physics, economics, chemistry, and their coun-
terparts in engineering for optimization and design.57

ε(y,y′) ) yy′C1 + (y′(1 - y) +
y(1 - y′))C2 + (1 - y)(1 - y′)C3 (4)

K(u,V,u′,V′)
V

δt + o(δt) )

Pr(two specific particles of compositions (u,V) and
(u′,V′) will aggregate within the next time intervalδt) (5)

K(u,V,u′,V′)
V

h(X(u,V),X(u′,V′))δt + o(δt) )

Pr(any two particles of compositions (u,V) and (u′,V′)
(u′,V′) will aggregate within the next time intervalδt) (6)

h(X(u,V),X(u′,V′)) ) {X(u,V) X(u′,V′) (u,V) * (u′,V′)

(X(u,V)
2 ) (u,V) ) (u′,V′)

(7)
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The task of fitting these parameters to experimental or
simulated experiments is nontrivial. Inasmuch as the free
parameters characterize a kinetic process, a model should be
able to predict a set of experimental results at multiple time
points. If the derivatives of such an objective functions were
known, the traditional second derivative test could be employed
to minimize the difference between model and experiment.
However, owing to the noise of both the results of simulations
of models and the noise of experimental results, such derivatives
cannot be determined in this case. Because GAs do not require
derivatives of objective functions, they are well suited to the
regression of such noisy data to stochastic simulation results.
We then investigated whether a simple GA could evolve a kernel
to fit new simulation results to the VERs resulting from
simulations of models E1 and E2. To evaluate this, we defined
a model as the ordered triple (C1, C2, C3). We also supplement
the model with the constraint thatC1, C2, andC3 are limited to
values between 0 and 1, guaranteeing thatε, εneut, εplat-neut, and
εplat are all positive and less than one. By defining the model in
this way, we also establish the first step of the GA.

Gene Pool.The GA requires a gene poolsa population of
model kernels that will evolve to maximize the fit between the
experiment and the simulation. The first step of the GA is the
construction of a population of model extrema

randomly generated on the possible ranges ofC1, C2, andC3.
In our GA, we used a population of 200 models. We denote
C1,i, C2,i, and C3,i as the genes of model i and the set
(C1,i,C2,i,C3,i) as itschromosome.

Evaluation of Fitness. Keeping in mind the physical
interpretations ofC1, C2, andC3 discussed previously, we sought
to fit them to the simulated models E1 and E2 via an objective
function, to evaluate, thefitnessof each model. We defined the
fitness theith model, fi, as a measure of the time-averaged
percentage of correctly allocated mass

In eq 9,Xexpt(m,n,tk) is the simulated composition distribution
at time tk for either model E1 or E2 andXsi(m,n,tk) is the
corresponding distribution for modelsi. Like the time-dependent
composition distributions for models E1 and E2,Xsi(m,n,t) is
generated via MC simulation of modelsi with the same initial
conditions as models E1 and E2.

Models with negative fitness were discarded at the beginning
of the procedure, and new models were generated until the gene
pool was set. In the results of models E1 and E2, measurements
were taken at four time points at equal intervals. Hence, exact
models from the “gene pool” will allocate the components
almost identically to experimental composition distributions at
all times, resulting in a fitness of one. By contrast, models that
are nonpredictive or predictive only at large or smallt will have
fitness values close to zero.

Selection and Crossover.Once the population was defined
and each model evaluated, the GA selected pairs of models
according to their fitness and employed “crossover” to generate

new models. Like the selection of the event to come in the SSA,
both selection and crossover were treatedprobabilistically. Here,
the selection criterion followed from the event selection method
of the SSA:

Equation 10 balances the relative probabilities of the coming
event and favors “more fit” models for reproduction. The
“parent” models were then chosen like the reaction events to
come in the MC simulation algorithm for aggregation

wherer1 and r2 are random numbers on (0,1].
Upon selection of parent models, a new “child” model is

created from them by crossover. In the context of the GA,
crossover has a significantly different meaning than in nature.
Upon fusion of two haploid cells, typically from different
parents, the resulting (diploid) child cell possesses half of each
parent’s alleles. Our GA cannot produce child models in exactly
this way, since each model is “haploid”. To effect a mixing of
parental information to produce a child model, we needed to
ensure that different genes were not mixed. That is, none of
one parent’sC2 genes should mix with the child’sC1 gene. Our
solution was the following: if modelsj andk are the chosen
parents, the crossover mechanism of our GA was defined by
the following formula

The genes are distributed probabilistically from the parents in
a way similar to the biological process. Moreover, this crossover
formula does not allow accidental generation of illegal values
for the parametersC1, C2, andC3.

Mutation. To assist in the escape from local minima of the
objective function, a mutation step was added to the procedure
of generating new models from their parents. In nature, mutation
most certainly has helped organisms adapt to their surround-
ings: If there is a mutation in a gene of a living organism (i.e.,
a change in its sequence such as ...GATC... from ...GTTC...),
there may be consequences for the structure and function of
the protein encoded by that gene. An abundance of literature
testifies to the significance of single nucleotide polymorphisms
(SNPs) to the function of proteins from which mutated genes
are translated. If the floating point numbers we designated as
genes are represented bitwise, then if a bit at the upper end is
changed, there will be a change in the first significant digit of
the corresponding floating point value. Likewise, if the last bit
is changed, then the entire number becomes negative if the

s1 ) (C1,1,C2,1,C3,1)

s2 ) (C1,2,C2,2,C3,2)

l

sn ) (C1,n,C2,n,C3,n) (8)

fi )
1

4
∑
k)1

4 ∑m∑n(m + n) min(Xexpt(m,n,tk),Xsi
(m,n,tk))

∑m∑n(m + n)Xexpt(m,n,tk)
(9)

fk

∑
i)1

n

fi

) Pr(thekth parent will procreate in the coming

reproductive cycle) (10)

∑
i)1

k-1

fi e r1∑
i)1

n

fi < ∑
i)1

k

fi parent 1 selection

∑
i)1,i*k

l-1

fi e r2 ∑
i)1,i*k

n

fi < ∑
i)1,i*k

l

fi parent 2 selection

(11)

schild ) {(rC1,j + (1 - r)C1,k,C2,k,C3,k) 0 e r < 1/3
(C1,j,(r - 1/3)C2,j + (4/3 - r)C2,k,C3,k)

1/3 e r < 2/3
(C1,j,C2,j,(r - 2/3)C3,j + (5/3 - r)C3,k)

2/3 e r < 1
(12)
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computer stores numbers using twos complements. However,
intermediate bits may be of little to no significance, i.e.,
changing the floating point value in the fourth significant digit.

Due to these considerations, and in particular the twos
complement issue, we choose to randomly generate a new gene
on [0,1) if the GA dictates that mutation will occur. Like the
desicion for the crossover point, the decision to mutate is made
by MC. For each of the genes of a new child model, a random
numberr ∈ (0,1] was chosen. If this numberr is greater than
0.95, that gene will be replaced as discussed. By choosing the
tolerance 0.95, mutation was ensured to be both rare and
sufficient for the generation of models that can escape from
local maxima in fitness.

Insertion. Once the new model was generated by crossover
of the parents and possibly mutated, its fitness was evaluated
by stochastic simulation. If the fitness was nonnegative, the child
model was added to the population. A fixed population size
was maintained by displacing the least fit member of the
population at each new generation, weeding out less fit models
over successive generations.

Results and Discussion

In Figure 1 we present typical results for the regression of
model E1 from its simulation results. At the beginning of the
GA regression, the model population average (MPA) values of
C1, C2, andC3 are all approximately 0.5 due to the fact that the
initial genes were uniformly randomly generated on (0, 1]. With
each generation or creation of a new model, the model
populations became more and more homogeneous: in Figure
1A-D, the gray lines representing the means( standard
deviation (SD) monotonically approach the mean with each
generation.

The convergence of the mean values of the parameters,
however, is not monotonic. After 200 generations, the initial
population was completely replaced in accordance with the
population constraint of the GA but the best model had not been
replaced. The evolution of a more fit model occurred between

200 and 300 generations, but it actually produced a less accurate
value ofC1. This escape from a local minimum then allowed
the population to relax to a new minimum, and after the passing
of 300 generations, the convergence was fairly monotonic.

The GA succeeded in reproducing all three constants for
model E1. After 3000 generations, the population appeared to
reach steady state, with optimal point estimates ofĈ1 ) 0.044
( 0.026, Ĉ2 ) 0.615 ( 0.017, andĈ3 ) 0.283 ( 0.026
(population mean( SD). Of the GA estimates of the three
parameters, those forĈ1 and Ĉ2 were the most accurate. The
estimate ofC3salthough less preciseswas sufficiently accurate;
the true value ofC3 for model E1 was 0.31. However, if one
compares the functions for the sticking probability for the
regressed and E1 models, the convergence is remarkably good
(Figure 2). The worst case relative deviation|εE1 - ε̂E1|/εE1

corresponds to a percentage difference betweenεE1(0,1) ) C3

andε̂E1(0,1)) Ĉ3 of only 8.7%. Generally, the relative deviation

Figure 1. Evolution of the “C1 gene” (εplat), “C2 gene” (εplat-neut), “C3

gene” (εneut), and fitnessf as the GA evolves a population of aggregation
models for the heterotypic aggregation of human blood platelets and
neutrophils to model E1. The values corresponding to the best (most fit)
model and the population mean are tracked with each generation. Gray
lines are the population average( SD.

Figure 2. Convergence of the GA to model E1. (A) Gold standard model
E1. The optimal values found wereĈ1 ) 0.044( 0.026,Ĉ2 ) 0.615(
0.017, andĈ3 ) 0.283 ( 0.026 (population mean( SD), which fall at
(y,y′) coordinates of (0,0), (0,1), and (1,1), respectively. The actual values
of the parameters areC1 ) 0.05,C2 ) 0.61, andC3 ) 0.31. The surface
reflects about the liney ) y′; values are shown fory′ < y. (B) Fractional
difference between the GA-regressed and true sticking probabilities|εE1 -
ε̂E1|/εE1. The relatively large deviation forC3 is a result of a large platelet/
neutrophil ratio of 36:1 in all model simulations that minimizes the effects
of homotypic neutrophilic aggregation, diminishing the sensitivity toC3.

Ind. Eng. Chem. Res., Vol. 45, No. 16, 20065485
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between the true and regressed sticking probabilities over ally
andy′ is less than 3%.

Further study revealed the lower precision ofĈ3 to be a
consequence of (a) the heterotypic nature of the aggregation
process described by eq 7 and (b) the small initial population
of neutrophils. At the beginning of both the GA and gold
standard model simulations, the 36:1 ratio of platelets to
neutrophils causes most neutrophils to aggregate heterotypically,
strictly out of population considerations (cf. eqs 6 and 7).17

Moreover, the high platelet population and higher number of
platelet combinations for smallt guarantee significant homotypic
platelet aggregation even in the presence of neutrophils. Later,
as the aggregation process proceeds and homotypic platelet
aggregates aggregate with heterotypic aggregates out of entropic
considerations, all aggregations tend to be heterotypic. Conse-
quently, the heterotypic sticking probabilityC2 and homotypic
platelet sticking probabilityC1 are the most important parameters
in the process; the final results are not as sensitive toC3. Hence,
the GA does not resolveC3 to the precision of the other
parameters.

Results of a typical regression of model E2 are presented in
Figure 3.C1 andC2 were reproduced very well and with high
precision, whereas the GA estimate forC3 is not as precise.
After 3439 generations, the GA resolvedĈ1 ) 0.512( 0.006,
Ĉ2 ) 0.102( 0.004, andĈ3 ) 0.644( 0.014 (population mean
( SD), although the convergence is more or less achieved after
1500 generations. As with the regression of model E1, small
differences between the parameters used to generate the “model
time series” and the parameters of the population average model
are insignificant over the entire range of aggregate compositions
y andy′: the relative deviation|εE2 - ε̂E2|/εE2 is at most 7%
(Figure 4).

In as much as the form of model E2 is has a different type
of curvature (i.e., an inverted saddle point with respect to model
E1) and different magnitudes and ratios of the homotypic
extrema, we conclude that extreme ratios of the initial cellular
population are a potential cause of precision loss when regress-
ing ε(y,y′) from experimental composition distributions via the

GA. With this caveat, we note that the ultimate results of the
GA are remarkably robust, as illustrated in Figures 2B and 4B.

To improve experimental designs for the measurement of
ε(y,y′), we suggest that experiments be run with varying
concentrations of neutrophils. This may be achieved, for
example, by isolation of neutrophils from venous blood via ficoll
hypaque58 and resuspending them with varying amounts of
platelet-rich plasma prior to aggregation. Each diluted sample
may then be aggregated, yielding composition distribution time
series akin to the simulation results of models E1 and E2, which
may then be used to calculateε(y,y′) via the GA. The constants
regressed can then be compared via ANOVA or another method
to systematically quantify the effect of the cell population ratio
on the GA sensitivity.

Although we have not addressed the matter explicitly in this
work, we note that the sticking probability may be a function
of both the compositions of colliding aggregates as well as the
shear rate of the suspending medium. However, depending on

Figure 3. Evolution of the “C1 gene” (εplat), “C2 gene” (εplat-neut), “C3

gene” (εneut), and fitnessf as the GA evolves a population of aggregation
models for the heterotypic aggregation of human blood platelets and
neutrophils to model E2. The values corresponding to the best (most fit)
model and the population mean are tracked with each generation. Gray
lines are the population average( SD.

Figure 4. Convergence of the GA to model E2. (A) Model E1. The optimal
values found wereĈ1 ) 0.512( 0.006,Ĉ2 ) 0.102( 0.004, andĈ3 )
0.644( 0.014 (population mean( SD), which fall at (y,y′) coordinates of
(0,0), (0,1), and (1,1), respectively. The actual values of the parameters are
C1 ) 0.5, C2 ) 0.1, andC3 ) 0.6. (B) Fractional difference between the
GA-regressed and true sticking probabilities|εE2 - ε̂E2|/εE2. As with the
results for model E1, the relatively large deviation forC3 is a result of a
large platelet/neutrophil ratio of 36:1 in all model simulations that minimizes
the effects of homotypic neutrophilic aggregation, diminishing the sensitivity
to C3.

5486 Ind. Eng. Chem. Res., Vol. 45, No. 16, 2006
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the dynamics of tether bond formation and cell type, sticking
probabilities may have a broad range of shear behaviors.14,15,50

Therefore, although it is possible to modify the models and GA
to accommodate the regression of experiments at multiple shear
rates, we believe that it is more informative to perform
regressions at each shear rate and then analyze the model
constants for their shear dependence.

Conclusions

We have developed a genetic algorithm to facilitate the kinetic
characterization of heterotypic aggregation processes. Given a
time series of cellular composition or size distributions such as
may be measured via flow-cytometry or a Coulter counter, the
GA regresses a model of the aggregation kernel for the process.

To obtain a diverse set of gold standard data for testing the
GA, we developed unique models of aggregation of blood
platelets and neutrophils and simulated these via the stochastic
simulation algorithm of Laurenzi and co-workers.17,18 The
resulting time series of composition distributions were then
processed via the GA to regress the original models. The GA
was capable of fitting multicomponent kernels to experimental
composition distributions with remarkable accuracy. Heterotypic
kernels were reproduced very well over their entire composition
range, with maximum relative deviations lower than 9% for both
gold standard models.

However, we discovered in the process that the design of
such aggregometry experiments is critical: the sensitivity of
the results may be affected by the initial relative numbers of
cells in an experiment. Should this ratio favor one of the cell
lines too strongly, the composition dependence of the kernel
for the other cell line may be reproduced less reliably. In our
example of the heterotypic aggregation of neutrophils and
platelets in venous blood, wherein the ratio of platelets to
neutrophils is 36:1, we found that the relative error of the
sticking probability returned by the GA could be as high as
9%. Hence, we suggest care in choosing the relative concentra-
tions of blood cells prior to aggregometry and/or flow-cytometry.

We suggest that the GA described may be useful in the
“kinetic fingerprinting” of human blood, whereby variations
between individuals’ heterotypic cellular sticking probabilities
could be characterized as a diagnostic measure of immunological
or thrombotic activity. Moreover, due to the general applicability
of the stochastic simulation algorithm on which it is based and
the potential to use a wide variety of other kernel models, we
believe it may have considerable impact in the characterization
of colloidal, atmospheric, and polymer systems in which
multicomponent aggregation plays a central role.
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Notation

c(u,V) du dV ) concentration of aggregates with a platelet
volume content (µm3) betweenu andu + du and neutrophil
volume content (µm3) betweenV andV + dV

C1, C2, C3 ) model constants
Ĉ1, Ĉ2, Ĉ3 ) point estimates of model constants
h(X(u,V),X(u′,V′)) ) number of ways that (u,V)-mers and (u′,V′)-

mers can aggregate
K(u,V,u′,V′) ) aggregation kernel (µm3/s)

t ) time (s)
r, r1, r2 ) uniform random numbers on (0,1]
fi ) fitness of modeli
si ) ordered set of parameters constituting modeli
u, u′ ) platelet volume content (µm3) of an aggregate
V, V′ ) neutrophil volume content (µm3) of an aggregate
V ) batch volume
X(u,V) ) population of aggregates with platelet volume content

(µm3) u and neutrophil volume content (µm3) V
y, y′ ) platelet volume fraction of an aggregate
ε ) efficiency or sticking probability
εplat ) homotypic sticking probability for platelets
εneut ) homotypic sticking probability for neutrophils
εplat-neut ) heterotypic sticking probability for interactions

between platelet and neutrophil singlets
γS ) shear rate (s-1)
τ ) quiescence time
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